
Query, Analysis, and Visualization of
Hierarchically Structured Data using Polaris

Chris Stolte, Diane Tang, Pat Hanrahan
Stanford University

Abstract
In the last several years, large OLAP databases have become com-
mon in a variety of applications such as corporate data warehouses
and scientific computing. To support interactive analysis, many
of these databases are augmented with hierarchical structures that
provide meaningful levels of abstraction that can be leveraged by
both the computer and analyst. This hierarchical structure gener-
ates many challenges and opportunities in the design of systems for
the query, analysis, and visualization of these databases.

In this paper, we present an interactive visual exploration tool
that facilitates exploratory analysis of data warehouses with rich
hierarchical structure, such as might be stored in data cubes. We
base this tool on Polaris, a system for rapidly constructing table-
based graphical displays of multidimensional databases. Polaris
builds visualizations using an algebraic formalism that is derived
from the interface and interpreted as a set of queries to a database.
We extend the user interface, algebraic formalism, and generation
of data queries in Polaris to expose and take advantage of hierarchi-
cal structure. In the resulting system, analysts can navigate through
the hierarchical projections of a database, rapidly and incrementally
generating visualizations for each projection.

1 Introduction
In the last several years, large OLAP databases have become com-
mon in a variety of applications. Corporations are creating large
data warehouses of historical data on key aspects of their opera-
tions. International research projects such as the Human Genome
Project [11] and the Sloan Digital Sky Survey [18] are generating
massive scientific databases.

A major challenge with these data warehouses is to extract mean-
ing from the data they contain: to discover structure, find patterns,
and derive causal relationships. The sheer size of these data sets
complicates this task: Interactive calculations require visiting each
record are not plausible, nor is it feasible for an analyst to reason
about or view the entire data set at its finest level of detail. Imposing
meaningful hierarchical structure on the data warehouse provides
levels of abstraction that can be leveraged by both the computer
and the analyst.

These hierarchies can come from several different sources. Some
hierarchies are knowna priori and provide semantic meaning for
the data. Examples of these hierarchies are Time (day, month, quar-
ter, year) or Location (city, state, country). However, hierarchies
can also be automatically derived via data mining algorithms that
classify the data, such as decision trees or clustering techniques.
Part of the analysis task when dealing with automatically generated
hierarchies is in understanding and trusting the results [22].

Visualization is a powerful tool for exploring these large data
warehouses, both by itself and coupled with data mining algo-
rithms. However, the task of effectively visualizing large databases
imposes significant demands on the human-computer interface to
the visualization system. The exploratory process is one of hypoth-
esis, experiment, and discovery. The path of exploration is unpre-
dictable, and analysts need to be able to easily change both the data
being displayed and its visual representation. Furthermore, the an-
alyst must be able to first reason about the data at a high level of
abstraction, and then rapidly drill down to explore data of interest at

a greater level of detail. Thus, the interface must expose the under-
lying hierarchical structure of the data and support rapid refinement
of the visualization.

This paper presents an interactive visual exploration tool that fa-
cilitates exploratory analysis of data warehouses with rich hierar-
chical structure, such as would be stored in data cubes. We base
this tool on Polaris [20], a system for the exploration of multidi-
mensional relational databases. Polaris is built upon an algebraic
formalism for constructing table-based visualizations. The state of
the user interface is a visual specification. This specification is in-
terpreted according to the formalism both to determine the series
of queries necessary to retrieve the requested data, as well as de-
termine how to map and layout the resulting tuples into graphical
marks. Because every intermediate specification is valid and can be
interpreted to create a visualization, analysts can rapidly and incre-
mentally construct complex queries, receiving visual feedback as
they assemble and alter the specifications.

The original version of Polaris did not directly support or expose
hierarchically structured dimensions, instead presenting each level
of the hierarchy as a separate, independent dimension. In this pa-
per, we extend the algebraic formalism (Section 4), user interface
(Section 5), and generation of data queries (Section 6) to take ad-
vantage of hierarchically structured data cubes. We then illustrate
the ease and effectiveness of using Polaris to explore hierarchically
structured data via three case studies (Section 7).

2 Related Work
We consider two areas of related work: the visual exploration of
databases and the use of data visualization in conjunction with data
mining algorithms.

2.1 Visual Exploration of Databases
One area of related work is the field of visual query tools. Projects
such as VQE [5], Visage [16], DEVise [14], and Tioga-2 [26] have
focused on developing visualization tools that directly support in-
teractive database exploration through visual queries. Users can
construct queries and visualizations directly through their interac-
tions with the interface. These systems have flexible mechanisms
for mapping query results to graphs and support mapping database
tuples to retinal properties of the marks in the graphs. Of these sys-
tems, only Tioga-2 provides built-in support for interactively navi-
gating through and exploring data at different levels of detail. How-
ever, the underlying hierarchical structure must be created by the
analyst during the visualization process; Polaris leverages the hier-
archical structure that is already encoded in the data warehouse.

XmdvTool [24], Spotfire [19], and Xgobi [4] provide the analyst
with a set of predefined visualizations such as scatterplots and par-
allel coordinates. These systems are augmented with extensive in-
teraction techniques (e.g., brushing and zooming) that can be used
to refine the queries. In contrast, we provide the analyst with a
set of building blocks that can be used to interactively construct
and refine a wide range of displays to suit the analysis process.
Of these systems, only XmdvTool supports the exploration of hi-
erarchically structured data. XmdvTool has been augmented with
structure-based brushes [7] that allow the user to control the dis-
play’s global level of detail (based on a hierarchical clustering of the



Figure 1: A hierarchicalTimedimension. A hierarchical dimension is structured as a tree with multiple levels. In this case, there are four
levels:All, Year, Quarter, andMonth. Each level corresponds to a different semantic level of detail. The parent-child relationships in the tree
are the basis for aggregation within the dimension.

data) and to brush records based on their proximity within the hier-
archical structure. Again, this approach limits the user, in this case
to viewing a single hierarchical structuring of the data and a single
ordering of that hierarchy to make proximity meaningful. Polaris
supports both the simultaneous exploration of multiple hierarchies
(derived from semantic meaning or algorithmic analysis) and the
ability to reorder the hierarchy as needed.

