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Abstract

Traditional perspective images (such as those producedypical camera) cannot consis-
tently display detail across all parts of an entire city Bldt is inevitable that detail is lost
in areas of the scene most distant from the camera. A muifieetive image generated
from a collection of photographs or a video stream can be tseffectively summarize
long, roughly planar scenes such as city streets. For examwgl have generated a single
continuous image of a street spanning approximately 10kddgks. This image is over
300,000 pixels wide.

This single-image representation has several advantageother possible represen-
tations (such as 360-degree panoramas, individual praypbgr 3D models, or satellite
maps) in that it is continuous, compact, high resolutiord eequires no special viewing
software. However, multiperspective images also suffsgiodiions caused by the deviation
from the familiar perspective image.

Constructing multiperspective images with minimum digtor is typically done man-
ually by an artist, however this is not practical for largede projects such as creating
images along every street in an entire city. We describe heaetimages can be automat-
ically constructed, including a technique to evaluate amiimize the distortion without
requiring user intervention.

This thesis presents three contributions toward the useuttiparspective images in
urban visualization. The first is a method of constructingges from serially blended
crossed-slits mosaics that makes it possible to alongfgigntly reduce the distortion in
the final output. Second, an efficient method of renderindp{ojgality multiperspective
images is described, along with a user-driven GUI prograa dilows a user to quickly
manipulate the perspective structure of a multiperspeatiage and gain an intuition about
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parameters of such images. Finally, we present a metricdantifying the distortion in
these images, along with an optimization for automaticaligimizing these distortions.
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Chapter 1
Introduction

Visualization of cities and urban landscapes has been agtireant for many centuries. The

key problem in making these visualizations successfulnsmsarizing in a single image the

extended linear architectural fabric seen at eye levelgabostreet, and doing so without
introducing excessive distortions. In this thesis we aslgltbe problem of creating these
visualizations easily and automatically. Possible appions include in-car navigation,

augmentation to online route mapping applications, and-kas®ed tourism information.

1.1 3D Visualizations

The Google Earth softwaréspo06f combines stitched, geo-referenced aerial and satel-
lite imagery with terrain elevation information to allowettuser to virtually fly over the
earth. Screenshots are shown in Figlire By streaming the display data so that only
the resolution necessary for the user’s current view isstratted, they can combine both a
massive back-end database of imagery that spans the eartinea@d still allow the user to
seamlessly and interactively browse through the datades geographic visualization is
excellent for getting an overhead view of places; howewetahse the terrain information
is coarse and the imagery is only from overhead views, whemnigler zooms into a partic-
ular location, the visualization does not scale well anddings and urban structures are
flattened out. Recent updates have allowed 3D models ofibggdo be inserted into the
visualization, however they are inserted over the 2D tedtmapped ground that still has

1



2 CHAPTER 1. INTRODUCTION

the aerial views mapped onto it, creating a confusing hylvhidre the image data does not
match the 3D data.

The Berkeley Urbanscarkf04] project approached this problem in a different way.
They attempted to directly create 3D textured models of @Bamenvironment. Once these
models are created, they can be viewed through an interfagkasto the Google Earth
software. These models were created by combining data froltate sources. One source
was aerial imagery along with aerial LIDAR that providestiigsolution 3D information
about the scene at a much higher resolution than the teragéénincluded in Google Earth.
Once again, this allows only overhead views. To augmentitiiatmation, they addition-
ally captured video and LIDAR data from a vehicle travelihgough the urban area. From
this data, they extracted texture and geometry informatiahis subsequently registered
and combined with the aerial views. From all of this datay tieectly reconstruct textured
3D models of the buildings and the ground.

There are a number of drawbacks to this approach that ergedings to investigate
other representations. In particular, the process of aaticaily extracting high quality 3D
geometry and texture is still an open research area, one ichvthe Urbanscan project
made substantial progress. A particularly difficult prables extracting the texture for a
part of a building that is never seen by the video. For exanmet of the wall that is
hidden by a tree on the sidewalk. Often in these cases, aréegyuthesis approach is
taken, literally making up a plausible stand-in. Anothsuiss that commonly arises is the
level of detail for the extracted geometry. The real world keatail far beyond what is
possible to extract, and so reconstructing the leaves es {fer example) interferes with
both the tree’s reconstruction and the reconstruction giramg behind it.

1.2 2D Visualizations

One possible approach to depicting the eye level urbandalsing 2D images is using
wide angle or omnidirectional views around a single viewmpdypically captured at street
corners. Omnidirectional camerasdy97 provide a possible optical solution for cap-
turing such views. Photo-mosaicing (the alignment anddtenof multiple overlapping
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Figure 1.1: Screenshots of the Google Earth software. Thenage shows a top view of
downtown San Francisco created from geo-referenced aerd@ery. Because this view-
point closely approximates the actual aerial view, the iesalpok natural. The bottom
image shows the same region viewed from an angle. The flattemebuildings look un-
natural when viewed from the side.



4 CHAPTER 1. INTRODUCTION

photographs) is an alternative approach for creating wald &f view images. These mo-
saics can be made by capturing a part of the scene surrouadiimgle point by panning
a camera around its optical cent@he95 SS0Q. Such omnidirectional views, however,
are still perspective projections and therefore, objetcasip considerable distance from the
camera become too small to be recognizable.

A set of georeferenced 360-degree panoramas (such as QueERR images) is a
possible urban visualization. The Virtually-Vancouverbsie Van0q is an example of
this — they have a 360-degree panorama at every streeteotens within the targeted
region. This allows a potential visitor to visit every str@arner and look all around,
almost as if they were standing there! Unfortunately, havethe visitor is restricted to
visiting only street corners, or in the more general sensky, the locations for which the
360 panorama is available. Even if 360 panoramas were bl@daany desirable location,
there is still the issue of transmitting the image inforroatiBecause of parallax, the entire
image can potentially change from one location to the nexd, this essentially becomes
equivalently to transmitting an entire video stream towaltbe user to move around in the
environment.

Similarly, a number of 2D photographs can be taken alongtt@nd, if they are geo-
referenced, can allow a potential visitor to virtually wallong the street by moving from
photograph to photograph. Unfortunately, there are adegnwo issues of sampling den-
sity (the spacing between photographs) and the bandwidtioyat of information that
needs to be sent for every new photograph). The lower thelsapgensity, the more dis-
connected each photo will be from the next, requiring a higlognitive load on the user
to keep track of the location. On the other hand, increasiagampling density so that the
user feels as though they are watching a video moving dowsttBet again significantly
increases the required bandwidth.

Most images we are accustomed to viewing are formed via petisp projection,
that is, they correspond to rays passing through a singleicehprojection. While per-
spective projection is an accurate model of image formatiothe retina and on camera
films/sensors, it has some limitations.

Multiperspective images, offer a promising alternativedaese they are not bound by
these constraints. A multiperspective image is a 2D imagerev/bvery region can have a
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Figure 1.2: A hand-crafted multiperspective image exeaatitom Michael Koller's Seam-
less City. Notice the distinct vanishing points at A and Grethough these two streets are
parallel, and the distortions in the depiction of buildingTis image was constructed by
aligning and inter-cutting several ordinary perspectimages. Artful placement of the cuts
between images yields a composite image without evidemhse&lowever, this process
undoubtedly requires great care and labor. This thesigdatres a novel user interface for
semi-automatically constructing images like this one.

different center of projection. An example of this can benseeFigure5.5, which shows
a small portion of a continuous multiperspective image Hpans approximately 2000m
along the street. Multiperspective images retain the soitplof a single image, avoiding
the space, time, and viewing complexities of videos or ctib@s of individual images.
They can efficiently summarize extended scenes.

An example of a high quality multiperspective image can hatbin the work of artist
Michael Koller [Kol04]. An excerpt from his work is shown in Figute2. Koller synthe-
sizes a continuous visual image of the city of San Francisadey sequential photos of
a walk through the city. In a manual process he aligns, culspastes these images next
to each other to form a final image. By making his cuts folloshétectural features in the
scene, he produces perspectives that look correct alorggldys and street intersections.
The resulting photomosaic is a high-quality, high-resgolutontinuous single image that
effectively summarizes a large geographic area withowgailgnable distortions.

One of the major disadvantages of the Koller's approachas tifee process is man-
ual and time-consuming. Creating a continuous visual sspr&tion of a 30-mile route
through San Francisco has taken several years of manuiglhirad and stitching images.
Our work can be thought of as an attempt to automate his apiproa

A possible approach to automatically create similar imag&suse pushbroon{G94,
PRRAZO0Q or crossed-slits imagingZ[FPW03a ZFPWO03l. A pushbroom image is de-
fined as an image that is perspective in one direction (eegtically) and orthographic in



6 CHAPTER 1. INTRODUCTION

the other while a crossed-slits image is an image which isgastive in one direction but

is perspective from a different location in the other dil@tt The perspective structure of
crossed-slits cameras are the set of all rays interseatiodixed lines (slits) in space. For
pushbroom cameras, one of the slits is at infinity. In botlesaene is free to select the
placement of the slits. Changing these placements stratfiglgts the visualization and the
associated distortions as we show later in our results.dicdimtext of visualizing eye level

urban landscapes, we show that we can combine multipleenteslgs images seamlessly
to reduce distortions.

A common problem inherent to these linear multiperspeginagections is the distor-
tion introduced when the perspective in the horizontal agrtical dimensions are not the
same. Depending on the depth variation in the scene thesetdias can be severe and
make portions of the image unusable (see Figuéa)). These distortions can be avoided
to some extend by carefully adjusting the perspective foh@aage region. In Chapté&
we present a framework which allows an artismtanuallyspecify different perspectives
for individual scene segments and to compute smooth transibetween them. Unfor-
tunately, as in other approaches, the selection of the eetigps is done manually and
thus tedious, error-prone, and cannot scale to larger elatag/e have therefore addition-
ally developed an optimization framework that can autocadiyf define the structure of a
multiperspective image that minimizes the output distortdescribed in Chaptér

1.3 Computer generated multiperspective images

More recently there has been an interest in computer gestenatiltiperspective imaging.
The synthesis of multiperspective images has been explar#od et al. WFH"97]
and Rademacher and BishdpB98g. Wood et al create a multiperspective image where
the perspective varies slowly across the image. This hasfthet that when a cropped
region of the image is viewed, it appears to be entirely pmatige. However, as the crop
is moved across the image, it appears as though the viewigahtfting. With a similar
goal, Rademacher et al create a multiperspective image tbgcting the central column
from a video sequence of camera swept around a 3D model antingtilnese columns
together. When viewed directly, this image has little megrtio a human. Together with
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the knowledge of the original camera trajectory, howevssytuse the multiperspective
image to reconstruct perspective views of the original rhode

Glassner Gla0( explores the use of multiperspective imaging as an effecbol for
illustration or story telling. He includes a plugin for a 3Dodeling program that allows
creating a multiperspective image through a two-surfacamaterization. Rather than the
two-surface parameterization, we use use crossed-shigasas the fundamental modeling
primitives for creating multiperspective images. We hals® dound it important to be
able to specify the parameterization of the picture surfagdlance and CaldeNCO01]
provide an in-depth analysis of the previous literature udtiperspective imaging. They
also describe an API to facilitate rendering of multiperspe images.

1.3.1 Camera Models

In addition to making multiperspective imaging practidakere has also been much theo-
retical work on multiperspective imaging. Gupta and HarfléH97] derive a projection
model for pushbroom cameras. Zomet et 2FPW034 extend this in their work to model
crossed-slits cameras. More recently, Yu and McMillgWP4] provide a General Linear
Camera (GLC) model, which unifies the perspective, pushhrand crossed-slits cameras
along with five other camera models under one framework. cAdtjin GLC’s encompass
eight cameras, we currently restrict our system to thegeflwhich seem most useful for
our task. Specifically, the subset of GLCs we allow is thatawhtan be created from a
camera traveling in a path, since the camera path naturedilyets one slit of a crossed-slits
camera.

