
Conversion of Binary Space Partitioning Trees

to Boundary Representation

Jo~ao Comba1 and Bruce Naylor2

1 Computer Science Department, Stanford University, USA ?

2 Spatial Labs, Inc. ??

Abstract. Binary Space Partitioning Trees (BSP-Trees) have been pro-
posed as an alternative way to represent polytopes based on the spatial

subdivision paradigm. Algorithms that convert from Boundary Repre-

sentation (BRep) to BSP-Trees have been proposed, but none is known
to perform the opposite conversion. In this paper we present such an algo-

rithm, that takes as input a BSP-Tree representation for a polytope and
produces a BRep as output. The di�culty in designing such algorithm

comes from the fact that the information about the boundary is not ex-

plicitly represented in the BSP-Tree. The solution we present involves a
recursive traversal of the tree to compute lower dimensional information,

along with a gluing algorithm that combine the convex regions de�ned

by the BSP-Tree, removing internal features. A new data structure is
proposed (a Topological BSP-Tree), that augments the traditional BSP-

tree with topological pointers and is used to store intermediate results

used in the reconstruction of the BRep.

1 Introduction

Boundary representation (BRep) is a widely used representation of solid geom-

etry, based on the description of an object by its boundary, as a collection of

faces, edges and vertices[?]. On the other hand, Binary Space Partitioning Trees

(BSP-Trees) consist of convex hierarchical decompositions of the space, where

the object is represented by the union of convex regions. The basic operation for

the construction of this decomposition consists of a partition of the underlying

space by a given hyperplane. This partition is represented as a binary tree, where

each node is identi�ed by a hyperplane, and the left and right subtrees of the

node represent the two halfspaces obtained in the partition. The recursive appli-

cation of this operation creates convex hierarchical decompositions of the space.

In Solid Modeling, BSP-Trees have been used along with BReps, and many al-

gorithms have been proposed, like the conversion from BRep to BSP-Tree [?],

or the one that computes boolean operation with BSP-Trees [?].

In this paper we consider the problem of converting a BSP-Tree represen-

tation of a polytope into a BRep. This problem is similar to the conversion of

CSG to BRep (also called the Boundary Evaluation), because the BSP-Tree can

? e-mail: comba@cs.stanford.edu, web: http://www-graphics.stanford.edu/
?? e-mail: naylor@spatial-labs.com

be �rst converted into a CSG by computing the union of all the convex regions

that the BSP-Tree de�nes, and applying over the result any of the Boundary

Evaluation algorithms proposed in the literature([?], [?]).

However, this approach does not exploit the spatial subdivision information

that the BSP-Tree encodes, which may lead to more e�cient algorithms. In

order to use this information, we propose an algorithm that converts the BSP-

Tree to a BRep by working directly in the structure of the BSP-Tree. In Fig. 1

b

c

out

out

d

e

f

out

4

5

6

1

2

3

7

1

2

3

a

b

c

d

e

f

4
5

6

7

(a) (b) (c)

in

in

in out

a

Fig. 1. (a) BSP-Tree, (b) Partition induced by the BSP-Tree. The resulting ob-

ject is composed of 3 di�erent regions (4, 5, 6), corresponding to the IN nodes (c)

Computing the boundary requires gluing di�erent regions and removing internal

elements

we illustrate the problem of reconstructing the boundary of an object obtained

by a partition induced by the BSP-Tree. In this example the union of regions

4, 5 and 6 (Fig. 1c) form the object. Looking at the example we identify some

di�culties in the design of the conversion algorithm:

{ The BSP-Tree does not have lower dimensional information: Intersections

need to be computed to obtain the faces, edges and vertices on the boundary.

{ The BSP-Tree does not have adjacent-topological information.

{ The BSP-Tree represents a convex decomposition of solids as convex regions,

and the boundary may be partitioned in multiple independent components

that are not minimal.

In the following sections we present how we solved each of the above problems,

and give the algorithm to compute a BRep from a BSP-Tree. Initially we review

some basic concepts about BSP-Trees. The algorithm that computes the BRep

from a BSP-Tree is discussed next, where we describe the Topological BSP-Tree

(TBSP-Tree), an auxiliary data structure that stores intermediate results and

topological relations among them.