Another relevant database visualization system is VisDB [12],
which focuses on displaying as many data items as possible to pro-
vide feedback as users refine their queries. This system even dis-
plays tuples that do not satisfy the query, indicating their “distance”
from the query criteria using spatial encodings and color. This ap-
proach helps the user avoid missing important data points that fall
just outside of the selected query parameters. In contrast, Polaris,
by taking advantage of the hierarchical structure of the warehouse,
provides extensive ability to drill down and roll up data, allowing
the analyst to get a complete overview of the data set before focus-
ing on detailed portions of the database.

2.2 Visualization and Data Mining
Many research and commercial systems use visualization in con-
junction with automated data mining algorithms. One common ap-
plication of visualization together with data mining is in helping
analysts understand models generated by the data mining process.
For example, several researchers have developed techniques specif-
ically for displaying decision trees, Bayesian classifiers, and deci-
sion table classifiers [1], and these visualization techniques have
been incorporated into products such as SGI’s MineSet [3].

Other approaches to coupling visualization and data mining have
traditionally been employed within focused domains. One ap-
proach is to use visualization to gain an initial understanding of
a warehouse and then apply algorithmic analysis to the identified
areas of interest [13][22]. The other major approach is to use data
mining to compress the size and dimensionality of the data and then
use focused visualization tools to explore the results [10][25].

Unlike these examples, Polaris is not focused on a particular al-
gorithm, a single phase of the discovery process, or a narrow appli-
cation domain. Instead, Polaris is a general tool that can be used
to gain an initial understanding of a warehouse, to visually mine
the warehouse, to understand algorithm output, and to interactively
explore a mining model. The ability to encode a large number of
dimensions in a table layout in Polaris helps an analyst gain an ini-
tial understanding of how different dimensions relate as a precursor
to automated discovery. Similarly, Polaris can be used directly as
a visual mining tool. Finally, by integrating the decision trees and
classification networks into the data warehouse as dimensional hi-
erarchies, Polaris can be used by analysts to gain an understanding
of how these models classify the data.

3 Background
Polaris [20] was originally designed to support the interactive ex-
ploration of multidimensional relational data warehouses rather

than data sets with rich hierarchical structure. In this section, we
explain the difference between the two types of data sources as well
as give a brief overview of Polaris before discussing our extensions
to Polaris in the rest of the paper.

3.1 Relational Databases vs. Data Cubes
Relational databases organize data intorelations, where each row
in a relation corresponds to a basic entity or fact and each column
represents a property of that entity [23]. For example, a relation
may represent transactions in a bank, where each row corresponds
to a single transaction, and each transaction has multiple properties,
such as the transaction amount transaction, the account balance, the
bank branch, and the customer.

We refer to a row in a relation as atupleor record, and a column
in the relation as afield. A single relational database will contain
many heterogeneous but interrelated relations.

The fields within a relation can be partitioned into two types:
dimensionsand measures. Dimensions and measures are similar
to independent and dependent variables in traditional analysis. For
example, the bank branch and the customer would be dimensions,
while the account balance would be a measure.

In many data warehouses, these multidimensional databases are
structured as n-dimensional data cubes. Each dimension in the
data cube corresponds to one dimension in the relational schema.
Each cell in the data cube contains all the measures in the relational
schema corresponding to a unique combination of values for each
dimension.

The dimensions within a data cube are often augmented with
a hierarchical structure. This hierarchical structure may be derived
from the semantic levels of detail within the dimension or generated
from classification algorithms. Using these hierarchies, the analyst
can explore and analyze the data cube at multiple meaningful levels
of aggregation calculated from a basefact table(i.e., a relation in
the database with the raw data). Each cell in the data cube now
corresponds to the measures of the base fact table aggregated to the
proper level of detail.

The aggregation levels are determined from the hierarchical di-
mension, which is structured as a tree with multiplelevels. Each
level corresponds to a different semantic level of detail for that di-
mension. Within each level of the tree there are manynodes, with
each node corresponding to a value within the domain of that level
of detail of that dimension. The tree forms a set of parent-child re-
lationships between the domain values at each level of detail. These
relationships are the basis for aggregation, drill down, and roll up
operations within the dimension hierarchy. Figure 1 illustrates the
dimension hierarchy for aTimedimension.

Simple hierarchies, like the one shown in Figure 1, are com-
monly modeled using astar schema. The entire dimensional hi-
erarchy is represented by a single dimension table (also stored as a
relation) joined to the base fact table. In this type of hierarchy, there
is only one path of aggregation. However, there are more complex
dimension hierarchies where the aggregation path can branch. For



Figure 2: The Polaris user interface with enhancements (shown in blue) to expose and support hierarchical dimensions. Analysts construct
table-based displays of relational and cube data by dragging dimension levels and measures from the data cube schema onto shelves through-
out the display. A given configuration of levels and measures on shelves is called a visual specification. The specification unambiguously
defines the analysis and visualization operations to be performed by the system to generate the display.

example, aTimedimension might aggregate fromDay to bothWeek
andMonth. These complex hierarchies are typically represented us-
ing asnowflake schemathat uses multiple relations to represent the
diverging hierarchies.