1.4 Applications

Multi-perspective images are nothing new in the art worlathicentury Chinese paintings
used multiple perspectives to depict many religious sitessingle image without notice-
able distortionsCTO01. More recently, the work of the cubists and M. C. Escher eread
combining multiple perspectives.

Artists frequently distort perspectives to emphasizeuiest in the scene, in particular
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in maps or other urban depictions. Prominent buildings ndihaarks are drawn dispro-
portionately large, while minor streets or alleyways amnmsbmes suppressed alltogether.
Distances are often adjusted to make more efficient use oespa

Much of the early work in computer-generated multiperspedinaging used synthetic
3D data for illustrating results. More recently, multipeestive images have been used for
visualizing scenes that are large compared to the maximaneale field of view of any
individual input image. In particular, stitching severatgpective photos together to form a
single multiperspective image that describes the scenereTdre many possible applicable
scenarios:

Digital Route Panorama&he03 was one of the first examples of using a particular
type of multiperspective images callpdshbroom panoramgslescribed in detail in Sec-
tion 2.1.2. Zheng generates route panoramas from a moving video lygtaélke central
column of pixels from each frame and abutting them togethretater work [Zzhe04, he
demonstrated that less objectionable distortions can terau by selecting non-central
columns for the pushbroom projection. His choice of columfixed for an entire ac-
quisition, however, and does not allow the flexibility of dstng columns based on scene
content as we do.

Seitz and Kim §K03 investigate how to generate multiperspective images fianov-
ing video camera. They treat the captured video as a stackmis forming a 3D volume
and then allow arbitrary 2D slices through this volume. Whilis method allows genera-
tion of almost any multiperspective image that is possiblemgthe video volume, it is not
clear what perspectives the resulting images represeapextspecial cases. For example,
a slice through the volume parallel to the first frame (esabyextracting a frame from the
volume) is a perspective image (Secti.J), a slice straight down the volume is a push-
broom image (Sectiof.1.2, and a diagonal slice is a crossed-slits image (Se&ithrB.

A non-linear slice through the volume will create a multgyective image such as we cre-
ate in this thesis. However, it is difficult to associate aepgral non-linear slice with its
perspective structure in 3D. This in turn makes it hard tagtes slice to accomplish a
particular task, such as displaying city blocks with theirying facade depths.

Another possible approach is that described by Agarwald ppAAC "06]. Using a
semi-automatic approach, they construct a multiperspgeathage by reprojecting input
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camera images onto a single picture surface and extraatiitgeaty regions that have min-
imum distortion along the seams. This approach obtaindtsesimilar to those of Koller
provided the seam is sufficiently planar.

There are many other possible uses for multiperspectivgesaf extended, roughly
planar scenes. For example, one can imagine generatingage ithat spans rows of books
in a library to allow virtual browsing of books online. Siraily, warehouses could quickly
inventory items by creating multiperspective images of sterage, allowing workers to
quickly and visually identify relevant sections of the waoese.

It could also be useful for artistic purposes. For exampiegeatire walking route
through a museum could be assembled as a single continudtiigarapective image, sim-
ilar to the scene shown in FigugelQ

Another interesting artistic example is visualizing caraéfs. One could imagine a
single, continuous image spanning the Great Barrier Re&figtralia. In this case, imaging
a scene underwater introduces an additional limitationbility. Even if it were possible
to obtain an unoccluded view of the entire reef, it would becmtoo far away to see
anything through the water. Instead, by synthesizing argexfeom video frames taken
very close to the coral, a vivid and colorful panoramic imaga be obtained. A similar
argument follows for obtaining images of shipwrecks thitvathe wreck to be viewed as
if the viewer were thousands of feet away from the wreckfitsed with the visibility as if
the viewer were only a few feet away.

1.5 Our contributions

There are three primary contributions of this research:

1. We demonstrate that multiperspective images can beecrdst abutting multiple
crossed-slits images and we describe the constraintsseye® seamlessly blend
between adjacent crossed-slits images. This is describ€dapter.

2. We describe an interactive user interface that allowsea eseasily create a mul-
tiperspective image comprised of abutted crossed-sliéggén. This software auto-
matically enforces our constraints and helps the user gaimtaition of how the
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parameters of the individual crossed-slits images affieetfinal multiperspective
image. This software is described in Chagger

3. We describe an optimization framework that can autorabyicetermine the pa-
rameters for a set of crossed-slits images that minimizelistertions in the final
output image, described in Chapger



Chapter 2
Multiperspective Imaging Paradigm

Multiperspective images are considered in this thesis agengially nonlinear projection
from 3D to 2D. This mapping is used to sample from an inputskttaf 2D perspective
images directly to the final 2D multiperspective image (sbafers).

Although the final multiperspective image may be nonlingas constructed from a
set of linear projections. These linear projections arermasd in Sectior2.1 Constraints
on combining these are described in Sectidrdsand2.2

2.1 Camera Models

The relationship between the 3D world and the image of a ptioje of the world is de-
scribed by a camera model. Two common camera models are thgeg&ve and ortho-
graphic projections. These are both used extensively inpoden graphics, in particular
in 3D rendering and computer graphics; for example, the Ghegraphics APl Dpe92
allows specifying only perspective or orthographic prosats.

2.1.1 Perspective

The perspective projection camera model is a 3D to 2D priojediased on the camera
obscura and is also known as tp@hole projection In this case, an image is formed
by projecting all 3D points onto a 2D image plane through @lsipoint in space called

11



12 CHAPTER 2. MULTIPERSPECTIVE IMAGING PARADIGM

the center of projection In reality, rays pass through a small, finite region of spiice
aperture) that is approximated as a single point. A detallsdussion of the perspective
projection camera model can be found #v]04].

Traditionally, the projection is defined for a camera witheamter of projection at the
origin and oriented facing along thez axis. In addition, the image plane is typically
assumed to lie on the plaze- —1.

This 3D-2D projection is typically using homogeneous caates with

2.1)

S < X
I
o
R N < X

or
Xop = P Xap (2.2)

wherex,; is a 3x1 homogeneous 2D poiny;, is a 4x1 homogeneous 3D point, aids a
3x4 projection matrix.

Note that for a homogeneous point, we have

!

X X/W X
Xo=| Y |[=|YyWwW|=|Y (2.3)
1 1 w

The projection matrix is composed of both the internal canparameters (those that
depend only on the camera, for example the lens focal lengthtlze image plane res-
olution) and the external camera parameters (those thalt @féected by the particular
camera, for example the position and orientation). Theseeferred to as the intrinsics
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and extrinsics respectively. The intrinsic parametersifits of pixels) are

fx, fy The focal length of the camera along thandy directions
Cx,Cy The optical center of the 2D projection plane

0 Pixel skew (typically zero and ignored in this discussion)

and the extrinsics are

t The position of the camera in the world coordinate system
Described by a X 1 position vector
R The orientation of the camera in the world coordinate system

Described by a & 3 rotation matrix

The intrinsics are gathered the matkixas

fx 0 o
0 0 1

Using these parameters, the projection can be describad wit

X0 = K [R|t] X5 (2.5)
or equivalently
X
X fx 0 o Ri1 Ri2 Riz| tg v
y |=]0 fy ¢ Ro1 Rz Res| t2 7 (2.6)
1 0O 0 1 R31 Rs2 Raz| t3 L

Multiperspective images are any image in which the image daynot all pass through
a single center of projection, making the space of all pdssiultiperspective images very
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large. In this thesis, we instead limit ourselves to mulgpective projections that can be
described linearly. In particular, the pushbroom and &dssits projections.

2.1.2 Pushbroom

The linear pushbroom camera is a non-perspective profentathematically described in
[GH97]. This projection is a combination of pushbroom and ortlapdiic projections. In
this thesis, it describes an image that is perspectivecaditiand orthographic horizontally.

Consider the case where a video camera is facing downdes and translating along
the x-axis at a constant velocity, as shown in Figdr&top). If the central column from
each video frame is extracted and abutted into a single intlageesult will be a pushbroom
image. Notice that because each column of the final outpugénmtaken from a single
input video frame, each column of pixels is perspective. E\mv, because each column
of pixels is taken from a camera image at a different locati@ighboring columns do not
share a single center of projection. In fact, because edameoof the output pushbroom
image is taken from the same column from each input videodtdhey are parallel. That
is, projection rays for any pixels in different columns oétimal output image are parallel.
The image, therefore is vertically perspective and hotaibnorthographic.

2.1.3 Crossed-slits

The crossed-slits camera is a non-perspective lineargirofeand is described in detail in
[ZFPWO034. This projection is a superset of the perspective and pasimb projections. It
describes both of those projections and can also smoo#rigition between the two.

Consider the case of a translating video camera as desalime for pushbrooms.
Instead of taking the center column out of each frame, indigee the left-most column of
the first frame and the right-most column of the last framejegsicted in Figure.2. By
linearly varying the column that is taken according to theneea position, the result is a
crossed-slits projection.

All of the rays in this crossed-slits projection can be diésat by the set of rays inter-
secting two lines in space: the camera path and a seconarmuieplar line. Intuitively, it
makes sense that all of the rays in this resulting image nmasst fhrough the camera path.
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Pushbroom projection

Top View 3D View

Figure 2.1: Example of the acquisition and construction pbghbroom image. The right
images show the 3D setup of a translating camera orientex) alez-axis and moving
along thex-axis at a constant velocity while the left images show a tiegvy (A) shows
several example camera frames in blue along the camer@stoey (dotted black line). (B)
A picture surface is specified (dark blue on the left, thedatane on the right) and parallel
columns from each camera frame (shown in red) are indicg(@dBy extracting parallel
columns out of each input image and abutting them togetheecreate a pushbroom image.
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Crossed-slits projection
Top View 3D View

Figure 2.2: Example of the acquisition and construction ofassed-slits image. The right
images show the 3D setup of a translating camera orientexd) ale z-axis and moving
along thex-axis at a constant velocity while the left images show a tiegvy (A) shows
several example camera frames in blue along the camer@stoey (dotted black line). (B)
A picture surface is specified (dark blue on the left, thedgoigne on the right) and columns
from each camera frame (shown in red) are indicated. (C) Bypsimg the columns from
each input frame so that the direction of rays intersect @it ndependent of the camera
trajectory, we create a crossed-slits image.
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(b)

Figure 2.3: Effect of varying perspective inandy. The top row shows a 3D view of
the picture surface (in pink), the camera path and the rayifoldrior different kinds of
projections. The second row provides a birds-eye view aadast the resulting images
when the picture surface is aligned with the front book covBEnese are four types of
perspectives our system can generate. For all examplegtbpgttive iry is given by the
input images. (a) A perspective projection simply corregfsoto the original perspective
of the camera. Notice the limited field of view. (b) A crosssils perspective can be used
to extend the field of view im by moving the horizontal center of projection off the camera
path. (c) Moving the horizontal center of projection to iftfirresults in a pushbroom which
is horizontally orthographic as can be seen in the checlaedopattern. (d) In an inverse
perspective the center of projection is behind the picturéase. The effect is that objects
get larger with increasing distance and both sides of a cubeisible.
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This is because the image is constructed by taking pixets &iget of perspective images.
Each of those perspective images is a video frame corresmpial a location along the
trajectory of the camera and therefore a correspondingecefnprojection. These centers
of projection form the line of the camera path. The seconhgr@&licular line in space de-
fines the intersection of the fans of rays described by eacimooextracted from the video
frames. By requiring that these fans intersect in this sedioe, we define the direction of
those rays and therefore the column from the input videodram

This provides some interesting flexibility. All of the rays a crossed-slits projection
are defined by these two lines (slits). Of course, the camera path is determined by the
original trajectory of the input video camera, but we are fi@ choose the location of the
second slit.