2 Review of BSP-Trees

2.1 Basic concepts

Binary Space Partitioning trees (BSP-Trees) are spatial search structures used

in many di�erent aspects of Computer Graphics and Geometric Modeling. Ap-

plications in Solid Modeling [?] [?] [?] [?] , Visibility Orderings [?] [?] [?] and

Image Representations [?] , among others, can be found in the literature. In

order to describe the concepts of BSP-Trees, it is always nice to �rst explain the

relation it has with Binary Search Trees.

Binary Search Trees have been used in Computer Science in many ways,

but mostly as a data structure to accelerate search queries based in symbolic

values. A geometric interpretation of this data structure is a hierarchy of binary

partitions of the real line, where the partitioner is a point and each partition

obtained represents an interval. The problem with this interpretation is that

it does not directly generalize to higher dimensions, as points do not partition

such spaces. The misleading information with this interpretation is that the

partitioner that was supposed to be a point is in fact a hyperplane. In general,

for a D-dimensional space the partitioner corresponds to the hyperplane to that

space (a (D-1)-D element), and the partition has the same dimension of the

underlying space. BSP-Trees and Partition Trees [?] use this analogy to extend

the concepts of Binary Search Trees to higher dimensional spaces, but we choose

to work here with BSP-Trees as they have a more natural correspondence with

the representation of solids than Partition Trees.

One advantage of BSP-Trees is the ability to combine a search structure with

a representation scheme in one unique data structure. The use of BSP-Trees as

a solid representation scheme reveals one application where this combination

is well exploited. Solids are represented using BSP-Trees by a union of convex

regions, which are identi�ed by associating attributes to the leaves of the tree.

These regions may be either inside or outside the solid, and are de�ned by the

hyperplanes that are in the path from the root to the leaf node. In order to

precisely de�ne the region, the leaves have associated an attribute that indicates

that the region is inside or outside the solid.

2.2 Formal de�nitions

Many algorithms in BSP-Trees are better explained if we represent the main

concepts formally. In this section we present some de�nitions and properties

that are going to be used in the paper.

De�nition1. Hyperplanes and Halfspaces: The hyperplane is the basic

element to recursively partition the space, and it is described by the following

equation:

h = f(x1; :::; xd) j a1x1 + ::: + adxd + ad+1 = 0g

The hyperplane separates the space in two halfspaces, the positive and the

negative halfspace. Each of them is expressed as:

h+ = f(x1; :::; xd) j a1x1 + ::: + adxd + ad+1 > 0g
h� = f(x1; :::; xd) j a1x1 + ::: + adxd + ad+1 < 0g

The normal of the hyperplane is de�ned by the vector (a1; a2; :::; ad). The

positive halfspace corresponds to the one that lies in the direction of the normal.

De�nition2. BSP-Tree Nodes and Leaves: A BSP-Tree node represents

the information of the binary partition being performed on the space. It consists

of a partitioning hyperplane, and left and right children that point to BSP-Tree

representations of the positive and negatives halfspaces. The hyperplane that

de�nes the node n is denoted with a H(n).

A BSP-Tree leaf contains attributes associated to a given region. It contains

the labels IN (if the region is inside the solid), or OUT (if the region is outside

the solid), but may also contain additional attributes, like color or density.

De�nition3. Region Path:A Region Path corresponds to the path that leads

from the root of the tree to another node of the BSP-Tree. This path represents

one given partition of the space, and is represented by an ordered list of nodes

L.

RP (n) = L = froot; :::; parent(parent(n)); parent(n); ng

De�nition4. Region: A region of a given node represents the geometric inter-

pretation of the partition de�ned by the region path RP(n). It corresponds to the

intersection of all positive halfspaces in the region path, and can be formulated

as:

R(n) = f \ H�(�) j H�(�) 2 RP (n); � = +;�g

De�nition5. Sub-hyperplane: A sub-hyperplane s of a hyperplane h at a

given node n is de�ned by the intersection of the hyperplane h with the region

R(n) de�ned in the node.

s = SUB(h; n) = fh \ R(n)g

De�nition6. Projected Hyperplane: A projected hyperplane p is a one di-

mension lower hyperplane that is obtained by projecting the intersection of two

hyperplanes h1 and h2 orthogonally to one of the coordinate axis.