When referring to values within a dimension hierarchy, we will
use a dotted notation to specify a specific path from the root level
(All) of the hierarchy down to the specified value. Specifically, to
refer to a value on levelm of a hierarchy, we first optionally list
the dimension name, then zero or more of the (m− 1) intermediate
ancestor values, and then finally the value on themth level, all
separated by periods. For example, theJan node on theMonth
level in theTimehierarchy that corresponds to January, 1998, can
be referred to as1998.Qtr1.Jan. When this notation is used, we
will call the reference aqualified value. When a value is simply
described by its node value (without any path to the root node) we
call the reference anunqualified value.

3.2 Polaris Overview
Before explaining the extensions to Polaris needed for supporting
interactive visual exploration of hierarchically structured data sets,
we first give a brief overview of the original Polaris system.

The goal of Polaris was to provide an interface for rapidly and
incrementally generating table-based displays (note that from here
on out, unless otherwise specified as a fact table or dimension table,
the termtablerefers to a table-based visualization and not a relation
in a database). Users construct these table-based visualizations via
a drag-and-drop interface, dragging field names from the Schema
box to various blue shelves throughout the interface, as shown in
Figure 2. Any configuration of field names on shelves is valid.

The Polaris interface is simple and expressive because it is built

upon a formalism for precisely describing graphical table-based vi-
sualizations. The configuration of fields on shelves forms avisual
specification. Each visual specification is an expression of the Po-
laris formalism that can be interpreted to determine the exact anal-
ysis, query, and drawing operations to be performed by the system.

The specification consists of two main portions. The first por-
tion, built on top of an algebra, describes the structure of the table-
based visualization (i.e., how the table is divided into panes). We
can think of a table as having three axes: the x-axis divides the table
into columns, the y-axis divides the table into rows, and the z-axis
layers x-y tables that are composited on top of one another. Each
intersection of an x, y, and z axis results in a table pane. Thus,
the first portion of the specification consists oftable algebra ex-
pressions, with one expression per axis. Each pane contains a set
of records (obtained by querying the data cube) that are visually
encoded as a set of marks to create a graphic.

While the first portion of the specification determines the “outer
table layout,” the remaining portion determines the layout within a
pane, such as how the data within a pane is transformed for analysis
and how it is encoded visually. Specifically, it describes:

1. The sorting and filtering of fields.
2. The mapping of data sources to layers.
3. The grouping of data within a pane and the computation of

statistical properties, aggregates, and other derived fields.
4. The type of graphic displayed in each pane of the table. Each

graphic consists of a set of marks (e.g., circles, bars, glyphs,
etc.), with one mark per record in that pane.

5. The mapping of data fields to retinal properties of the marks
in the graphics (for example, mappingProfit to the size of a
mark orQuarterto the color).



Figure 3: Example of the set interpretations and table structures resulting from simple applications of the table algebra operators. Ordinal
fields (e.g., dimension levels) partition the table into columns (or rows) and quantitative fields (e.g., measures) are spatially encoded as axes
within the columns. Note the difference between the application of the nest and dot operator to the same operands when the fact table does
not contain data for October.

We only need to extend the table algebra and the specification of
the filtering and sorting. The rest of the formalism, including how
we determine the type of graphic and the visual encodings, has not
changed and so we do not discuss them further here. See Stolte et
al. [20] for a detailed discussion.

Thus, in order to extend Polaris to support hierarchical dimen-
sions, we need to modify:
• the formalism and table algebra (described in Section 4)
• the user interface (described in Section 5)
• and the interpretation of the visual specification as a set of

queries in a multidimensional query language (described in
Section 6).

4 Extending the Formalism
In order to support both relational databases and hierarchically
structured data cubes, we need to extend two aspects of the Polaris
formalism: the specification of the table configurations, and the fil-
tering and sorting of fields. Before we discuss these two extensions,
however, we first give a brief review of the table algebra.

4.1 Table Algebra Review
A key component of this formalism is the table algebra, which is
used to specify the table configurations. When analysts place fields
on the axis shelves (shown in Figure 2) they are implicitly creating
expressions in this algebra. A complete table configuration consists
of three separate expressions. Two of the expressions define the
configuration of the x and y axes of the table, partitioning the table

into rows and columns. The third expression defines the z axis of
the table, which partitions the display into layers.

Each expression is composed of operands connected by opera-
tors. Each operand is evaluated to a set form, and the operators
define how to combine two sets. Thus, each expression can be inter-
preted as a single set (thenormalized set form), where each element
in the set corresponds to a single row, column, or layer.

To be more specific, each operand of the table algebra is the
name of a field. There are two types of operands: ordinal and quan-
titative. Whether an operand is ordinal or quantitative depends on
the type of the corresponding field in the database.

The set interpretation of an ordinal operand consists of the mem-
bers of the ordered domain of the field. For example, the set inter-
pretation of theMonthoperand would be{Jan, Feb, . . . ,Dec}. The
set interpretation of a quantitative operand is a single-element set
containing the field name. For example, the set interpretation of the
Profit operand would be{Profit}.

The assignment of sets to the different types of operands reflects
the difference in how the two types of fields are encoded into the
structure of the table. Ordinal fields partition the table into rows
and columns, whereas quantitative fields are spatially encoded as
axes within the table panes. Examples of the set interpretations and
resulting table structures for both ordinal and quantitative operands
are shown in Figure 3.