Consider the case in which this second slit is positionedhabit intersects the camera
path. Since all of the rays of the resulting image must passitiih both slits, then the only
place that is satisfied is at the point of intersection. Saitef the rays are passing through
a single point, the result is a perspective image.

Consider the case where the second slit is placed infinigglgWay. In this case, the
fans of rays corresponding to each column of the final imageine parallel and we are
left with a pushbroom image.

These effects of varying the slit location in a crossedglibjection are illustrated in
Figure2.3. In general, the slits in crossed-slits cameras need noétpepdicular to each
other although they are constrained to be so in our appdicati

Perspective, pushbroom, crossed-slits, and orthogragamteras are all subsets of a
larger family of linear projection cameras callgdneral linear camerd¥MO04]. We re-
strict ourselves to using crossed-slits projections beediat corresponds most naturally
to the useful perspective variations from a translatingexam

2.2 Multiperspective Images

Multi-perspective images can be specified as a 2D manifotdysf and the mapping from
this manifold to a rectangular, regularly sampled imageescdbed in Figur®.4. Note
that contrary to perspective images, objects in a scene ipgaa more than once in a



2.2. MULTIPERSPECTIVE IMAGES 19

Manifold of rays

Picture Surface

VL / Multi-Perspective Image

Figure 2.4: The ray manifold is the set of rays in space. Tihepsag of these rays and
the mapping to the output image can be specified by a pictufacguwith a 2D parame-
terization of its 3D surface.

single multiperspective image because the direction o rayess constrained. The user
specifies the manifold of rays as a sequence of crossed:aiitsras in the 3D scene, and
specifies the mapping to an image by placing a regularly sagnpicture surface in the
scene. We find that distinguishing clearly in our user irtegfbetween specifying the ray
manifold and specifying the mapping to the output image owps the intuitiveness of our
system.

The manifold of rays can be specified in several ways. For laghencamera, the mani-
fold is the set of all rays passing through a point. In an agthphic camera, the manifold
describes all rays in a single direction. Similarly, for asged-slits camera the manifold is
described by all rays passing through two lines (or slit$)ese are three of the eight 2D
linear manifolds described by Yu and McMillav104].

For our application, we choose to constrain the allowableosenanifolds based on
their applicability to urban landscapes and the ease ofifsgmon for the user. Specifi-
cally, we restrict the space of ray manifolds to crossed-stiages. Doing so allows us to
include perspective and pushbroom images while at the sameeehabling the interpola-
tion scheme described in secti@r8. The result is that our final image can be represented
as a mosaic of multiple crossed-slits images.

The picture surface defines the sampling of the manifold ys$ es well as their map-
ping to the final image, as shown in Figurd. Traditionally, in a single perspective image,
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Interpolating slit

Picture surface

Camera path

User-specified slits

Figure 2.5: We visualize urban landscapes using a blendjatext crossed-slits images.
The figure shows two user-specified crossed-slits camerasegented by slit pairs WH-
and YZb. This partitions the camera path WXYZ into three sectiortee plane?;, formed
by the slitg and point X, represents the rightmost column of pixels irsseal-slits camera
WX-g and their associated ray directions. SimilaRy,is the plane formed by sl and
point Y. These two plane®, andP; intersect in ling, which becomes our interpolating slit.
The XY-r crossed-slits pair becomes our interpolating camera. tatiethe interpolating
camera has the same ray directions on its edges as its neiggploameras. This ensures
that the generated image contains no discontinuities.

the picture surface is a plane. However, we can reduce timian the output image by
allowing the picture surface to change orientation to agoouate the storefronts. In our
application, we constrain the picture surface to be vdniith respect to the ground.

Lastly, every point on the picture surface must be assatiatth a ray from exactly
one ray manifold. This ensures that the resulting final dutpage has no missing regions.

Examples of the types of multiperspective images that wanalh our images are
shown in Figure2.3.
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2.3 Interpolating Two Crossed-Slits Images

Associating regions of the picture surface with crosséd-sameras naturally leads to the
problem of how to handle unassigned regions between themsydtem adds an additional
crossed-slits camera between every two adjacent useifisdemrossed-slits cameras, re-
sulting in smooth interpolation. The process of computhmglocation of the interpolating
slit is described in Figur2.3. As shown in the figure, the location of the interpolating sli
is uniquely defined by the geometry of the adjacent slits.

It should be clear from the figure that the insertion of theserpolating slits is indepen-
dent of the picture surface chosen by the user. Also, the iGapah must be continuous
but need not be straight—the interpolating slit will depemdy on the points X and Y
along the camera path. Note that this interpolation schemet dependent on using the
camera path as one of the slits. In fact, this scheme willecblyr interpolate any pair of
crossed-slits cameras provided that the slit joining theoointinuous.



Chapter 3

Interactive Specification of
Multiperspective Images

While most people generally have a good idea of what a phaptgwill look like when
shown a diagram of the camera position and orientationivel&b a scene, this intuition
does not exist for multiperspective images. The choice ofiiifold of rays, the place-
ment of the picture surface and the sampling of the surfaostitate a design problem.
We have designed a user interface which helps develop attiontdior the perspective
structure of multiperspective images as well as generdfiestige visualizations of urban
landscapes.

We describe an interactive system that can be used for catisiy multiperspective
images from sideways-looking video captured from a moviagiele. The input to our
system is a set of video frames with known camera pose. Thdace then provides a set
of tools that allow the user to define the picture surface dacexrossed-slits cameras. Our
system then automatically computes an additional croskesdcamera between every pair
of adjacent user-specified cameras leading to a smoottpoi&ion of viewpoint in the
final multiperspective image. Our system provides the toeteessary to minimize distor-
tions and discontinuities for creating good multiperspecimages for urban landscapes.
Using our system, a person can create a multiperspectivgeimia whole city block in a
few minutes. The process is summarized in Figiite

22
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(b)

d
(@ final output image

Figure 3.1: This figure summarizes our algorithm for genegamnultiperspective images.
(a) First, we process each input video frame to estimate ahesgponding position and
orientation of the camera. (b) Second, the user specifigitche&e surface and any number
of crossed-slits camera locations (the green and bluensyithereby defining valid region
(gray shading) on the picture surface. (c) For the remaingggons (gray shaded), we
automatically compute the interpolating crossed-slithea (yellow). (d) Within each
camera, each planar fan of rays (blue or green triangle®tdeme line of pixels (typically
vertical) in the final output image. To produce this imagesthpixels must be extracted
from the appropriate frame of video, as described in se&idn

In this chapter, we describe our system for interactivegiteand rendering of multiper-
spective images. Our system takes a set of video framesu¢eaptith a sideways-looking
video camera) with known camera pose as input and produessoonposite multiperspec-
tive image as output. The system consists of a user integiageises the rendering engine
described in Chaptet.

3.1 Design Choices

There are a number of restrictions that we place on our systéarassume that the camera
path in the input video lies on a plane parallel to the groulatigp. For each crossed-slits
image, the user specifies one slit, and the camera path ismadsio be the second slit.
We assume that the user-specified slit is vertical (perpeiteti to the ground plane). This
allows a simplified plan view to be used in our user interfaterg the vertical slits are
projected as points.
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B pMulti-Perspective Image Tool (MuPIT)

User-specified slits

3D scene points , / i Camera path
. 1 I E ¢ /
pd

/
Picture surface

Preview image

Figure 3.2: This is a snapshot of our interface. The diagramomis a plan view of
the scene. You can see the partial 3D scene structure, gistuface, camera path, user-
specified slits, interpolating slits and a low-resolutioayiew image.

As shown in Figurel.1, the picture surface is a parametric surface in 3D. We choose
picture surface to have vertical sides. The restrictionesfigal sides on the picture surface
applies naturally to urban facades on flat terrain. To aiduex in specifying non-vertical
sides of the picture surface, we provide piecewise-contisdines and quadratic splines.
Quadratic splines are approximated as piecewise-linganaets to simplify rendering.
This allows our surface to be represented as a series ofrplacets. We constrain the
sampling of the picture surface to be regular.

3.2 User Interface

Shown in Figure3.2, our interface provides both a design section in which tlee sisecifies

the multiperspective image and a preview section that cawige rapid, low-resolution
previews of the final image. Once satisfied with the designasistem can output the full
resolution image.
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To create a multiperspective image, the user must defineitheg surface, place all
desired crossed-slits cameras, and associate the cam#rasgions of the picture surface.
Because of the lack of natural intuition concerning theges$yof images, the interface
strives to present the design in terms of familiar conceméth this in mind, the user
is shown the camera trajectory in plan view along with anynestied scene structure in
the form of a point cloud as output by our structure-from-motalgorithm. The camera
trajectory, as explained in secti@nl, defines one of the two slits required for any crossed-
slits image.

To define the picture surface in our interface, the user nezdsly draw a set of
connected line segments in plan view. This is possible lmxate restrict the picture
surface to be vertical. To help fit the picture surface to edrfacades, segments of the
picture surface can also be toggled between straight linésjaadratic splines.

In plan view, the task of positioning user-specified slit®ines simply placing the slits
as points and specifying their field of view. The intersattd the field of view with the
picture surface defines the region of the picture surfacecested with that slit. If any
segment of the picture surface is associated with more thamuser-specified slit, such as
if two fields of view overlap, there no longer exists a unigag direction for points in that
segment, and therefore that is not a valid specification foétiperspective image. As
long as the fields of view do not overlap on the picture surfacsvever, any number of
user slits may be described. The specified camera slits sarbal toggled between slits
located at finite positions and slits located at infinity.t<Sét infinity are represented by a
directional line next to the selected point. Placing a glinéinity produces a pushbroom
image. Similarly, placing the slit directly on the camerahp@hus intersecting both slits)
produces an ordinary perspective image.

Once any valid multiperspective image is specified, therfiate immediately shows
a set of example ray directions at several points along tbiein@ surface. The program
also automatically displays the interpolating crossétd-shmera between any two adjacent
user-specified cameras as explained in section 3.2.
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3.3 Results

We tested our system on several videos of city blocks takeewudifferent challenging
scenarios. The input data for this system is described itidded.1 and the rendering
algorithm described in Chaptér We first examine a scene with a relatively flat facade and
straight camera path. FiguBe3(a)shows a short section of a pushbroom representation of
this scene. A pushbroom image is perspective in one dire¢tiertical in our case) and
orthographic in the other direction (horizontal). Undas tbrojection, only objects lying on
the picture surface can be rendered faithfully. In our eXanthe picture surface is placed
at the store facade. As expected with such a parametenzatees (which are closer
than the facade) are horizontally compressed while the diewn the alleyway (which is
farther) is expanded. By interactively manipulating thespective structure of the image,
we can reduce these distortions as shown in Figudéb) Using our user interface, we
achieve this by specifying ordinary perspective cameras regions of significant depth
variation such as the trees and the alleyway. This creatésage that is more natural
looking in these areas. To keep the image continuous, thteraysiserts interpolating
cameras between the user-specified cameras.

Another example that illustrates the benefit of maniputatiay directions based on
scene geometry is shown in FiguBel The scene consists of a building with flat facade on
the left and a very deep plaza on the right. By choosing meltpossed-slits as shown in
Figure3.4(b)we can get a more recognizable image than Figu4¢a)

The ability to specify curved picture surfaces allows usdoform the picture surface
to the natural architecture of a corner. An example of th&hswn in Figure3.5(a) This
type of image is impossible to create with a traditional Bnglanar picture surface.