De�nition7. Path Partial Ordering �p : Let h1 and h2 be two hyperplanes

in a common region path p from the root of the tree. We de�ne h1 �p h2 if h1
is in the left subtree of h2. Otherwise, h2 �p h1.

3 Computing the BRep from a BSP-Tree

The BSP-Tree represents solids as the union of convex regions, and the boundary

associated with each of these regions is de�ned by the intersection of halfspaces

in the tree. Each convex region is identi�ed by two attributes: a leaf node l

labeled as IN (i.e. not empty), and a region path RP(l) associated with l. The

boundary of this region is obtained by the intersection of the hyperplanes in its

corresponding region path.

In the simple case where the BSP-Tree consists of a single convex region we

need to consider only one region path, and to obtain the boundary we compute

the intersection of all hyperplanes in the region path (Fig. 2).

a

b

c

out

out

d
out

outin

a

b c

d

R

R = a- b- c- d-� � �

Fig. 2. Simple BSP-Tree generating only one convex region

In a more complicated BSP-Tree, with more than one convex region, it is

likely that some of the region paths associated with these regions will share

nodes in the tree. In Fig. 3, region paths of the regions R1, R2, R3 and R4 share

the nodes a and b, and the intersection of H(a) and H(b) is on the boundary of

all these regions. In fact, any node in the tree may contribute to the boundary

of all regions that contains the node in its region path. A related consequence of

this fact is that when computing a given region we may not need to compute the

intersections of all hyperplanes in the region path, as some may not contribute

to the region (redundants to the region),

The sharing of nodes among di�erent regions implies that the computation

of intersections to �nd the boundary of regions may require repeated compu-

tations. This fact reveals a structure common in Dynamic Programming (DP)

problems. In each node of the tree we can partition the problem of computing the

boundary into smaller problems, corresponding to the boundary in the positive

a

a

b b

b

c

c

c d

d

d

e f e

e

f

f

in in in in out

outoutoutout

out out out

R1 R2

R3 R4

R1 = a- b- c- e-� � �

R2 = a- b+ c- f-� � �

R3 = a+ b- d- e-� � �

R4 = a+ b+ d- f-� � �

Fig. 3. Complex BSP-Tree generating more than one convex region

and negative halfspaces of the node. In order to obtain such boundaries, we need

to compute intersections among hyperplanes in each of the subtrees (separated

subproblems) and ancestor hyperplanes (shared subproblems), which identi�es

the DP structure.

One way to avoid re-computation of common intersections shared by subprob-

lems is to store them in intermediary data structures. The way of representing

these intersections, here called lower dimensional information, is described in

details in the next section.

3.1 Storing lower dimensional elements

One method of representing lower dimensional elements in a BSP-Tree relies

on using BSP-Trees of lower dimension, which results in a structure called a

multi dimensional BSP-Tree. In 1990, Naylor [?] proposed but did not elaborate

the use of a pure BSP-Tree model to represent solids. The proposal was based

in the extension of the standard BSP-Tree model to represent explicitly the

multi-dimensional information de�ned by the structure of the tree. In 1991,

Vanecek [?] used similar ideas and proposed the BRep-Index, which consisted of

a multi-dimensional BSP-Tree (called MSP) attached to a BRep, with the goal of

providing e�cient access to the BRep structures. The BRep-Index is constructed

in such a way that there is a correspondence between (0,1,2)-d nodes of the MSP

with the vertices, edges and faces of the BRep.

In this paper, we represent the lower dimensional information obtained in

a di�erent kind of multi-dimensional BSP-Tree. In the BRep Index of Vanecek

the topological information is stored in the BRep structure and not in the MSP.