As stated above, a valid expression in the algebra is an ordered
sequence of one or more operands with operators between each pair
of adjacent operands. The operators in this algebra, in order of
precedence, are cross (×), nest (/), and concatenation (+); paren-



Figure 4: Each pane in a Polaris visualization corresponds to a slice of a projection of a data cube. The projection in each pane is determined
by the contents of the “Level of Detail” shelf and by the normalized set form of the table expressions. The table is partitioned into rows,
columns, and layers corresponding to the entries in these sets. The underlying data cube must be projected to include only the dimensions
that occur in these entries. This is shown here for a simple text-based table. Generating this table requires two separate projections of the data
cube because of the concatentation in the y-axis expression.

theses can be used to alter the precedence. Because each operand is
interpreted as an ordered set, the precise semantics of each operator
are defined in terms of how they combine two sets (one each from
the left and right operands) into a single set. Some examples are
shown in Figure 3.

Thus, every expression in the algebra can be reduced to a single
set, with each entry in the set being an ordered concatenation of
zero or more ordinal values followed by zero or more quantitative
field names. For example, the normalized set form of the expression
Month× Profit is { (Jan, Profit), (Feb, Profit), . . . , (Dec, Profit) }.
The normalized set form of an expression determines one axis of the
table: the table axis is partitioned into columns (or rows or layers)
so that there is a one-to-one correspondence between columns and
entries in the normalized set.

4.2 Redefining the Algebra Operands
In order to fully support and expose the hierarchical structure in
data cube dimensions, we must redefine the algebra so that the
operands are measures and dimension levels rather than indepen-
dent database fields. In this redefinition, measure operands are triv-
ially treated the same as quantitative fields: we assign to each mea-
sure operand a single element set containing the measure name.
Like quantitative fields in the original algebra, measures will be
spatially encoded as axes within the panes.

Similarly, we would like to treat dimension levels in the same
way we treated ordinal fields and assign to each the ordered domain
of the dimension level. The resulting sets would then partition the
table into rows, columns, and layers. There are, however, complica-
tions. The domain of a dimension level is not a single ordered list.
Instead, it is composed of the node values at a particular level in the
dimension hierarchy, and each node value is uniquely defined by its
path to the root of the hierarchy. To illustrate the complications this
causes, we consider theTimehierarchy illustrated in Figure 1.

First, consider theMonth level of the hierarchy. One possible
set interpretation of this symbol would be to list each node value,
including its path to the root for uniqueness, ordered by a depth-
first traversal of the dimension hierarchy; e.g.,{1998.Qtr1.Jan,
. . . , 1999.Qtr4.Dec}. Although this approach provides a unique
set interpretation for each dimension level, it limits the expressive-
ness of the algebra. Any table constructed to includeMonth must
also includeYear; it is not possible to create displays that sum-
marize monthly values across years, a useful view that we would
like to support. Interestingly, however, summarizing monthly val-
ues across years is not a standard projection of a data cube, as it
requires aggregating across a hierarchical level. We discuss how
this type of aggregation is computed in Section 6.

A second approach would be to list only the node values, ignor-
ing the path to the root of the hierarchy and excluding repeated val-
ues. Again, we order the node values by a depth-first traversal of the
dimension hierarchy. ForMonth, this would yield{Jan, Feb, . . . ,
Nov, Dec}. Clearly, using this set interpretation we can generate
displays that summarize monthly values across years. Furthermore,
we can generate displays that drill down into a hierarchy by using
our nest (“/”) operator; e.g.,Year/ Month.

The use of the nest for drilling down into a hierarchy, however,
would be flawed. The nest operator is unaware of the defined hierar-
chical relationship between the dimension levels but instead works
by deriving a relationship based on the tuples in the fact table. Not
only is this inefficient, as fact tables are often quite large, but it
can also yield incorrect results. For example, consider the situation
where no data was logged for October. Application of the nest op-
erator would result in an incorrectly derivedTimehierarchy that did
not include October as a child of Qtr4 or either year (see Figure 3).

Our solution is to introduce another operator, the dot (“.”) oper-
ator, that is similar to the nest operator but “hierarchy-aware.” We
review the definition of nest and then define dot. If we defineFT to
be the fact table being analyzed,r to be a record, andA(r) to be the
value of the fieldA for the recordr, then the definition of nest, as
presented in [20], is:

A/B = {(a, b) | ∃r ∈ FT st A(r) = a & B(r) = b}

The dot operator is defined similarly. If we defineDT to be the
relational dimension table defining the hierarchy that contains the
levelsA andB, andA precedesB in the schema ofDT, then:

A.B = {(a.b) | ∃r ∈ DT st A(r) = a & B(r) = b}

Note that whereas nest produces a set of two-valued tuples, dot
produces a set of single-valued tuples, each containing a qualified
value. If the two operands are not levels of the same dimension
hierarchy (or set interpretations of operations on levels of the same
hierarchy), orA does not precedeB in the schema ofDT (e.g.,A
must be an ancestor level in the tree defined byDT) , then the dot
operator evaluates to the empty set. With this definition, the two
expressionsMonth and Year.Monthare not equivalent:Month is
interpreted as{Jan, Feb, . . . , Dec} whereasYear.Monthwould be
interpreted as{1998.Jan, 1998.Feb, . . . , 1999.Dec}. With a fully
populated fact table,Year.Monthis equivalent toYear/ Month.

Given these set interpretations for dimension and measure
operands, we can apply the set semantics for each operator to re-
duce expressions in this new algebra to their normalized set form,



with each entry in the normalized set being an ordered concate-
nation of zero or more domain values followed by zero or more
measure names. As before, the normalized set form determines one
axis of the table.

4.3 Filtering and Sorting within the Algebra
In our original formalism, a table configuration was specified by
three expressions in the table algebra, and then filtering and sorting
was specified separately by listing the sorted and filtered domain
for each database field that was to be filtered or sorted. When the
set interpretation was generated for field operands in the algebra,
these specified domains would be used. It is possible, however, to
generate a more succinct and general formalism if we incorporate
the filtering and sorting directly into the table algebra.