Although this allows us a summary view of both sides of theegrthe apparent size of
facade is constant throughout the image. We can more nigtoearesent what a motorist
or pedestrian would see if we stretch the image near the Ggroelucing a pinching effect
as shown in Figur&.5(b) This is a nonlinear effect and would require sampling of the
picture surface as shown in FiguBes(c) Instead, we achieve this effect by curving the
picture surface as shown in Figuses(d) and adjusting the horizontal sample density as
shown in Figure3.6(d) by using the control polygon. This is a departure from thédierar
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imposed regular sampling on the picture surface. This sagpldjustment is performed
automatically by our program and is explained in Figar@

3.4 Discussion

There are infinitely many possible multiperspective imabeas visualize a city block. Our
tool helps manage the creation of such an image in three whaiyst, by restricting the
space of multiperspective images to those most likely to sefull for visualizing urban
landscapes, we reduce the number variables involved itimgetnese images. Second,
our tool abstracts the away the ray manifold to a set of mdreétive virtual viewpoints
Finally, by providing rapid feedback to the user, our todpedevelop an intuition about
the effects of the design parameters on the resulting imapes last point is key to the
effectiveness of our tool and is enabled only by the simpheleeing system described in
Chapterd.

One limitation of our system is that we allow only regular gding on the picture sur-
face (and the automatic adjustment of horizontal samplergsy illustrated in Figur8g.3).
We do not allow any user-specified sampling strategies. @nanagine sampling the im-
age more densely in the center than toward the edges, resuitia fish eye like effect.
Also, the enforcement of vertical slit orientation, a liatibn imposed by our user inter-
face, implies that the user interface cannot accuratelyctiepanges in elevation such as
hills. Similarly, the user interface does not permit algrithe orientation of the picture
plane from vertical. Finally, we choose to allow represambonly three of the eight GLCs
from Yu and McMillan [YMO4]. 1t would be interesting to incorporate these other camera
into our design tool.
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Example ray directions Camera path (fixed slit)  User-specified slit at infinity (pushbroom)  Picture surface
(a)

AN [\ | / /1A [\

W7 FANNVT/ 7 VNN /l\ I\ //
Camera path (fixed slit) Example ray directions User\gpecmed slits (perspectlve Picture surface

(b)

Figure 3.3: This example shows how manipulation of the peatype structure of the image
can be used to generate a multi-perspective image with eeddistortion. The diagram
below each is a plan view of the scene, with the input videoezanmoving along the
indicated path and looking upward. The picture surface i l§@) and (b) is fixed at the
facade of the storefronts. (a) is a traditional pushbroomgengenerated by specifying a
vertical slit at infinity with all the ray directions being qadlel. The resulting image has
the familiar distortions associated with a pushbroom imadpgects in front of the picture
surface (e.g. trees) are compressed horizontally, andtstdpehind the picture surface are
expanded (the view down the alleyway). (b) has been gerktestimg multiple crossed-
slits. By placing selected user-specified slits atop theerarpath, ordinary perspective
views are generated in the vicinity of the trees and alleywdnys enhances the realism of
the image while still maintaining the extended field of viefathee pushbroom. This does
not come for free, however. Notice that the sidewalk in theteeof the image appears
curved and that one of the columns of the distant buildingeapptilted. These are artifacts
induced by the changing perspective structure across thgam
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Figure 3.4: This example shows how our system can be usedchtrae effective multi-
perspective images of deep plazas. The picture surfacetin(pand (b) is fixed at the
facade of the building on the left. (a) is a traditional pusldm image generated by speci-
fying a vertical slit at infinity. This causes the deep plaadhe right to stretch horizontally,
leading to apparent smearing due to limited resolution.bn lfy blending between two
almost perspective views on the right (one for the tree aredfonthe building) and the
same pushbroom view on the left results in a better visuaizaln our multi-perspective
image, some unwanted curving is introduced into the walkatathe center of the image.
This walkway is in fact straight.
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Camera path Camera path

(fixed slit) (fixed slit)
User-specified slit
at infinity

User-specified slit
at infinity
User-specified slit
at infinity

User-specified slit
at infinity

Interpolating slit Interpolating slit

Picture surface
(with example ray directions)

Picture surface
(with example ray directions)

(©) (d)

Figure 3.5: Our visualization of a street corner with perpeular storefronts. (a) shows
the multi-perspective image generated by our system forchiwece of picture surface
shown in (c). (b) shows the multi-perspective image geedrhy our system for the choice
of picture surface shown in (d). The picture surface in (¢)foans to the actual storefront
whereas it has been artificially curved in (d) using our imtéve system. Note that the slits
are at the same location in both the setups. (a) gives theesajun that the storefront is
continuous and there is no corner. By altering our picturéase we introduce an artificial
pinching effect in the multi-perspective image shown in {)is helps emphasize that it is
a corner without causing severe distortions.
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Figure 3.6: This figure explains how our choice of a curvedasa and a non-uniform
sampling strategy achieves a pinching effect at the corsega in Figure8.5(b) In (a),
picture surface 1 conforms to the storefront. To achievepthehing effect in this case we
would need to stretch the image at C. This would mean nomdipenapping the picture
surfaceuv coordinates to the final output imagecoordinates as shown in (b) to maintain
continuity in the image. We achieve the same effect by imstesang a curved surface as
shown in (d) but sampling according to the strategy in (c).isTdolves the problem of
nonlinear vertical sampling, but now requires adjustirglibrizontal sampling. This can
be easily done by using the control polygon to define the bated mapping from 3xyz
to u but still mapping tos linearly. If the control polygon corresponds to the stavafr
then a brick on the wall will not appear to be stretched harialby.
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Rendering Multiperspective Images
from Real Data

With a user interface that allows a user to easily specifysthecture of a multiperspective
image, the next step is to render that image. This chaptarides the algorithm used
to render our multiperspective images that are composedwvafral abutting crossed-slits
images. First we describe the requirements on the inputstatséhen we describe the basic
rendering algorithm. In Sectiod.3, we improve upon the rendering method to handle
cases where the input data is not sufficiently dense, andatioBel.4 we describe how we
handle the extremely large dynamic range typical in outdoenes.

4.1 Data Requirements

There are three basic assumptions about the input data@ddor rendering. The first is
that the input images are from a moving video camera. Thidtes a 3D video dataset
instead of a 4D lightfield, restricting the set of multipegsfive images that can be created.
Second, we assume that the environment is approximateiy.sta

The last assumption is that the camera trajectory must bekndStructure-from-
motion software can be used to extract this directly fromMideo in some cases. External
constraints (such as placing the camera on a track) or anxsensors (GPS, accelerome-
ters, etc.) can also be used to robustly determine the cgmaénand improve accuracy.

32
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Video data must be captured densely enough so that the sepaplithe picture surface
is equal both vertically and horizontally. That is, the igf a single pixel from an input
camera image (when projected onto the picture surface)dlequal the width of a column
on the final multiperspective image.

In our current implementation, data is captured using adBa@sb04kc high-speed cam-
era which captures 128024 images at 300 frames per second with a 72-degree field of
view vertically. With a picture surface that is 10m from thenera path, each pixel is ap-
proximately 1.5cm high. The camera should therefore notemere than 1.5cm between
video frames. At 300 frames per second, that correspondsixanum speed of 10 mph.
The high speed capture ensures dense image data whildlstilirey a reasonable driving
speed for urban traffic; higher speeds are possible usimginierpolation, as described in
Sectiord.3,

Camera pose is then estimated with a structure-from-m¢@86&M) algorithm. We have
used both a commercial software package BouRidd0q and a freely available software
package VoododJni03]. SFM also outputs partial 3D scene structure, which hélpsiser
in choosing crossed-slits locations in the interactive thelps the optimization algorithm
for the automated specification. For some of our dataseigaimera pose is computed us-
ing a combination of external sensors. In these casesj@adaliscene structure is available
through the use of laser range scanners. We assume thatdigaxie that camera pose is
estimated in corresponds to the real-world ground plane.

4.2 Algorithm for Rendering MPIs

Using an Intel 2.8 GHz Pentium 4 machine, the low-resolutiview image (up to 1000
x 200) in our user interface can typically be rendered in uradeecond. An efficient
rendering engine is necessary to provide this fast feedtusitle user.

Our task is to determine for each pixel in the output imagectvipixel position (which
may fall between captured pixels) in which frame of the impideo should be displayed
there. This is done in four steps:

1. Compute the projection of each input frame onto the outpage.
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2. Project the center-of-projection of each from onto thgpotuimage.
3. For each column of the output image, choose an input frame.

4. Use the projection of the input frame to extract and tramsfthe appropriate pixels
onto the output image.

The constraints imposed by our design choices allow us tplginand accelerate the
rendering, in particular the assumption of a discretizéelcgwise-planar picture surface.
Since each point on the picture surface is associated withooe crossed-slits camera, the
final output image is composed from several distinct, abgttirossed-slits images. Each
crossed-slits camera can span multiple planar segmente @id¢ture surface. Also, each
planar segment may contain multiple crossed-slits camémasoth cases, we render only
a single crossed-slits image onto a single planar segmartirae. Each planar segment is
parameterized byu,Vv). Finally, the restriction of vertical sides for the pictumerface and
of vertical user-specified slits allows us to assign entil@mns of the final output image
from a single input video frame. For each crossed-slits enag a planar segment, there
is a mapping between tHe, V) coordinates of the planar segment to tkg) coordinates
of the final output image, defining the sampling of the pictsmeface. This can be seen
in Figure4.1 The sampling on each planar segment is regular irutaadv parameter
directions.

A fast algorithm to render a single crossed-slits image ansingle planar surface is
therefore the basic building block used in rendering. Fahearossed-slits image, we
compute the homography between each input frame and theofityalit image. We then
use this transform to compute which pixels will actually tdute to the final outputimage
and then transform only those pixels.

An important point is that thentire input image does not need to be transformed.
Instead, we first calculate the necessary transformatidritzen apply it to only a small
region from each input image. This speeds up rendering tpaig that if all images can
be preloaded into RAM, previews can be rendered at intexacsites even for thousands
of input images.

We now describe the process of computing the homographgftran from an input
video frame to the output image for a single planar segmerd. ugé the convention of
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Manifold of rays

Picture Surface

VL / Multi-Perspective Image

Figure 4.1: The ray manifold is the set of rays in space. Tiepsag of these rays and
the mapping to the output image can be specified by a pictufacguwith a 2D parame-
terization of its 3D surface.

using bold for vectors (lowercase) and matrices (uppejc&sents in different coordinates
systems are

- T
X=|xvy z1 } 3D point in world coordinate system in which camera pose
_ is estimated

- T
u=|u v1l } 2D point in the coordinate system of the planar segment of
) the picture surface

- T
p= P q 1 ] 2D pixel location of a single input video frame

- T
Ss=|st1l ] 2D pixel location of the final multiperspective image

These are also depicted in Figurd.

Let the origin of the planar segment in world 3D homogeneaasdinates be the 4x1
vectoro. Letw andh be 4x1 vectors defining the width and height extent of the sggm
Then, the mapping from a point(for all u,v € [0, 1]) on the planar segment of the picture
surface to a corresponding world poiis given by
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X=uw+vh+o (4.1)

~[whnol|v (4.2)
1

=Qu (4.3)

In general, a point in the world coordinate systens mapped into a particular input
video frame by the relationship:

p=K[R;j|ti]x (4.4)

given the camera intrinsids, the rotation matrixR;, and the translation vectdy. Sub-
stituting forx, we obtain the relationship between the planar segmenthenohput video
frame:

p=K[R;j|ti]Qu (4.5)
With our restriction of regular sampling on the planar segtsewe map the segment
to a rectangular region of the final output image using ordpgtation and scaling. Note

that this choice of mapping is arbitrary. We can now defineréha&tionship between this
planar segment of the picture surface and the final outpujénas:

0 c
b d|{u=Mu (4.6)
01

or equivalently

u=M-1s (4.7
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wherec andd define the origin of the rectangular region on the final outpiage anda
andb define the width and height of the region respectively.

We can then obtain a direct relationship between each indabvrame and the final
multiperspective image as

p=K[R[tijQM1s (4.8)

Using this formulation, all of the intermediate matriceduee to a single invertible 3x3
matrix that we calH, giving

p=Hs (4.9)
s=H™1p (4.10)

The matrixH defines the homography between an input video frame and parftthe
final multiperspective image corresponding to one plangmsat of the picture surface.