In the data structure proposed in this paper, the topological information is

stored in a multi dimensional BSP-Tree, augmented with additional topological

a

b

c

out

out

out

in lower(a,-)

lower(b,-)

lower(c,-)

a
b

c

acab

bc

in

in

in

outout

out out

outout

ac

ab

bcab

bcac

Topological Links

Lower Dimension Links

Fig. 4. Topological BSP-Tree (TBSP-Tree) example in 2D

pointers connecting elements topologically adjacent. We call this data structure

a Topological BSP-Tree (TBSP-Tree).

The motivation for creating such a structure comes from the fact that in

order to obtain lower dimensional information we must compute the intersection

of hyperplanes, which gives certain information about the way that elements are

topologically related. In the example of Fig. 4, when computing the intersection

of the lines a and b we obtain a point ab that we need to insert into the lower

dimensional BSP-Trees associated with a and b. In other words, a is topologically

adjacent to b by ab. In order to preserve this information, we connect the nodes

we obtain in this intersection with topological pointers.

Besides the addition of these topological pointers, the TBSP-tree is di�er-

ent from the MSP of Vanecek because we keep not only one, but two pointers

to lower dimensional dimensional BSP-Trees, corresponding to the subdivisions

formed over both sides of the hyperplane. One reason for this choice includes the

simpli�cation of the incremental algorithm to build the topological BSP-Tree,

which requires a partial ordering among the hyperplanes, that can be simpli�ed

if we process the subdivisions in both sides separately.

3.2 Navigating the TBSP-Tree

The TBSP-Tree stores topological information about the intersections computed

in a pre-order traversal of the tree. This is achieved by creating copies of the

same intersection and connecting them with topological pointers. In general, for

each intersection of two hyperplanes h1 and h2 we keep three copies in the TBSP-

Tree. The node higher located in the tree receives one copy, stored in the lower

dimensional tree being used in the current region path. The other two copies

are stored in the two lower dimensional trees associated with the other node.

These last two copies are connected to the �rst copy created by a topological

pointer. In the case where h1 �p h2, the �rst copy is stored in the negative lower

dimensional tree of h2, because h1 is in the left subtree of h2. The other two

copies are stored in the positive and negative lower dimensional trees of h1.

Using the information stored in the TBSP-Tree we are able to recover the

basic elements of the Boundary Representation. This can be illustrated by look-

ing at the partial TBSP-Tree representation for a cube in Fig. 5. The faces of

the cube are de�ned by the hyperplanes H(a), H(b) and H(c), which are repre-

sented in a 3D BSP-Tree by the nodes a, b and c. The intersection H(a)\H(b)

is represented in the lower dimensional trees associated with a and b as ab and

ba respectively. The edges that belong to the face H(a) are de�ned in the lower

dimensional trees associated with node a, which in this case has one empty tree,

as the partition occurs in only one of the sides of a.

In order to traverse the faces of the cube directly from the TBSP-Tree we

make use of the following operators:

{ TreeParent(node) and TreeSon(node,side):Traditional pointers in trees

for parents and sons.

{ DimensionParent(node) and DimensionSon(node,side):Pointers that

re
ect an incidence relation in the dimension of the space. DimensionSon(node,side)

returns a pointer to the lower dimensional BSP-Tree associated with the

node in the speci�c side, and DimensionParent(Node) returns an upper-

dimensional BSP-Tree associated with the node.

{ TopologicalCopy(node,side): The application of this operators returns

the topological copy of a node at a given side. In Fig. 5, TopologicalCopy

(ab,-) returns the copy ba�, which corresponds to the same intersection ab,

but stored in the negative lower dimensional BSP-Tree of b.

{ TopologicalNeighbor(node): In 1D it is possible to de�ne an adjacency

relation. The Topological neighbor of a node corresponds to the next node

in ascending order in the real line. This order is de�ned in terms of the

projected hyperplane normal, and re
ects our convention for the orientation

of loops in the representation of the boundary. In Fig. 5, the 1D-BSP-Trees

are oriented by the hyperplane normal to each c edges. The direction of the

hyperplane normal is de�ned by the projected hyperplane and the current

side of the lower dimensional tree being used.