In our revised formalism, if a dimension or measure is to be fil-
tered (or sorted), then the filtered and sorted domain is listed di-
rectly after the instance of the level or measure operand in the ex-
pression, in effect directly specifying a set interpretation for the
operand. For example, if we wished to filter the expressionMonth
+ ProductTypeto include only the first three months of the year,
sorted in reverse order, this could be specified by including the fil-
tered domain in the expression as follows:Month{Mar, Feb, Jan}
+ ProductType. The advantage provided by this revision of the ta-
ble algebra is the ability to specify separate filters and orderings
for different instances of the same operand in an expression. Simi-
larly, we can filter a measure by specifying a range of values, e.g.,
Profit{0, 500}.

We also need to allow the use of qualified values in the spec-
ification of filtering or sorting of dimension levels. As we dis-
cussed in Section 3.1, a value in a dimension hierarchy can either
be described by simply stating the value in the node (an unquali-
fied value) or by describing a path from that node to the root node
in the hierarchy (a qualified value). When filtering or sorting a di-
mension level, it is necessary to be able to use both types of values
in the specification, as the unqualified node values are often not
unique. For example, if the user wishes to exclude1998.Janbut not
1999.Jan, then qualified values must be used.

5 Redefining the User Interface
Having redefined the formalism underlying the Polaris interface,
we must now alter the interface to support hierarchically structured
data. Five major changes need to be made:

1. the Schema list must display dimension hierarchies and mea-
sures, not simply database fields;

2. the analyst must be able to distinguish betweenMonth and
Year.Monthwhen includingMonth in a specification;

3. the analyst must be able to filter a dimension level using qual-
ified values;

4. the analyst must be able to quickly drill down and roll up a
dimension hierarchy using the interface;

5. the analyst needs to be able to change the number of marks
within each pane to reflect different levels of detail.

Figure 2 illustrates the revised interface. We now discuss each in-
terface extension in detail.

5.1 The Schema
In the original interface, the analyst was presented with a list box
containing the ordinal and quantitative fields in the database. The
analysts included these fields in a specification simply by dragging
and dropping the field’s name onto the appropriate shelf in the inter-
face. To support hierarchical data cubes, we have extended this list
box to display the dimensions of the data cube with an ordered list
of the dimension’s levels beneath each dimension. The analysts can
drag and drop any dimension level to the interface as they did with

the ordinal fields of the database. The dimension’s name, however,
cannot be dragged to the interface; the analyst can only manipulate
the individual levels within a dimension.

5.2 Qualifying Dimension Levels
When an analyst drops a dimension level, such asMonth, on a shelf,
there are several potential intentions. He may intend to include the
operandMonth in an expression, but he may also meanYear.Month
or Year.Quarter.Month; the analyst needs to be able to specify the
exact qualification desired. Our solution is the make full qualifi-
cation (e.g.,Year.Quarter.Month) the default. To generate a dif-
ferent qualification, the user can right-click the dimension level in
the shelf and select the “Qualification. . . ” menu item. He is then
presented with a dialog box that allows him to explicitly specify
which of the intermediate levels to include in the qualification of
the operand, thus generating the applicable expression.

5.3 Qualifying Dimension Level Filters
When applying filters to a dimension level, an analyst may want to
specify the filter using either qualified or unqualified values. We
have extended the Polaris interface to allow both options. For ex-
ample, if the user wishes to exclude1998.Janbut not1999.Jan, he
can choose to filter using qualified values. Similarly, it is possible
to specify a filtering using unqualified values: each qualified value
that matches the unqualified value will be included in the filter. Cur-
rently, Polaris requires the filter be specified using either qualified
or unqualified values, but not both. As a future extension, we intend
to support heterogeneous filtering.

5.4 Drilling down and Rolling up
When analyzing and exploring large data cubes, a common opera-
tion is to drill down or roll up within a dimension hierarchy. There-
fore, it is important to include a simple mechanism for performing
these operations. One option is for the analyst to remove the cur-
rent level from the appropriate shelf (by dragging it off the shelf)
and then drag the new level to that same shelf. Although the desired
effect is achieved, it is more complicated than we would like.

We provide an alternate mechanism for drilling down and rolling
up a dimension. Within the box representing each dimension level
on a shelf, there is an “∇” icon, as can be seen in Figure 2. When
the user clicks on the “∇” icon, he is presented with a listing of
all the levels of the dimension (including diverging levels in com-
plex dimensional hierarchies). When a new level is selected, this is
interpreted as a drill down (or roll up) operation along that dimen-
sion and the current level is automatically replaced with the selected
level (with the same qualification). Thus, the user can rapidly move
between different levels of detail along a dimension, refining the
visualization as he navigates.

5.5 Grouping within Panes
In the original version of Polaris, the analyst specified the group-
ing of tuples within each pane by placing fields on the shelf titled
“Group By”. Each field in this shelf was included in the GROUP
BY clause in the SQL query that aggregated the data in each pane
into tuples to be mapped to marks.

The situation when visualizing data cubes is slightly different.
The query for each pane does not produce a relational data set that
is then grouped and aggregated. Instead, each pane corresponds
to a projection of the data cube, with the projection determined by
the dimension levels included in the table expressions. To produce
additional marks within a pane, the analyst must specify additional
dimensions to be included in these projections, done by including
the desired dimension levels in the “Level of Detail” shelf (shown
in Figure 2), the hierarchical analog of the “Group by” shelf.

As was the case with the original version of Polaris, this “Level
of Detail” shelf gives the analyst the ability to rapidly drill down



Figure 5: The overall data flow in Polaris when generating a visual representation of a data cube.

into their data without changing the table configuration. Changing
the level of detail without changing the table configuration only
changes the data density within each pane.