With the mapping from each input video frame to the final outpuage, each pixel on
the final output image will have multiple input frames ovppad onto it. We must now
choose which input frame to select for each pixel. For oussed-slits images, one of
the slits is fixed—the camera path. The second, verticalsskither a user-specified or
interpolated slit. We project a point on this vertical shtdugh each input video frame
onto the final output image.

To compute this, we take the 3D point on the second slit thatsects the ground plane,
Xg, project it onto the input video fram@d), and then use the homography derived above
to project the point onto the final output imagg)( For a particular input video frame
the image oky through that camera’s center of projection maps to

sy=H 1pg (4.12)

As shown in Figuret.2, for each column of the final output image, we then select the
input frame with the closest projected posgtand transform the pixels from that frame that
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Picture

surface
Camera path

Slit

Figure 4.2: The slit is projected through each camera o @itture surface. The region
closest to each projection is assigned to the correspordimgra.

correspond to the output image column.

4.3 View Interpolation

This rendering algorithm relies on having very dense injmlg®, ideally one frame for each
column of the output image. Often, however, such denselyptamhvideo is not practically
available. In these cases, we use view interpolation tchegite intermediate views.

For example, the initial acquisition of the Castro stredaset (Figure3.3) used a 30
frame per second video camera driving down the street attébmph. This low speed
is not practical for more than test datasets. In contrast évough the 18 street dataset
(Figure5.5) was taken with a high-speed camera operating at approaiynzd frames per
second, the average driving speed of 20 mph causes each imalit nearly 20 pixels
when reprojected onto the picture surface. Without viewnmblation, artifacts such as
those shown in Figuré.3are common.

View interpolation fits very simply into the rendering algbm described above. As
each input video frame projects onto the picture surfacecattionsy (equatior4.12), any
particular column will lie between two input video frame$.al € [0, 1] is the normalized
position of the column between the two input video framesntive generate an inter-
polated intermediate viely between the two input video frames. If we also generate the
intermediate camera matricRg andt,, we can render from the interpolated frame exactly
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(b) (c)

Figure 4.3: Example of striping artifacts caused by insigfit video framerates. (a) A
section of Lytton Street in Palo Alto, CA. At full resolutidhis image is 7200 pixels wide
but is resampled here to only 1800 pixels wide. When disglatehis lower resolutions,
the video framerate has little effect on the resulting imgggA full-resolution crop of the
image around the car without optical flow. This image is 36&|si wide. (c) The same
car rendered from the same video, but using optical flow &rpulate between input video
frames. (d) A 400-pixel wide crop of the image showing a sifjatice that the phone
numbers are severely distorted. (e) The same crop rendsiregl aptical flow. The phone
numbers are now legible.
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as if it were an input video frame using the formulation4ngj.

Notice that after generating an entire intermediate vientpave extract only a small
region of the generated frame. It is desirable to reducedhgatation and generate only
the necessary intermediate pixels. In our datasets, tpisalyy implies generating an
intermediate view for a region only 10 pixels wide. Unforately, the view interpolation
requires sufficient context to robustly establish corresiemce between pixels in both input
video frames. We have empirically found that our view intégtion requires 300-500 pixel
wide regions to match robustly.

The problem of view interpolation is therefore: Given twaaigesl, I, along with the
associated camera matric&S[R1|t1] andK [Rz|t2] respectively) and a desired intermedi-
ate positiona € [0, 1], compute an estimated intermediate imageand the corresponding
camera matriceK [Rq|tqy].

The camera motion between the two images is typically smalthus the intermediate
camera matrices are approximated by linear interpolatorttfe position and spherical
linear interpolationfho83j via quaternions for the orientation.

The intermediate image is generated using view interpwoiatiThe two methods we
used are described here, however there is a rich literabureiéw interpolation CW93
SD96 GKGO04, XS04.

1. Compute an unconstrained, dense optical flow field betwleetwo images. This
flow field is scaled according ta and used directly to generate the desired inter-
mediate view. A robust optical flow implementation based Bla92, BA93] was
implemented. This method is simpler and requires no aduitimformation beyond
the two images. The disadvantage of this method is that & doeexploit the addi-
tional available information of the camera pose.

2. Extend the optical flow to exploit the known camera posestkectify the two im-
ages so that the epipolar lines are parallel and then camsira optical flow com-
putation to be only along the epipolar lines. This gives paligy estimate for each
pixel of the rectified images that is used to generate a redtfersion of the desired
intermediate image. Finally, we apply an inverse homogyapat maps the rectified
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intermediate image to our desired intermediate image. &this method provides
improved estimation due to the added constraints, it reglaccurate camera pose.

4.3.1 Method 1: Optical Flow
Optical Flow Field Computation

We implemented the robust optical flow described BiapP2 BA93], briefly summarized
here. Given two luminance imagds(x,y) andl,(x,y), of a scene with arbitrary motion,
the goal is to compute the motion for each pikgj(x,y) andDy(X,y). We assume that
each pixel in; corresponds to a pixel ik and that the intensity of corresponding pixels is
equal.

Relying on the intensity constancy assumption, we assuatétt image can be repre-
sented by

Il(X7 y) = |2<X+ DU(X7 y)7y+ DV(X7 y)) (413)

for some flow field(Dy, Dy).
These can be estimated by minimizing the robust residuat err

Ep(u,v) = p(IxDy+ lyDy+1t, 01) (4.14)

where p is a robust estimator and; weights the influence of intensity outliers in the
optimization. We use the Lorentzian estimator aBA$3], so that

X

p(x,0) =log (1+ % <5>2) (4.15)

where o is the normalization parameter. When estimating a denseffld; (4.13 is
underconstrained, so we add the robust regularization terfavor smooth flow fields.
This term is

ES<DU7DV): % Z p(U—Un,O'z)—f— % Z p(V—Vn,Uz) (416)
uebDy uneN veDy vheMN
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where9t contains the four neighbors (north, south, east, west) af/@engpoint ando,
weights the influence of smoothness outliers.
The final energy term that is minimized is

E=Ep+AEs (4.17)

whereA controls the regularization. This is solved using a coéosiae simultaneous
over-relation (SOR) implementation as describedBia2 BA93].

View Interpolation Using Flow Fields

To generate an intermediate image that isetween the two input images (withe [0, 1]),
the images are bilinearly resampled using a fraction of dmeputed flow fields.

lal(x7y) = |1<X_ aDU(va)vy_ aDV(X7y)) (418)
Iaz(X, y) = |2(X+ (l_ a>DU(X7 y>7y+ (l_ a>DV(X7y)> (419)

Linearly blending these images creates the desired inthat@gimagd,,.

Ia:(l—a>|al+a|az (420)

4.3.2 Method 2: Stereo Flow
Rectification

Stereo algorithms typically assume that the imageseufied that is, the epipolar lines
are parallel. In many stereo applications, this is enfolmethe physical arrangement of a
pair of stereo cameras. In our case, we rectify the imagesioas their relative positions
and orientations that was required input for our system.

As in sectiond.2, we assume that the camera intrinsi€g, (rotation matricesR1, R»),
and the translation vectors, (t,) are known. The goal is to compute a new rotafoand
translations for each camefrat, that aligns the epipolar lines to scanlines. To center the
images, offset are applied to the intrinsics makito form K ; andK .
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We used the the rectification algorithm given by Fusielloldt=aV00], summarized
here. First compute the center of projection for each camera

Ci=-R]t; (4.21)
C>=—Rjt,

These two points define the direction of motion of the camemd,so we rotate the camera
image so that the x-axis of the rectified images is alignetl thits baseline. A coordinate
basis aligned with this baseline is constructed by

x=C,—Cy Define baseline direction

7= RI [ 0 01 }T Extract original z vector from input rotation matrix
y=xx7 Choose orthogonal y

Z=XXY Choose orthogonal z

With this orthogonal basis, we assemble the rotation matmply using the basis vectors
as rows.

~ T
R— [ xT yT vl (4.22)

We also construct new intrinsics matrices. The intrinsies equal to the original cam-
era’s intrinsics matrix except that an offset can be appitedenter the images after the
rectification. (SeeHTVO0Q] for details)

Xm
dyr (4.23)
0

)
AR

I
A
_|_

dx
dy»

)

N
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Finally, we can compute the two homographies.

Hq
Ho

1R(KR1) ™t (4.24)

(KR,) ™t

) R
) A

2

Because the epipolar lines are now aligned with the x-aXisnation due to parallax
will manifest as offsets in the x direction in the rectifiedages. Apply this homography
to the input video framek, |, gives us the rectified input framéj_sandl}.

Stereo

We now constrain the robust optical flow formulation deseditin sectior4.3.1to only
estimate flow in the x direction. When computing the flow foe tiectified images, this
has the effect of constraining the correspondence searttd &dong the epipolar lines.
After rectification, this is done simply by constraining thaw field to thex axis, and is
accomplished by dropping theterm entirely from ¢.13 to become

IAl(X7 y) = IA2<X+ |:'ju(x7 y)7y) (425)

Similarly, (4.14) and @.16 become

Ep(Dy) = p(1xDu+1i,01) (4.26)
EsDu)= Y > p(u—un02). (4.27)
ueDy UneN

The resulting flow field for the rectified imagéy, is now considered a disparity map
D(x,y) such that

I'\1<X7Y) = |A2<X+ Ifj(X?y)?y) (428)

View interpolation

Once we have computed the disparity between the rectifiedesyagenerating an inter-
mediate rectified image is straightforward. An inverseifieaetion homography must be
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applied to the intermediate rectified image before the intagebe used as a virtual input
video frame in the rendering system.

The rectified intermediate image is computed by resamplatly imput rectified images
by a fraction of the disparity, and then linearly blendinggsbl images. To compute an
image that isx between the two input images (withe [0, 1}), we first resample both input
rectified images by a fraction of the disparity:

[0, (x,y) = [1(x—aD(x,y),y) (4.29)
[0, (%,Y) = l2(x+ (1= a@)D(x,y),y) (4.30)

Linearly blending these images creates an intermediatifieedmagel ,:
lo = (1—a)lg +alg, (4.31)

In order to sample from this intermediate rectified imagegshe framework described
above, it is necessary to find the relationship between anm#diate camera image spec-
ified by K [Rq|ty] and the rectified intermediate camera imdgdust computed. The
rectification homographi 4 that relates these is computed as follows.

The offset inK is simply

Koe=(1—a)Ki+aK; (4.32)

The intermediate rectified image can be described by the reamatriceX ¢ [Rq|tq].
This is related to the desired non-rectified intermediategenby the desired homography
Hg.

Ha (K[Ralta]) = Ka[Ralta] (4.33)
From this we get

HaKRg = KR (4.34)
Ho =K4R(KRg) ! (4.35)
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Notice the similarity betweer(35 and @.24). Transforming s by H,1 gives us the
desired intermediate imadg which we use directly in the rendering system.

4.4 High Dynamic Range

On a sunny day, the dynamic range between a fully sunlit seréad a fully shadowed
surface can span a range of 10,000¢DCWO02]. This poses a challenge for most modern
digital cameras which typically have a 10- to 12-bit dynamaioge capability on the sen-
sors. For our application, our camera (a Basler A504kc) adetkar 8-bit sensor. In order
to increase the quality of the output images, we assembtgtddynamic range versions of
the multiperspective images. This section describes hesetimages were created, and is
divided into three parts. First, we briefly described howt¢heera was setup to camera
the images. Second, we describe how to assemble severaytamic range images, and
finally we explain our decision to render the images befose@bling into a high-dynamic
range composite.

4.4.1 Capture

The Basler camera is programmed to continuously cycle gir@usequence of three pre-
programmed exposures. These are chosen according to ttoxempate average brightness
of the day and spaced by factors of 8. For example, 0.125ms, and 8ms are typical
exposure times.

