Texture Synthesis over Arbitrary Manifold Surfaces


Input Sample

Model

Result

Authors:

In Proceedings of SIGGRAPH 2001

Abstract:

Algorithms exist for synthesizing a wide variety of textures over rectangular domains. However, it remains difficult to synthesize general textures over arbitrary manifold surfaces. In this paper, we present a solution to this problem for surfaces defined by dense polygon meshes. Our solution extends Wei and Levoy's texture synthesis method by generalizing their definition of search neighborhoods. For each mesh vertex, we establish a local parameterization surrounding the vertex, use this parameterization to create a small rectangular neighborhood with the vertex at its center, and search a sample texture for similar neighborhoods. Our algorithm requires as input only a sample texture and a target model. Notably, it does not require specification of a global tangent vector field; it computes one as it goes - either randomly or via a relaxation process. Despite this, the synthesized texture contains no discontinuities, exhibits low distortion, and is perceived to be similar to the sample texture. We demonstrate that our solution is robust and is applicable to a wide range of textures.

Available information:

Copyright Notice (from ACM):

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
liyiwei@graphics.stanford.edu