6 Querying a Hierarchical Data Cube
The final step in extending Polaris to fully support hierarchical data
cubes is to show how to construct an efficient set of multidimen-
sional queries from a specification in our formalism.

Each pane in a Polaris visualization corresponds to either a slice
of a projection of the data cube or an aggregation of such a pro-
jection. The specific projection corresponding to each pane is de-
termined by the contents of the “Level of Detail” shelf (discussed
in Section 5.5) and by the normalized set form of the table axis
expressions (discussed in Section 4). The table is partitioned into
rows, columns, and layers corresponding to the entries in these sets.
Therefore, each pane in the table is associated with three set entries
corresponding to its row, column, and layer, respectively.

The underlying data cube must be projected to include only the
dimension levels that occur in the three set entries (and in the Level
of Detail shelf) and it must be sliced to include only the specific
dimension members that occur in these entries. This is illustrated
in Figure 4. When multiple set entries defining a pane refer to dif-
ferent levels of the same dimension, the correct projection to re-
trieve is the one corresponding to the most detailed level of that
dimension. Before determining how the projections are efficiently
retrieved from the server, we must carefully consider the situation
where set entries contain values whose qualification skips levels in
the hierarchy.

When set entries contain values whose qualification skips levels
(e.g., Time.Jan), this is interpreted to imply that nodes in the hi-
erarchy whose values are not unique (when we consider only the
included levels) should be aggregated in that projection. In the
Time.Janexample, the aggregation for the pane must be computed
by aggregating across years, and thus across a hierarchy level rather
than up the hierarchy. This type of aggregation is not natively sup-
ported in most hierarchical query languages. Thus, we request the
cube projection from the remote server and compute the aggrega-
tion within Polaris before sorting tuples into panes, as shown in
Figure 4. If all node values are unique across the entire level, then
no aggregation needs to be performed.

Although it is possible for each pane to correspond to a different
projection of the cube, the common situation is for a large number
of panes to correspond to the same projection and differ only by
how that projection is sliced. For efficiency, we would like to con-
sider these panes as a group and send a single query to the OLAP
server requesting the appropriate projection (and then, if necessary,
perform a single aggregation of the projection). The projection can

then be sorted into panes locally.
The key to efficiently utilizing the OLAP server is this grouping

of queries. By algebraically manipulating our table expressions, we
can quickly determine all projections corresponding to a given ta-
ble configuration. The key observation is that of our four algebraic
operators (nest, cross, concatenate, and dot), the only operator that
can produce adjacent panes with differing projections is the con-
catenate operator. Nest, cross, and dot include all input dimension
levels in each output set entry; concatenate does not. Thus, if we
compute a single expression as the cross of the three table expres-
sions and then reduce to a sum-of-terms form, the resulting terms
will correspond to the set of projections that need to be generated.
This is illustrated in Figure 5.

Most typical multidimensional query languages provide a mech-
anism for generating projections of the data cube. Our current im-
plementation generates a single MDX query to a remote Microsoft
Analysis Server for each projection. The resulting cells are then
sorted into panes using transformation capabilities built into Po-
laris. In addition, any explicitly specified filtering of dimension
members is included in the MDX queries sent to the remote server.
The overall data flow in Polaris is depicted in Figure 5.

7 Results
In this section, we illustrate how Polaris can be used to effectively
navigate and analyze three hierarchically structured data sets: (1) a
12-week trace of mobile network usage, (2) results from the 2000
presidential election, and (3) historical business metrics for a hypo-
thetical coffee chain.

7.1 Mobile Network Usage Data

Figure 6 shows an analysis of a 12-week trace of every packet that
entered or exited the mobile network in the Gates building at Stan-
ford University [21]. Over the 12 weeks, 78 million packet headers
were collected. The analysis goal is to understand usage patterns of
the mobile network. This data is stored in a data cube with many
different dimensions (User, Time, Remote host, Traffic direction,
and Application), each with multiple levels of detail.

To start the analysis, the analyst first sees if she can spot any
patterns in time, so she creates a series of line charts in Figure 6(a)
showing packet count and size versus time for the most common
applications, broken down and colored by the direction of the traf-
fic. In these charts, the analyst can see that the web is the most
consistently used application, while session is almost as consistent.
File transfer is the least consistent, but also has some of the highest
peaks in both incoming and outgoing ftp traffic. Note the log scale
on the y-axes.



Figure 6: Analysis of network usage data using Polaris.

Given this broad understanding of traffic patterns, the next ques-
tion posed by the analyst is how the application mix varies depend-
ing on the research area. The analyst pivots the display to generate
a single line chart of packet count per research area over time, bro-
ken down and colored by application class (Figure 6(b)). From this
breakdown, the analyst can see that the graphics group was respon-
sible for the large incoming and outgoing file transfers. She can
also see that the systems group had atypically high session traffic.

Curious, the analyst then drills down further to see the individual
project groups (Figure 6(c)), discovering that the large file transfers

Figure 7: Analysis of the results of the 2000 presidential election.

were due to the rendering group within the graphics lab, while the
robotics lab had vastly different behavior depending on the partic-
ular group (the mob group dominated by session traffic, while the
learning group had more web traffic, for example).

7.2 2000 Presidential Election Results
Figure 7 shows Polaris being used to explore and analyze the results
of the 2000 presidential election. This data is particularly interest-
ing because the visualizations used to explore it are created from
two separate data sets. The first data set is a relational database



Figure 8: Analysis of sales data for a hypothetical coffee chain.

of approximately 500,000 tuples (stored in Microsoft’s SQLServer)
describing detailed polygonal outlines of the states and counties in
the USA. Additional levels of detail have been constructed by poly-
gon simplification, and the resulting levels of detail form a Loca-
tion hierarchy. The second data set is stored as a data cube (in Mi-
crosoft’s Analysis Server) and contains detailed county-by-county
vote results (also with a Location dimension). In the first two vi-
sualizations, these data sets are explicitly joined before being im-
ported into Polaris. In the final visualization, we use the ability in
Polaris to visually join data sets using layers.