a

ae

e

f

f

d

d

ca

cacae

ced cde cdb
cbd

cbacab
cea

ba

ba

ac

ac

b

b

cb

cb

bc

bc

ab

ab

c

c

cd

cd

bd

bd

ae

ae

out

out

out

out

out out

out out out

out out outin in in

ce

ce

bf

bf

af

af

in

caecab

in

in

in

outout

out out

out

out

out

out

cbd cba

cde

ced

cdb

cea

1D-BSP-Tree

2D-BSP-Tree

3D-BSP-Tree

Fig. 5. Topological BSP-Tree (TBSP-Tree) example in 3D

These operators allow us to access the boundary elements for the cube. In

Fig. 6 we show the procedure to visit the elements of a face (VisitFace). The

application of this procedure to the leaf node IN (next to node cea) will visit

edges (cea, ced), (cde, cdb), (cbd, cba) and (cab, cae), which correspond to the

edges of the face c.

3.3 Incrementally Computing the TBSP-Tree

For every node visited in the traversal of the tree, we discover more information

about how the BSP-Tree partitions the space. When a new node is reached, we

may compute the intersection of the hyperplane that de�nes the node against

all hyperplanes in the region path of the node. These intersections are used to

update the lower dimensional BSP-Trees of all the nodes in this region path.

procedure VisitFace(1D-BSPTree node1D)

// The starting node corresponds to a leaf containing

// an IN attribute in the 1D-BSP-Tree

currentNode1D = startNode1D = DimensionParent(node1D);

do

nextNode1D = TopologicalNeighbor (currentNode1D);

VisitEdge (currentNode1D, nextNode1D);

currentNode1D = TopologicalCopy (currentNode1D);

while (currentNode1D != startNode1D)

end VisitFace;

Fig. 6. Procedure to visit a face using the TBSP-Tree

Every intersection obtained is projected onto one of the coordinate hyper-

planes before insertion into the lower dimensional trees, corresponding to the

concept de�ned before of a projected hyperplane. One way to understand this

operation is to remember the way that Gaussian Elimination (GE) solves linear

systems. In GE, the solution of a linear system involves �rst a triangulation

step, where each of the columns under the pivot (the diagonal element) is elim-

inated (replaced by zeros). In fact, at every elimination step the columns of the

matrix, which can be interpreted as the coe�cients that de�ne a hyperplane,

are projected into one of its dimensions. This is exactly the same operation we

are performing here to obtain the projected hyperplanes. In order to compute

all lower dimensional information induced by the BSP-Tree on a speci�c hy-

perplane we compute the intersections with the other hyperplanes, and project

these intersections in a direction orthogonal to one of the coordinate axis. This

has the same e�ect of sweeping with zeros a column in GE. For simplicity, from

now on when we refer to intersections we are in fact referring to the projected

hyperplanes of the intersections.

The update step of the lower dimensional trees is performed after an in-

tersection is found, consisting of the insertion of projected hyperplanes in lower

dimensional trees. This insertion operation is guided by a partitioning operation,

which involves the classi�cation of a hyperplane against a partitioning hyper-

plane. Depending on the result of this classi�cation, the intersection between

the hyperplanes is computed and the hyperplane being inserted is partitioned

into two sub-hyperplanes. The sub-hyperplanes are recursively inserted into the

left and right subtrees of the partitioner node. However, we exploit one unrecog-

nized property of the BSP-Trees that guarantees that we need to perform this

insertion into only one subtree of the node.

Suppose that in the BSP-Tree described in Fig. 7 we want to compute the

lower dimensional information associated with node a. Performing a pre-order

traversal of the tree we visit in this order nodes a and b in the tree. In this case

b intersects a, therefore we compute the intersection ab and insert as a node

ab
ab

ac

a

a
b

b

c

c
out

out

out
in

(a) (b) (c)

Fig. 7. Simple case in the incremental construction of the TBSP-Tree. The status

of the lower dimensional BSP-Tree associated with a after the visit of nodes a,

b and c is illustrated in (a), (b) and (c)

into the negative lower dimensional BSP-Tree of a, as b �p a. The next node

visited is c, and the insertion of ac into the lower dimensional tree of a involves

a partition against ab, to decide in which side of ab we need to insert ac. Using

the the path partial ordering de�ned by the tree, we observe that c �p b, and

therefore we must have that ac �p ab, which means that ac needs to be inserted

into the left subtree of ab.