Because the vehicle is moving continuously, none of the éisare have exactly the
same viewpoint. Thus, the images cannot be directly recoeabinto a high dynamic
range composite as described BYM97]. There are two possible approaches to generating
the high dynamic range result:

1. Use view interpolation to combine neighboring frame® iathigh-dynamic range
video and then use that video for rendering, asdi\WS03|.

2. Render the multiperspective image for each exposuregaepaand then combine
the separate images into a high-dynamic range composite.
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We used the second approach. It has the advantage that indbesquire any view
interpolation to function correctly if the input video stra is already sufficiently dense.
Otherwise the two methods require approximately the sanmuahof computation.

4.4.2 Rendering

Because we render each exposure separately, renderindasnped exactly as described
in previous sections, once for each video stream.

4.4.3 Assembly

Assembling high-dynamic range images is described inldatfbM97, XDCWO02]. Be-

cause we have a restricted input dataset, we can simplifggbembly process. In particu-

lar, we have a linear sensor with known, fixed exposure timdsadfixed set of exposures.
We define three weighting functions used to normalize thiared of the inputimages:

Wiow(€) = 1—clip(s(K —¢),0,1) (4.36)
Wned(C) = 1—abgs(K —c)) (4.37)
Whigh(C) = 14-clip (s(K —¢),0,1) (4.38)

whereK determines the midpoint of the range ambrmalizes the values. In our case, we
useK = 110 ands = 100. These functions are plotted in Figdrd.

These weights are then used to directly assemble the higharaig range image from
the low-dynamic range input images. For a seEaéxposures, we have a set®Bfcorre-
sponding pixelge and exposure times. The high dynamic valug, can computed by first
computing a weighted average of the scaled radiance:

- 3 eWe(Pe)ts 1 Pe

P > eWe( Pe) (4:39)

Here, W, is used to denote the weighting function appropriate to #posgure. For only
three exposuresye = {W|0W,Wmed,Whigh} for e= {1,2,3} respectively. For more expo-
suresWmegis used for all interior exposures.
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Figure 4.4: Weighting function used for determining pixehtribution when assembling
high dynamic range images.

Once the high-dynamic range image has been assembled,tibeosapped back into
a low-dynamic range image for display. This process is daibme-mapping. There are
several tone-mapping operators available, including odglsuch asHLWO02]. However,
we found the operation that produces the most realisticénéay our datasets was a simple
gamma-curve tone mapping. This simply maps radiance vadyggel values using

1
pi=r’ (4.40)

with appropriate scaling and offset to fit the desired outpoge.

Examples of the input and output of the high-dynamic rangegieny can be seen in
Figures4.5and4.6.
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(@) (b)

(©)

Figure 4.5: An example of the high-dynamic range assembis &ample shows a crop
of a particularly dark area of the street, in contrast to #aien shown in Figuré.6. These
two crops are taken from the same street dataset and apphfierant sections of the same
multiperspective image. (a)-(c) A segment of the multipecdive images rendered at each
of three exposures. Note that the image in (a) has been bngttby a factor of 32 for
display purposes. (d) The same segment after combininghtiee iow-dynamic range
images and tone-mapping using a gamma curve. Notice thait detlearly visible both
inside the store and on the sidewalk in front, but that usimgiadividual low dynamic
range input image would not be able to capture detail botlke hed in the example in
Figure4.6.
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Figure 4.6: An example of the high-dynamic range assemhbluding the effects of
optical flow. This example shows a crop of a brighter area efstineet, in contrast to the
darker section shown in Figuee5. (top row) A segment of the multiperspective images
rendered at each of three exposures. (middle left) The sagraent after combining the
three low-dynamic range images and tone-mapping using angacarve, without optical
flow. (middle right) The same region after rendering thed¢tsegments using optical flow
and then combining them. (bottom row) Zoom of middle row. ib®tthe lack of color
artifacts on the front edge of the car.
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4.5 Discussion

The rendering engine is essential to making our user irderédfective, and consists of
three basic components:

1. The basic crossed-slits image rendering engine thatmsa pixels from a set of
input images to the specified output image.

2. Aview interpolation engine that can be used to trade-effset input imagery against
computational complexity.

3. A high-dynamic range assembly engine to handle the largardic range of typical
outdoor scenes.

For our user interface, we typically use only the first congadrto render low-resolution
preview images. This provides interactive updates makiagiser-interface more effective
for constructing the desired image. For the final, high-tpaltputimage, we additionally
enable the view interpolation and high-dynamic range esgjin



Chapter 5
Perspective Optimization

The interactive user interface described in Chapisiuseful for building an intuition about
multiperspective images. However, it is not practical fonstructing multiperspective
images on a large scale such as for an entire city. At thigesdalk absolutely essential
to be able to automatically generate images. One possibdenatic method is to simply
generate pushbroom images that face in a direction perpaadito the vehicle motion,
similar to the work by Zhengghe03. The downside of this approach is that it negates the
potential benefits that adaptive multiperspective imagegxovide as shown in Chapter

We have developed an optimization that can automaticalprave pushbroom images
and define multiperspective images similar to those shov@hipter3. This optimization
can be fully automatic or it can accept a user-specified itapee map to guide the opti-
mization. The importance map is simply a 2D weighting funectihat modulates the cost
for each scene point. Because this importance map is speuifigorld space, it is plau-
sible to automatically generate it based on external me&agighout requiring any image
processing.

5.1 Inputdata

The perspective optimization system has similar input irequents to the rendering re-
guirements specified in Sectighl, however the video images are not used in the opti-
mization. Therefore, the input is assumed to be a set of videoe positions ;) and

52
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(b)

Figure 5.1: Overview of the optimization process. Givenitipt of a 3D point cloud (a),
the 3D points (blue) are projected downwardzito form a 2D histogram (green) shown
below the point cloud (a) and as an image in (b). The optinarat then performed on
this histogram and the results are shown in (c). The camehaipahown in cyan along
the bottom of (c), the optimized picture surface is showneahoyv, and the optimized ray
directions are shown in red. The ray directions are usedsaterthe final multiperspective
image shown in (d).
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orientations R;) that describe the camera trajectory through the worldescenaddition,
our optimization implementation assumes that the camajectiory approximately follows
a straight line.

In addition, the automated perspective optimization neggusome notion of the 3D
scene structure. In out implementation, this takes the fofra set of pointsX;) that
form a point cloud of the scene. For example, the sparse ptont generated by most
structure-from-motion algorithms is sufficient (Figird Q. External sensors such as laser
range finders can also provide this information quickly agléably (Figures5.5 & 5.6).
Alternatively, the user may manually specify importantiogg in the scene into a 2D
importance map if the 3D structure is not appropriate (Feguit(. An example of the 3D
point cloud can be seen in Figusel

5.2 Distortion

The most undesirable effect of perspective distortion ibange in the aspect ratio of an
object, so we call it thaspect ratio distortionThis is caused by the crossed-slits projection
and is also described in ZomefPWO03h. We first quickly review how an object projects
onto the picture surface for a normal perspective projactibhen we examine how this
changes for a crossed-slits projection, remembering thslilfroom and perspective are
special cases of crossed-slits images. Finally, we inéébe result and show how it is
consistent with intuition and real-world results.

5.2.1 Perspective Projection

Consider a linear, translating camera path as shown in péawnin Figure5.2. The picture
surface is a plane facing the camera at a fixed distdpdeom the camera path. A single
planar object exists in the world with dimensidffs<H, having a canonical aspect ratio of
A=Y This object is parallel to the picture surface at a distdxzawvay. These are signed
distances, and all have positive values in the example inrEig 2

Under a perspective projection, the object will be imagedhanpicture surface with
dimensionsvx h (the diagram indicates the projected wiath Using similar triangles, we
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Figure 5.2: Distortion due to non-uniform perspective. sTisi a plan view of a simple
scene consisting of only a single, planar object.
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quickly see that
Zy

Zo+Az
That is, the width is reduced proportional to distance beltire picture surface. For ex-
ample, an object twice as far from the camera as the pictufacguf\z = Zy) appears half

w=W

(5.1)

as large and an object halfway between the picture surfatéh@cameralz = —%) will
appear twice as large. Similarly, the projected height lnall

Zy

h=H 701 Az (5.2)
and so the aspect ratio of the object projected onto thengisurface will be
w W

There is no change in the object’s aspect ratio.

5.2.2 Aspect Ratio Distortion

Now consider the projection of the object in a crossed-stigge. Figures.2 shows the
scene with a second slit placed a distaApeaway from the original camera path, changing
the perspective structure horizontally. Notice that thik ehange the projected width of
the object tav'. Again using similar triangles, we find that
Zo+Ap
wW=W——""— 5.4

Zo+D0z+Ap (5.4)
Remember that vertically we still have a perspective imagkes the projected height of
the object will not change:

Zo
Zo+Az

The aspect ratio of the object under this projection is then

N =h=H

(5.5)

;W (Zo+D2)(Zo+Dp)
= Hh =A Zo(Zo+Dz+ Ap) (5.6)
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| Case |Az | Ap| Da |
Object on picture surface, any perspective 0 1
Object not on picture surface, normal perspective | 0 1
Object not on picture surface, pushbroom (Zo+07)
Object at infinity, any projection 00 (ZOZ)Ap)

Table 5.1: Common aspect ratio distortions. This tabls bstveral common examples of
perspective distortion in multiperspective images. Nwotitat if an object is aligned with
the picture surface, then there is no distortion regardiéise perspective. Similarly, in a
normal perspective there is no distortion regardless oblijpect placement. For pushbroom
images, distortion is proportional to the distance fromgloture surface.

We define theaspect ratio distortionD, as the change in the aspect ratio:

~d (Zo+02)(Zo+Ap)
2= 2T Zo(zo+ bz Bp) &0

This is the basis of our cost function used to evaluate thepgetive distortion in a multi-
perspective image.

5.2.3 Discussion

We now verify that the distortion metric is consistent wittveral common cases (see
summary in Tablé.1). Consider a perspective image whége = 0. The numerator and
denominator are then equal abg = 1, regardless of the values @ or Az, confirming
that perspective images have no perspective distortiofedBbon the picture surface are
described byAz = 0, and agaiD, = 1 regardless of the type or projection definedMyy
This explains why the book cover (Figue3) and the building front (Figuré.7) suffer
no distortion; in both cases they are aligned with the pecturface. For a pushbroom
image,Ap approaches. In this case, Equatiob.7 simplifies toD5 = % and thus the
distortion is linear with the object’s distance from thetpre surface.

The relation described in Equatiéri7 also applies to scenarios where the object, picture
surface, and camera path are not aligned and can be evalatetegrating the local
distortion for all points across the object. Thus, it is aprapriate metric for quantifying
the overall distortion in any multiperspective image.
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5.3 Cost function

We want to define a cost function that converts the aspeotdatiortion into an error value.
To do this, we make the following observations:

1. Under no distortion, an aspect ratio of 1 should corredpgoran error of zero.

2. Anobject that is stretched to be twice as wide as usualldlinave the same error as
an object that is half as wide as usual. More generally, aeablyith an aspect ratio
of D4 should have the same error as objects with an aspect ra§§) of

We therefore define the following cost function to conveet éispect ratio distortion into an

error.
(Dy—1 1<D,
1
o1 0<Dgy<1
E=¢ % (5.8)
A———1 —-1<D
Da < a<0
A —D, D, < —1

This relationship gives equal error to an object with hadfnbrmal aspect ratio and an
object with twice its normal aspect ratio. Values)of> 1 penalize negative aspect ratios
where objects are horizontally inverted. We have expertaigrdeterminedd = 10 to be
appropriate to suppress any significant inversion in tharopation.

5.4 Optimization

The optimization is initialized with a pushbroom image acthe picture surface at an
initial distanceZg from the camera path, as shown in Figbré&(a).