In Figure 7(a), the analyst has generated an overview of the en-
tire country at the State level in the Location hierarchy, coloring
each state by which candidate won that state. The analyst is inter-
ested in more detailed results for the state of Florida, so she filters
on the Latitude and Longitude measures to focus on Florida and
changes the level of detail to County, generating Figure 7(b). In the
final visualization, shown in Figure 7(c), the analyst further focuses
on the southern tip of Florida (by again filtering the Latitude and
Longitude measures). Furthermore, she adds two additional layers
to the visualization (read directly from the data cube) and displays
both the name and the total number of votes counted in each county.

7.3 Historical Profit/Sales for a Coffee Chain
The final analysis is shown in Figure 8. The data being analyzed
is two years of business metrics for a hypothetical nationwide cof-
fee chain, comprising approximately 5,000 tuples stored in a data
cube. The data is characterized by three main dimensions (Time,
Products, and Location), each with multiple levels of detail. We
consider a scenario where the analyst is concerned with reducing
marketing expenses and is trying to identify products that are not
generating profit and sales proportional to their marketing costs.

The first visualization created, Figure 8(a), is an overview of
three key measures (Profit, Sales, and Marketing) as a scatterplot
matrix. The analyst has drilled down using the Level of Detail shelf
to the Product and State level. The two charts circled in orange
show that several of the distributions do not reflect the positive cor-
relations that the analyst was expecting. To further investigate, the
analyst reduces the scatterplot matrix to two graphs and colors the
records by Market and Producttype (Figure 8(b)), thus identifying
espresso products in the East region and tea products in the West
region as having the worst marketing cost to profit ratios.

In the final visualization, Figure 8(c), the analyst drills down
into the data to get a more detailed understanding of the correla-
tions: She creates a small multiple set of stacked bar charts, one for
each Market and Producttype. Within each chart, the data is fur-
ther drilled down by individual Product and State. Finally, each bar
is colored by the Marketing cost. As can be seen in the visualiza-
tion, several products such as Caffe Mocha in the East have negative
profit (a descending bar) with high marketing cost (a bright red bar).
Having identified such poorly performing products, the analyst can
modify the marketing costs allocated to them.

7.4 Summary
Each of these case studies demonstrates how analysis progresses
from a high level of abstraction to detailed views of the data. Fur-
thermore, each example shows the importance of being able to eas-
ily change the data being viewed, pivot dimensions, and drill down
during the analysis process.

8 Discussion
In this section, we focus on two points of discussion. First, we dis-
cuss the different roles Polaris can play in the knowledge discovery
process, and second, we discuss how our formalism can be applied
to the development of generalized visualization systems, particu-
larly level of detail systems.

In this paper, we have demonstrated the effectiveness of Po-
laris as a stand-alone tool for visual mining of large, hierarchical
databases. Equally important is how Polaris can be coupled with
automated data mining systems to help analysts better understand
not only their data, but also the models generated by the algorithms.
First, Polaris can be used as a precursor to data mining: The analyst
benefits from an understanding of the overall structure of the data
that helps her steer the discovery process and provides context for
“hidden information” discovered by the algorithms. Second, Po-
laris can also be used to validate and comprehend the models and
results generated by algorithmic analysis. Analysts do not want to



treat an algorithm as a black box and blindly trust its output. One
technique for using Polaris for validation is to construct hierarchical
dimensions from the output generated by classification algorithms.
The analyst can then drill down and roll up the data, traversing the
classification hierarchy and inspecting the records sorted into each
bucket, further developing understanding and trust.

A second point of discussion is the application of our formalism
to the development of general visualization systems. Although we
have only demonstrated our formal language as an underlying tech-
nology for the Polaris interface, we believe it is a promising basis
for the development of a wide-range of visualization systems. One
example is in the development of interactive “semantic-zooming”
visualization systems. Programmers developing such systems need
a mechanism for describing a wide range of visual displays, with
each display being associated with a different level of detail view
of the data. Using our formalism, these programmers could simply
describe each visual display with a succinct specification. When
the user interacts with the interface to move to a different level of
detail, the system need only feed the appropriate specification into
our interpreter. The interpreter would generate all of the drawing
operations and queries necessary to generate the display. In addi-
tion to simplifying the development of such systems, the presence
of an underlying formalism also serves to help clearly define the
semantics of the interface, as demonstrated by Polaris.

9 Conclusions and Future Work
We have extended Polaris, an interface for the exploration and
analysis of large multidimensional databases, to fully support and
expose the hierarchical structure of data cubes. These dimen-
sional hierarchies play an indispensable role in the analysis of large
databases where, in order for the analysis task to be manageable,
it is necessary to perform the analysis at multiple levels of aggre-
gation, moving from visual overviews to details on demand. In
extending Polaris, we have extended not only the interface, but also
the underlying algebraic formalism. Furthermore, we have devel-
oped an efficient mechanism for interpreting the formal specifica-
tions as a collection of multidimensional queries.

We have many plans for future work in extending this system.
As databases continue to grow in size, developing tools and tech-
niques for the interactive exploration of data at multiple levels of
detail is crucial. As we discussed in Section 8, we believe our al-
gebraic formalism provides a solid foundation upon which to build
visualization systems. We are currently building systems that, a la
Pad++ [17], automatically and interactively change the visual rep-
resentation as the analyst changes level of detail. This research has
many interesting challenges, including transitions between differ-
ent visual representations, mapping representations to levels of de-
tail, and maintaining interactivity while exploring large data ware-
houses.