But it is easy to formulate a case where the insertion operation can not be

guided by such partial ordering. In Fig. 8, b does not intersect a. This is only

possible because b is parallel to a, as b is a child of a. Clearly, one of the subtrees

of b (left or right) does not need to be tested against a (in this case the right

subtree). Therefore, even if nodes c and d intersect a we do not need to partition

one against the other, as b is shielding one of them from intersecting a.

A more complicated example involves the case where some node (not a child)

does not intersect a. Consider the case in Fig. 9 where b and e intersect a, but

c does not intersect a. The insertion of af into the lower dimensional BSP-Tree

associated with a requires �rst a partition against ab. Using as above the partial

order f �p b we propagate the result to the left subtree of ab. Now we need

to partition af against ae, but the path partial ordering is not de�ned between

e and f . Note that the fact that c does not intersect a tells us that one of its

subtrees does not need to be tested for intersection against a, because as before

c and its ancestors shield one of its subtrees from intersecting a. In this case, c

and b shield f from intersecting a

Using such results, we may decide in which side to insert a given hyperplane

when we perform the partitioning operation. We partition the hyperplane by

ac ac

ae

(a) (b) (c)

a

b

c

out

out

d

outoutin in

in
fe

a
b

c

d
e

f

Fig. 8. First case of Partial Ordering not de�ned. The status of the lower dimen-

sional BSP-Tree associated with a after the visit of nodes a, c and e is illustrated

in (a), (b) and (c)

ab ab

ae

(a) (b) (c)

a

b

c

out

out

d

outoutin in

in
fe

a

b

c

f

e

d

Fig. 9. Second case of Partial Ordering not de�ned. The status of the lower

dimensional BSP-Tree associated with a after the visit of nodes a, b and e is

illustrated in (a), (b) and (c)

computing the intersection with the partitioner, and propagate the result to the

side consistent with the partial ordering de�ned by the current path. When a

leaf node is reached, we evaluate the sub-hyperplane partitioned, and if it is not

empty we create a new node with unde�ned left and right attributes, and update

all the 1D-BSP-Trees of the most recent partitioner hyperplanes found along the

way.

One di�culty in this incremental construction is that we only discover the

attributes (IN or OUT) when we visit a leaf node. At this point, we need to

propagate this attribute to all lower dimensional BSP-Trees in the current re-

gion path and create leaf nodes with the attribute just discovered. In fact this

di�culty is a particular case of the insertion that we are performing in the other

cases, only that in this case we are not inserting a hyperplane but an attribute,

that can be localized in the tree using the partial ordering as above.

Another important operation that needs to be performed when computing

intersections and inserting them into lower dimensional BSP-Trees is to keep

track of the place where we insert the di�erent copies of an intersection. For

instance, the same intersection h12 of h1 and h2 needs to be inserted into the

lower dimensional BSP-Tree associated with h1 and with h2. Topological point-

ers are created to connect the copies of this intersection, which will allow the

reconstruction of the BRep in a next step. The procedure to compute the lower

dimensional information is described in Fig. 10.

procedure ComputeLowerDimension(BSPTree *current, BSPTree *path)

for each hyperplane hp in the current path

if current hyperplane hc is a leaf

// We update the lower dimensional trees with the attribute

Insert(DimensionSon(hp, side(hp)), current.attribute, path);

else

Compute intersection hpc between hp and current hc
if hpc is not empty

// We insert the intersection into the lower BSP-Trees

// of hc and hp and link them with topological links

Insert(DimensionSon(hc, +), hpc, path);

Insert(DimensionSon(hc, -), hpc, path);

Insert(DimensionSon(hp, side(hp)), hpc, path);

endif

endif

endfor

ComputeLowerDimension(current.left, path [current
+
)

ComputeLowerDimension(current.left, path [current
�

);

end ComputeLowerDimension;

Fig. 10. Procedure to Compute Lower Dimensional Information

3.4 Using the TBSP-Tree to reconstruct the Boundary

The incremental construction of the TBSP-tree built information about topo-

logical relations among the elements in all dimensions. A node in the tree has all

the information necessary to reconstruct the boundary when both lower dimen-

sional trees have been completely computed. In order to extract the boundary

we perform a gluing operation in the dimension of the embedding space, which

remove edges internal to faces and faces internal to solids.