The picture surface is then discretized iNte@qual-length segments. Each of these seg-
ments represents a portion of the picture surface with desiiyge of perspective projec-
tion. The type of perspective projection is defined by thd@o§the boundaries between
the two segments. To enforce that the perspective acrosseseg varies smoothly, it is
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XX X .
x *Xscene points

picture surface

/7,

ray directions

Bl
scene points

camera path >

Figure 5.3: The optimization starts with an initial pushdomoimage defined by a picture
surface and a set of parallel rays as shown in (a). (b) Thengcurface is then divided
into several segments. For each segment, we compute thheo€aibscene points that are
projected into that segment, as indicated by the shadedngg(C) The type of perspective
projection in each segment is defined by the angle of that eetisnboundaries. These
angles are altered to minimize the total aspect ratio distoiin the final image. The

position of the picture surface can be adjusted in comlmnatiith the ray directions to

further minimize distortion as described in Sectoa.

necessary for neighboring segments to share the boundaeyefbre the perspective of the
N segments can be parameterized byNhe 1 boundaries.

These boundaries are defined in terms of the angle of the boymdth respect to the
picture surface@;. For example, the initial pushbroom image is describedby 7. The
intersection of the two boundaries corresponds to the (@im Figure5.2, and thus we
can directly compute the local perspective for each of the segments. We can therefore
compute the error of any scene point in a particular segnidrd.range of values fd is
limited by the field of view of the input imagery.

The error of a single segment is computed by summing the gowor all scene points
that project into that segment as indicated by the shadéonegq Figures.3(b). The error
of the entire image is simply the sum of the errors of each@ftdgments. The optimization
therefore finds the set 0%y, 6) that minimize the overall distortion. Optional&g can be
fixed and the set of boundary orientations that minimizesther for the picture surface
at that location can be found.

This can be described mathematically as follows. A giveno$atay directions6,
(i=0...N+1) definesN segments§ and corresponding local perspectivig,. Within
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Figure 5.4: This diagram shows how the total distortion reofa multiperspective image
depends on the picture surface locatiipn On the right is the importance map for a simple
synthetic scene consisting of only three planes. The grapth® left shows the error of
both the initial pushbroom configuration and the optimizadtiperspective configuration
when the picture surface is fixed at the corresponding roWwenrhportance map.

a particular segmenfAp andZy are constant, and therefore the error of a pgimt de-
scribed byE(Da(Azg,Api,Zo)) WhereAz, is the orthogonal distance of to the picture
surface. The minimization therefore is:

arggj}g(%q; E(Da(Azq,Apa,Zo») (5.9)

5.5 Implementation

The optimization was implemented in C++ and used the Optte#P4 numerical opti-
mization library to perform a bounded Newton optimizatidimere are several techniques
used to make computing the error function faster and easier.

Instead of manually computing the derivative of the costfiom, we take advantage of
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an automatic differentiation technique described by Rijptip04 which is faster and more
accurate than numerical differentiation. When evaluatiregaspect ratio within a given
segmentAp; is determined by the intersection of the two ray directiohthe segment:

E}<001&—%&+1%—00i&+r—3))

2+AR="7 Sin(6,1— 8)

(5.10)

whereD is the length of the picture surface segment. Unfortunatiely can cause a divide-
by-zero error in the common situation that the rays are [ghraWe avoid this intermediate
computation by substituting this expression into the equdt.7 and simplifying to obtain:

Zy+hz 1
Pt T Kl (5.11)
where o G N
z SIN(Gi+1— G
"= 5.12
D <COS<9'+9'+1)_C05(9|+1—9|)) ( )

Notice that the distortion iny.7) depends only on the depthZ) and local perspective
(Ap) of that point. It doesiot depend on the height of that point above the ground plane.
We can therefore take the input 3D scene geometry and ptbjegqioints down onto the
ground plane, removing ttecomponent. We then quantize thandy values into bins and
count the number of points in each bin creating a 2D histograishown in Figuré.3a).
Instead of searching for scene points that fit within eacimsed, we simply compute the
bounds of the segment within the histogram and compute tbe fer that region.

This histogram is simply an image analogous to an overheasitganap of the scene.
An example can be seen in Figusel. By default all scene points contribute equally to the
error function. The user may optionally augment the histogwith a 2D importance map
that modulates the histogram. This allows the user to maneaphasize or de-emphasize
regions of the scene. We have used this in Figui®to guide the optimization toward
important regions of the scene.

Assuming the picture surface is aligned with thaxis of the histogram, the distortion
is constant along within each segment. We can efficiently integrate the cbation of
each row using a summed area taliled84.

To avoid local minima, we perform a multiresolution opti@ion. Both the importance
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Figure 5.5: A portion of a long multiperspective image spagr2 km of 18" Ave in
San Francisco, south of Golden Gate National Park. The eetigp varies continuously
along this image, enabling an arbitrarily long seamlesopana. The perspective is au-
tomatically computed to minimize aspect ratio distortionsegions that have large depth
variation such as road intersections. The image isn’t pyféorizontal because the city
itself has hills and they are captured in the panorama.

map and the number of segments along the picture surfaceaueed hierarchically.

These implementation techniques make the optimization fast. On a dual Xeon
3.2GHz PC with 1GB of ram, the entire city street example guFé5.5takes just over 5
minutes (302 seconds) to optimize, specifying the varyiegpective for a 600 megapixel
image (325k pixels wide).

5.6 Results

We have applied our technique to indoor and outdoor scenegora inside a museum
(Figure5.10), Mission Street (presented in Figuses), and 14" Ave (Figure5.5) in San
Francisco. The museum scene was acquired moving a sidenalingd video camera
along a straight line parallel to the scene and spans appet&ly 20m. The camera path
was extracted from the video using the freely-availableddmCamera TracketJniO3]
structure-from-motion software which also outputs a sp&DB point cloud. The street
scenes were captured using a sideways-looking, high-spadra (Basler A504kc) in a
car driving in normal traffic (0-20mph). The camera pose v&isr&ted using accelerome-
ters and GPS via a Kalman filter. The 3D scene structure wasradqusing time-of-flight
range finders. The Mission street image spans about 860re tieil1d' Ave image spans
about 2088m. It is possible to use SFM to generate the retjpi@ection matrices and
scene estimates for the street scenes, however many SFMitlaig® do not handle ex-
tremely long, linear scenes robustly.
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Figure 5.6: Multiperspective images generated automtit@m a video stream with
lateral movement: (a) A pushbroom image, which uses theppetise provided by the
input stream in thg-direction and an orthographic projectiondnin order to combine the
information of all frames. Notice the difference in pergpexin x andy leads to severe
distortion at the intersection and the alleyway. (b) A npétspective image generated
automatically using our technique. While the perspectiyas still the same, we optimized
the perspective ix in each image segment in order to minimize distortion. Notiat this

is an image with multiple perspectives — there is a vanispwmigt down the alleyway and
a separate vanishing point down the intersection. (c) A piew of the street showing the
optimized ray directions (red). You can see how the rayslyeanverge to a perspective
at the intersection and again near the alleyway. The yellmsvdenotes the picture surface.
The blue channel is a visualization of the cost function dlierentire space. Notice that
this set of ray directions minimizes the intersection bemvthe scene points (green) and
the error (blue).

Table5.2 summarizes the scene size, the number of input frames, mwhbptimiza-
tion segments, output sizes, and the timings for the petispeaptimization. The only
user-selectable parameter is the number of segments taieptiwhich should be chosen
according to the scene length. Due to the hierarchical opgition and the use of summed
area tables the optimization performs well even for thedasfreet scenes.

5.6.1 Discussion

In all three scenes the artifacts due to aspect ratio distodfter optimization have been
reduced to a minimum compared to the pushbroom panoramawilWew focus on the
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Figure 5.7: These figures indicate how the image is effecgathbnges i\z. The bottom
row shows the ray directions (red), the picture surfacddgygl the scene histogram (green)
and the distortion error (increasing shades of blue). &uwstof the scene that are aligned
with the picture surface, such as the store front in (a) ahdafle not affected by the ray
directions. In contrast, the error of regions that haveifigant depth variation, such as in
(c) and (d), is sensitive to the ray directions.

scene size | #input| histogram| # segmentg output optimization
(inm) | frames size resolution (in min.)
Museum Sceng 20 941 896x425 64 2522x 438 0:35
Mission Street | 860 | 21520 | 2482x183 512 61320x 1000 2:16
18" Ave 2088 | 61092 | 7312200 512 325240<11539 5:02

Table 5.2: Facts about the different scenes. The optinoizagifast even for large scenes.
T Because 18 Ave is not flat, large sections of this image are blank. Thealdémage area
is approximately 600MP instead of 3.4GP.

performance of the optimization by analyzing special casélse Mission St. panorama.
Figure5.7 visualizes the dependence of the error function with reg@mttie placement of
the picture surfacey. If the scene is at the picture surface (Fg/(a) and (b)) there is no
aspect ratio distortion, no matter which perspective iset. For surface points off the
picture surface, (c) and (d), the error can only be minimizg@pproaching the original
camera perspective. If the area of the depth deviation itatge to be covered by a single
input image, as in case of Figube8, our optimization resorts to the closest crossed-slits
perspective that spans the entire gap.

The proposed error metric only accounts for aspect ratiodisn. This has the effect
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Figure 5.8: Limitations of our algorithm. The optimizati@unable to eliminate the dis-
tortion of the cars because the cars form a continuous regtbriarge depth variation. The
best solution therefore is an extreme crossed-slits — appmg a pushbroom perspective
across the entire region. Furthermore, our error metric ¢hmé¢ account for shear in the
projection. The shear is influenced by neighboring regiatshown.

that a sheared perspective contributes the same error aseasyrametric setup. In Fig-
ure5.8all cars are shown from an oblique view. Notice that the aldigiew in fact does
not introduce any further distortions. Our optimizatioredaot prefer one over the other
and has the freedom to chose whatever shear fits best in ordptimize for neighboring
regions.

Our approach is unaware of occlusions (Figar&éQbottom)). In this case our algo-
rithm during optimization may consider the error even forobfect that will be occluded
in the final output. An optimization considering occlusiamsuld have some impact on
the resulting shear. One expects that the shear will be ormszh that foreground objects
occlude as many scene points which are off the picture sigagossible.

An artifact due to an incorrect estimate of scene geometpyasented in Figurs.9.
Because of the limited range of the 3D range finders the mgldi the background does
not show up in the depth histogram and the algorithm allowsestays to cross in front
of the building resulting in multiple copies of the buildimg the output image. In the
pushbroom image the building is visible only once.

The method uses a rough estimate of the depth variation iadéiee, currently in the
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Distant object

Picture surface

_____ — — — — Camera path
3 Crossed-slits images

Figure 5.9: Limitations of our algorithm. On top is a pushimoimage showing a single,

distant, distorted building. Unfortunately the buildingsvtoo far for the 3D scanner to
detect and therefore was not considered in our optimizafitve resulting optimized rays

cross in front of the building causing a triple image to o¢dughlighted in the second

image. This effect is shown in the bottom diagram. Objects #ne behind the the inter-

section of rays appear in three separate images. In theatiiaghe object will appear as
perspective in both the blue and the green images. The inthate red crossed-slits image
will also show the object, however the object will be horitally reverse. The final result

is a triple image of the object.
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form of a histogram of scene points in tke plane. One can easily modify the influence of
particular scene objects on the optimization by manipadatheir contribution to the his-
togram. By analyzing the input sequence one might be ablerformn an object segmenta-
tion and determine which scene parts are important to hamagmam distortion. Similarly,
one could think of detecting and emphasizing scene regidhshighly regular textures for
which aspect ratio distortion produces a higher visual iehgiegan for non-textured regions.

In the future we plan to extend our work to correctly handlelesions. Instead of
evaluating the error metric on a projected depth histogramamuld evaluate it for each
rendered pixel in the final output image. This way, pixels @ occluded would not
contribute to the overall error. While this approach migletdyeven more precise results it
is inherently much costlier to compute than our presentelhigue.