A second area of future research is the visual presentation of
metadata. Hierarchically structured dimensions are one instance
of an increasingly popular trend: the augmentation of data with
rich domain-specific metadata. This metadata is as important to the
analysis process as the underlying database itself. An important
area of future research is the development of visualization tech-
niques that display this metadata and leverage it in the display of
the described data.

References
[1] B. Becker. Visualizing Decision Table Classifiers. In Proc. of Information

Visualization, October, 1998, pp. 102-105.

[2] B. Becker, R. Kohavi, and D. Sommerfield. Visualizing the Simple Bayesian
Classifier. In KDD Workshop on Issues in the Integration of Data Mining and
Data Visualization, 1997.

[3] C. Brunk, J. Kelly, and R. Kohavi. MineSet: an integrated system for data
mining. In Proc. of the 3rd International Conference on Knowledge Discovery
and Data Mining, 1997, pp. 135-138.

[4] A. Buja, D. Cook, and D. F. Swayne. Interactive High-Dimensional Data
Visualization. In Journal of Computational and Graphical Statistics, 5(1), 1996,
pp. 78-99.

[5] M. Derthick, J. Kolojejchick and S. F. Roth. An Interactive Visualization
Environment for Data Exploration. In Proc. of Knowledge Discovery in
Databases, August, 1997, pp. 2-9.

[6] S. Eick. Visualizing Multi-Dimensional Data. In Computer Graphics, February
2000, pp. 61-67.

[7] Y. Fua, M. O. Ward, and E. Rundensteiner. Navigating Hierarchies with
Structure-Based Brushes. In Proc. of Information Visualization, October 1999,
pp. 58-64.

[8] J. Goldstein, S. F. Roth, J. Kolojejchick, and J. Mattis. A Framework for
Knowledge-based Interactive Data Exploration. In Journal of Visual Languages
and Computing, December 1994, pp. 339-363.

[9] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, H.
Pirahesh, and F. Pellow. Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals. In Proc. of the 12th
International Conference on Data Engineering, February 1996, pp. 152-159.

[10] C. G. Healey. On the Use of Perceptual Cues and Data Mining For Effective
Visualization of Scientific Datasets. In Proc. Graphics Interface, 1998, pp.
177-184.

[11] Human Genome Project. [online] Available:
http://www.ornl.gov/hgmis/about.html, cited February 2002.

[12] D. Keim and H.P. Kriegel. VisDB: Database Exploration using
Multidimensional Visualization. In IEEE Computer Graphics and Applications,
14(5), 1994, pp. 40-49.

[13] R. Kohavi. Data Mining and Visualization. Invited talk at the National Academy
of Engineering US Frontiers of Engineers, Sept 2000. Available in Frontiers of
Engineering: Reports on Leading-Edge Engineering From the 2000 NAE
Symposium on Frontiers of Engineering, National Academy Press, 2001.

[14] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic, S. Lawande, J.
Myllymaki and K. Wenger. DEVise: Integrated Querying and Visual
Exploration of Large Datasets. In Proc. of ACM SIGMOD, May, 1997.

[15] S.F. Roth, J. Kolojejchick, J. Mattis and J. Goldstein. Interactive Graphic
Design Using Automatic Presentation Knowledge. In Proc. of SIGCHI ’94,
April 1994, pp. 112-117.

[16] S.F. Roth, P. Lucas, J.A. Senn, C.C. Gomberg, M.B. Burks, P.J. Stroffolino, J.
Kolojejchick and C. Dunmire. Visage: A User Interface Environment for
Exploring Information. In Proc. of Information Visualization, October 1996, pp.
3-12.

[17] K. Perlin and D. Fox. Pad: An Alternative Approach to the Computer Interface.
Proc. of the 20th International Conference on COmputer Graphics and
Interactive Techniques, August 1993, pp. 57-64.

[18] Sloan Digital Sky Survey. [online] Available: http://www.sdss.org/, cited
February 2002.

[19] Spotfire Inc. [online] Available: http://www.spotfire.com, cited February 2002.

[20] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A System for Query, Analysis, and
Visualization of Multi-dimensional Relational Databases. In IEEE Transactions
on Visualization and Computer Graphics, Vol. 8, No. 1, January 2002, pp.
52-65.

[21] D.Tang and M. Baker. Analysis of a Local-Area Wireless Network. In Proc. of
the 6th International Conference on Mobile Computing and Networking,
August 2000, pp. 1-10.

[22] K. Thearling, B. Becker, D. DeCoste, B. Mawby, M. Pilote, and D.
Sommerfield. Visualizing Data Mining Models. In Information Visualization in
Data Mining and Knowledge Discovery. Edited by U. Fayyad, G. Grinstein, and
A. Wierse. Morgan Kaufman, 2001.

[23] E. Thomsen. OLAP Solutions: Building Multidimensional Information
Systems. Wiley Computer Publishing, New York, 1997.

[24] M. O. Ward. XmdvTool: Integrating multiple methods for visualizing
multi-variate data. In Proceedings of IEEE Visualization, 1994, pp. 326-336.

[25] J. Welling and M. Derthick. Visualization of Large Multi-dimensional Datasets.
In Proc. of Virtual Observatories of the Future 2000.

[26] A. Woodruff, C. Olston, A. Aiken, M. Chu, V. Ercegovac, M. Lin, M. Spalding
and M. Stonebraker. DataSplash: A Direct Manipulation Environment for
Programming Semantic Zoom Visualizations of Tabular Data. Journal of Visual
Languages and Computing, Special Issue on Visual Languages for End-user and
Domain-specific Programming, 12(5), October 2001, pp. 551-571.