In Fig. 11 we have an example where the partitions in both sides of the hy-

perplane h need to be glued together to remove internal elements. The gluing

operation is responsible for combining the results from the two subtrees in such

way that the result is a valid representation for the boundary de�ned in the sub-

trees of the node. In order to glue the information in the positive and negative

halfspaces of a node, we perform the symmetric di�erence of the lower dimen-

sional BSP-Trees in both sides of the hyperplane, which is a boolean operation

that can be executed by a tree merging algorithm for BSP-Trees[?]). The result

of the symmetric di�erence operation is a tree whose IN regions are elements of

the boundary of the object.

h

h+

h-

Fig. 11. Gluing opposite faces to obtain the boundary

Note that the gluing process to remove internal features entails a recursion on

dimension that �rst glues lower dimensional features. In other words, in order to

glue two faces we �rst glue the elements internal to each of these faces separately,

which will correspond to the removal of internal edges of a face. The algorithm

initially performs two gluing operations in the positive and negative lower di-

mensional trees, and a symmetric di�erence operation that combines the results

obtained. The algorithm for gluing TBSP-Trees is dimension-independent, and

the pseudo-code is described in Fig. 12.

procedure GlueBSPTree(BSPTree node, Dimension dim)

if dimension > 1

tree1 = GlueBSPTree(DimensionSon(node,+), dim-1);

tree2 = GlueBSPTree(DimensionSon(node,-), dim-1);

endif

return SymmetricDifference(tree1, tree2);

end GlueBSPTree;

Fig. 12. Procedure to glue TBSP-Trees

The gluing process can be implemented in such a way that the boundary

relations of the di�erent dimensioned elements is preversed. In Fig. 13 we illus-

trate the gluing operation for an example in 2D. The complicated cases arise in

nodes f and c, where we have partitions induced by the BSP-Tree in both sides

of the hyperplanes. In Fig. 13a we show the partition induced by the tree, and

the information stored in the TBSP-Tree is illustrated by the cycles of edges

and vertices in each cell. When performing the symmetric di�erence we not only

remove internal features, but we also join the cycles in both sides of the hyper-

plane. In Fig. 13b we show the result of the application of the gluing operation to

the node f. The corresponding features are identi�ed by performing the symmet-

ric di�erence operation for both lower dimensional trees in one dimension lower,

and the cycles are joined together when we have mutually incident relations. In

this case, the edge generated by the hyperplane f is removed, and the cycle of

edges of both copies of f are joined together. In a similar way Fig. 13c shows the

result of the gluing operation for node c.

It is important to demonstrate that the boundary information obtained is

in fact minimal. This is achieved due to the fact that all internal features are

removed by the recursion in dimension performed by the gluing algorithm. This

is an important consequence, because the convex decomposition created by the

BSP-Tree decomposition may generate a fragmentation of the boundary when

non-convex objects are represented. The gluing operation, as proposed, provides

an elegant solution to the problem of reconstructing the minimal BRep from a

BSP-Tree representation of a polytope.

a

a a

b

b b

c

c c

d

d d

e

e e

f

f f

g

g g

(a)

(b) (c)

a

b

c

out

out

out

d

out

out

in

in

in

g

f

e

Fig. 13. Example of the gluing Procedure in 2D

4 Conclusions

In this paper, we have presented an algorithm to convert a BSP-Tree repre-

senting a polytope to a BRep representation. The storage of lower dimensional

information in a TBSP-tree allowed us to reconstruct the information necessary

to recover the boundary of the object. The TBSP-Tree is incrementally computed

during a pre-order visit of the tree, which computes all lower dimension informa-

tion in both sides of each node. A gluing step is performed when all information

about a node is discovered. which involves a recursion in the dimension of the

space to remove internal features and glue the boundary representation in each

side of the node. As a consequence of this process, the boundary representation

obtained at the end corresponds to a minimal BRep.

