CS 348B - Computer Graphics:
Brian Curless and Marc Levoy
Image Synthesis Techniques
Winter, 1992
Stanford University

Solutions to homework assignment \#2

1. Digital compositing

Each pixel in the B or W image is the result of a linear interpolation

$$
\begin{gathered}
B=(1-\alpha) B_{0}+\alpha I \\
W=(1-\alpha) W_{0}+\alpha I
\end{gathered}
$$

where B_{0} is the value of the black background without the model and W_{0} is the value of the white background without the model. Solving these equations for unknowns α and I yields

$$
\begin{gathered}
\alpha=1-\frac{W-B}{W_{0}-B_{0}} \\
I= \begin{cases}\frac{B-(1-\alpha) B_{0}}{\alpha} & \text { if } \alpha<>0 \\
0 & \text { if } \alpha=0\end{cases}
\end{gathered}
$$

In fact, the value of I is unimportant if $\alpha=0$; however, since a computer will be performing these calculations, it is worthwhile to avoid divide-by-zero errors.
(a) For homogeneous backgrounds, we have $W_{0}=1$ and $B_{0}=0$, and the above equations simplify to

$$
\begin{gathered}
\alpha=1-W+B \\
I=\left\{\begin{array}{cc}
\frac{B}{\alpha} & \text { if } \alpha<>0 \\
0 & \text { if } \alpha=0
\end{array}\right.
\end{gathered}
$$

(b) For inhomogeneous backgrounds, we scan the black and white backgrounds without the model to yield B_{0} and W_{0} and use the general solution given above.
[...solutions to other problems...]