Another aspect which is interesting to investigate is tovalfior non-planar picture sur-
faces which could be used to emphasize or enlarge specificésan the scene. However,
it is not yet clear what kinds of artifacts will be introducbkg the change in sampling
resolution and the resulting change in relative size of-waald objects in the final out-
put. While our optimization algorithm is flexible enough tarfdle even curved picture
surfaces our current error metric does not account for ihid & distortion introduced by
the variation in the output sampling.
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(d)

Figure 5.10: Museum scene. (a) Pushbroom. The sculpturésedeft and the hallway
on the right are severely distorted. (b) Automatic perspectThe optimization reduces
the distortion but is unable to distinguish artwork and otbheene content. There is still
some distortion in the hallway. (c) Importance map. Adjgtihe histogram to emphasize
the relevant artwork results in less distortion for thesgais. However, the overall geo-
metric distortion has been increased. Notice that our d@lgardoes not consider effects of
occlusions as seen in the sculptures on the left.



Chapter 6
Discussion

The ideas presented in this thesis are only a start towarthtkeof digitizing an entire
city. In this chapter, I will discuss important extensiomglaonsiderations in extending
this work to a larger scale.

6.1 Input requirements and rendering

6.1.1 Implementation

The dense input video requirements are the most stringgoireanent for the results de-
scribed in this thesis. Capturing this input video on a latge is certainly an engineering
challenge. In our case, we used a high-speed camera so thatvaequire images as dense
as an image every centimeter even while driving at speedp td a0 mph. However, in
the common case that speeds above 10 mph were necessargwiigterpolation schemes
described in Section.3were used successfully.

6.1.2 Relaxing the requirements

A key concept in this work is the reliance on using the linearssed-slits camera pro-
jection and compositing those projections to form the finaltiperspective image. This
representation has many benefits as described in Settiah however it suffers from the

69
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Picture surface

Mouniacin View

Pantacn View
BEFTS

Integrating Rays

Camera path

(a) Perspective image  (b) Integration on picture surfacg Syathetic focus image

Figure 6.1: Here we show an extension of our rendering dlyario generate synthetically
focused images. By integrating over an angular arc for eaafit pn the picture surface
as shown in (b), we can simulate a large 1D aperture focuste qicture surface. (c) is
an example of such a synthetically focused image with thaddixed at the plane of the
facade. Note that the tree presentin (a) is blurred out.

requirement of dense input video imagery. In recent liteggtthere have been a number
of related research publications that suggest alterrsativevorkarounds to this limitation.

For example, Agarwala et alARC*06] have described a graph-cut rendering algo-
rithm that chooses nonlinear seams between images and imasithe distortion along the
seam. By using this approach, they have demonstrated ttiapraperly aligned input im-
ages they can reconstruct a high resolution, high qualibggrhosaic. Unfortunately, their
algorithm does not robustly handle significant depth vemmatOne could imagine integrat-
ing our distortion metric into their seam-selection costdiion to improve the output.

6.1.3 Extensions

There are a number of interesting extensions to the colleta¢a that could improve both
the utility of the dataset and quality of the resulting image
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Synthetic Aperture Photography

All of our examples have an effectively infinite depth of figgdssuming pinhole cameras
for input). By averaging multiple input video frames prdgstonto the picture surface, we
can simulate a synthetic aperture as discussed in Vaish p{\AMIL0O4]. This results in an
extremely shallow depth of field image. Because our inpudsitis only 3D (as opposed
to a 4D lightfield), our synthetic aperture is only 1D, wher#dze apertures infWL04] are
2D. Figure6.1shows an example of this effect. Synthetic aperture imagouyd be used
both to enhance a relevant portion of the scene (e.g. deangheartially occluded text) or
to blur out an undesireable portion of the scene (e.g. blupeaple to protect privacy).

Field of view trade-off

The trade-off between the image resolution and the field @f\of the input imagery is a
difficult one to handle. On the one hand, having a very wideirigld of view increases
the flexibility of the optimization in choosing viewpointsrfregions of the image. For
example, if the input imagery has a sufficiently wide field @w, even a very wide street
intersection could conceivably come from a single inputgmacompletely removing any
distortion. On the other hand, a wider field of view inhergmédduces the detail for each
pixel throughout the image.

It would be interesting to investigate using a non-uniforsampled image sensor (or
equivalently, a nonuniform lens) that allows both a very evverall field of view but
similarly keeping a high-resolution central region on tlsswanption that the straight-on
view is preferable. So far, this effectively describes a-&gk lens. For this particular
application, however, a lens that is horizontally fish-eg/anight be preferable since we
are taking only vertical strips from each input image.

Multiple cameras

It's possible to combine images from multiple cameras. B@ngple, instead of using
only a single video camera mounted on a vehicle, considentirayan entire column of
video cameras. As the vehicle moves down the street, thentolf video cameras will
acquire a full 4D lightfield. A similar dataset can also bewaced by driving multiple times
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with a camera at different heights, although in this caseetisethe additional problem of
combining multiple datasets taken at different times (s=&i&n6.3 below).

Once you have a full 4D lightfield, there are many interespiogsibilities that open up.
For example, you can construct fully perspective imagdbérahan crossed-slits) that are
set much further back, removing distortion caused by thiemdihce between the vertical
and horizontal perspectives. In addition, image-basedenr@ng techniques could be used
to virtually explore the region.

6.2 Extending the optimization

There are a number of assumptions in the described optimizaplementation that re-
strict the applicability of this research. Here | want toelflsi examine what these assump-
tions are, how they can be overcome, and other interestir@ggons to this work.

The primary restriction lies in the constraint that the pietsurface must be parallel
to the original camera trajectory. This restriction is mappbsed by any of the theoretical
constructions of our optimization, but rather by our panthc implementation and is a
result of the desire to have a very fast optimization that lsarrun quickly even over
massive datasets. Without the projection to a ground plastead of using a histogram to
represent the scene, the full list of 3D points can be usets Witl also lose the summed-
area-table implementation speedup, however the optimizagan still be run simply by
applying the error function to all 3D points that lie betwelea two planes that represent the
boundaries of the crossed-slits projection. All of thisyaadfects the speed of evaluating the
cost function for a particular arrangement of crossed-glibjections, not the optimization
itself.

A second major restriction in the optimization is that thetpie surface is assumed
to be vertical. While this is appropriate for most urban eswinents, it is possible that
non-vertical picture surfaces may be desired. If the oaigom of the picture surface is
known, the optimization can be implemented by computingcthst function from the full
list of 3D points and taking into account the orthogonalatise between each point and
the picture surface. Ideally, the orientation of the pietsurface would be included in the
optimization.
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6.3 Combining multiple datasets

A new and very interesting challenge introduced by this afigation technique is how to
remove undesirable occluders by combining multiple désada particular, imagine that
the first dataset images the first part of the street saticbut a large truck occludes the
second part of the street. On a second pass, the second ipaaisd satisfactorily but the
first part is occluded. There are a number of challengeswedoin combining these two
datasets, even in the simplest case where you might simpiytedaake half from the first

and half from the second.

6.3.1 Registration

In order for two datasets to be seamlessly combined, they beusorrectly registered to
each other. The case of visualizing an urban environmeistréasonable that the datasets
should all be registered to a global reference frame, fopéa@PS-based. However, GPS
measurements typically only accurate to within a few metara few centimeters if differ-
ential GPS is used. Worse, GPS measurements are espeocialpimurban environments
because of the reflections off buildings and it is therefdterovery difficult to get precise
global positioning between two datasets.

Instead, it is likely to be necessary to register the dasabeimselves, either by scan-
matching the LIDAR data or by using image-based alignmechsas structure-from-
motion (SFM) algorithms that track features across botluseges. For the feature track-
ing, special care will have to be taken because the two segseme likely to violate many
of the common assumptions such as static scenes and coligiainiy, as described in
sections6.3.2and6.3.3described below. Sand et &T04 have demonstrated a robust
video registration technique that is resilient to changesotion, timing, and lighting.

6.3.2 Occluders and moving objects

Video and LIDAR data of the same region captured at diffetiemts have some interesting
properties. Assuming that this data can be properly regidiethis provides the ability
to quickly and easily segment out transient objects sucheaplp, delivery trucks, other
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moving vehicles, and other undesirable occluders. Anyifsogimt differences between the
data make it difficult to use in the registration process, éxav.

6.3.3 Lighting compensation

A significant challenge in combining multiple datasets ta&edifferent times into a single
datasets is in the rendering. Specifically, how to combinggiendata from both datasets
while avoiding ugly seams between the images. This is eajpedifficult when the
datasets are collected at different times of the day, arldiveitefore have different lighting
conditions. Lighting conditions can drastically affecettolor and appearances of objects
as shown in Figuré.2

6.3.4 Other sensing modalities

It is also possible to combine this data with completely sagacollection sensors, such
as aerial LIDAR and aerial photography. This has been inyatstd by Frih and Zakhor
[FZ04). Automatically combining street-level imagery with adrimagery provides a con-
venient mechanism for handling tall buildings that exceweglfteld of view of the ground-
based input video camera.

6.4 Privacy

The possibility of having public urban areas automaticatipged and easily publicly ac-
cessible opens up new concerns about privacy. It may be seget® remove people to
protect their identities if the resulting data is to be pdlgliaccessible. If this is the case,
then it is not desirable for this process to be done manulgtead, it would be better to
automatically detect and remove or blur people out.

6.5 Segmentation

In addition to applying special processing to people in ptderotect privacy, it is desir-
ably to detect and segment out other world objects in a sems@se. This can enable
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Figure 6.2: This figure shows how variation in lighting cdrahs can drastically affect
the appearance of a region. Both of these images were talkagpimoximately the same
location and of the same scene only a few hours apart. Natitieeitop image the cloudy
sky and soft shadows, along with the dark blue and beige €ofdhe storefronts. Contrast
that with the bottom image. The sky is now a clear, deep bluee Storefronts are more
vibrant with entirely different shades of blue and a light tolor. Also, there are now
strong, sharp shadows. Also, notice that the differing ergdlthe sunlight causes the
opposite highlights on the tree on the far left. Finally, teiections in the stores of the two
images are vastly different, causing significant diffeemnm the visibility into the stores
between the two images.
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separate rendering algorithms for objects at varying deitin example.

6.6 After the image

There is much interesting work to be done after a satisfactarltiperspective image is
created. Optical character recognition (OCR) could be ts@ditomatically extract street
addresses or store names from the resulting image. No#aitestracting information from
the multiperspective image results in a substantial deer@gathe amount of image data
that must be processed compared to the original video sequém addition, because the
picture surface is defined in world coordinates, externabkadge of the location of the
picture surface can guide text extraction. For example guifei5.6. Because it's known
that this is Mission St. in San Francisco, a list of stores &én@ known to be on that street
can be used to constrain text extraction. Many types of na¢dacbuld be extracted in a
similar fashion: street names and addresses, parkingmatoon, store hours, etc.

The presentation of the multiperspective image also pesval unique challenge. As
demonstrated by the example in Figl®, these images can be extremely wide—much
wider than generally available display technology—andinexspecial consideration for
presentation. Multiresolution display approaches sinttaGoogle Maps Goo064 that
allow a user to quickly and naturally browse enormous imaggesn like an appropriate
interface.

An alternative to viewing these as purely 2D images is to domkvith with aerial or
satellite imagery. As noted in the introduction, one of tihaxbacks of aerial imagery is
that it does not adequately represent the view a user expybets standing at a particular
location. These multiperspective images do represenvieéat Combining the two views
effectively poses a challenge. Another approach entigetg incorporate the images into
abstract maps as in the map in Fig6ré
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Figure 6.3: A mockup map that embeds multiperspective imajestreet blocks into a
traditional city map. With this map, a person can see theshstorefronts along the street
and more easily locate a desired store. This can also helpsarp®cate themselves by
comparing their view to the map images.
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