We believe that the importance of the BSP-Tree representation can be ex-

tended by having such algorithm available. BSP-Trees and BReps are both rep-

resentation of polytopes used in Solid Modeling, each one with its own advan-

tages. For example, BSP-Trees are more e�cient where visibility orderings or

boolean operations need to be computed, whereas in some other applications,

like topological deformations, we would prefer to use the BRep. By having both

conversion algorithms available we can exploit the advantages of each model

more e�ciently.

Another application where the conversion algorithm proposed in this paper

can be used refers to the problem of �nding a near-optimal BSP-Tree repre-

sentation of a polytope. The BSP-Tree representation is not unique, and many

di�erent trees may represent a given polytope. The problem of �nding a mini-

mal tree is even more important when we perform successive boolean operations

by applying tree merging algorithms, which may generate trees that need to be

re-structured. Unlike Binary Search Trees, where we have algorithms to keep a

tree balanced, the balancing of a tree in higher dimensions is a much more dif-

�cult problem. By applying the conversion described here we obtain a minimal

BRep, which aggregates the geometric information expressed by the tree. The

further conversion from BRep to BSP-Tree may generate a much more balanced

tree, as the topological information of the BRep gives better heuristics in the

construction of the tree.

Finally, the combination of topological information in the BSP-Tree, which

resulted in the TBSP-Tree, shows promising applications in Solid Modeling. In

future work we plan to extend BRep algorithms, like topological deformations,

to work directly with TBSP-Trees.

5 Acknowledgments

The �rst author would like to thank Charles Loop for the proposal of the problem

of converting BSP-Trees to BRep, as well as orientation in the �rst attempts to

solve the problem; Leonidas Guibas for helpful discussions and a grant from

Brazilian Agency CNPq under process number 200789/92.9.

References

1. H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface generation by a priori

tree structures. Computer Graphics (SIGGRAPH '80 Proceedings), 14(3):124{133,
July 1980.

2. Dan Gordon and Shuhong Chen. Front-to-back display of BSP trees. IEEE Com-
puter Graphics and Applications, 11(5):79{85, September 1991.

3. M. Mantyla. An Introduction to Solid Modeling. Computer Science Press,

Rockville, Md, 1988.

4. J. Matou�sek. E�cient partition trees. Discrete Comput. Geom., 8:315{334, 1992.

5. Bruce Naylor. Binary space partitioning trees as an alternative representation of

polytopes. Computer-Aided Design, 22(4):250{252, May 1990.

6. Bruce Naylor. SCULPT an interactive solid modeling tool. In Proceedings of
Graphics Interface '90, pages 138{148, May 1990.

7. Bruce Naylor, John Amanatides, and William Thibault. Merging BSP trees yields

polyhedral set operations. In Forest Baskett, editor, Computer Graphics (SIG-

GRAPH '90 Proceedings), volume 24, pages 115{124, August 1990.

8. Bruce F. Naylor. Partitioning tree image representation and generation from 3D
geometric models. In Proceedings of Graphics Interface '92, pages 201{212, May

1992.

9. A. A. G. Requicha and H. B. Voelcker. Boolean operations in solid modeling:
Boundary evaluation and merging algorithms. Proc. IEEE, 73(1):30{44, January

1985.

10. Jaroslaw R. Rossignac and Herbert B. Voelcker. Active zones in CSG for accel-
erating boundary evaluation, redundancy elimination, interference detection, and

shading algorithms. ACM Transactions on Graphics, 8(1):51{87, 1989.

11. William C. Thibault and Bruce F. Naylor. Set operations on polyhedra using
binary space partitioning trees. In Maureen C. Stone, editor, Computer Graphics

(SIGGRAPH '87 Proceedings), volume 21, pages 153{162, July 1987.

12. Enric Torres. Optimization of the binary space partition algorithm (BSP) for
the visualization of dynamic scenes. In C. E. Vandoni and D. A. Duce, editors,

Eurographics '90, pages 507{518. North-Holland, September 1990.

13. G. Vanecek, Jr. Brep-index: a multidimensional space partitioning tree. Internat.
J. Comput. Geom. Appl., 1(3):243{261, 1991.

