
MULTIPERSPECTIVE IMAGING FOR

AUTOMATED URBAN VISUALIZATION

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Augusto Román

September 2006

c Copyright by Augusto Román 2006
All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Marc Levoy Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Pat Hanrahan

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Sebastian Thrun

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

Traditional perspective images (such as those produced by atypical camera) cannot consis-

tently display detail across all parts of an entire city block. It is inevitable that detail is lost

in areas of the scene most distant from the camera. A multiperspective image generated

from a collection of photographs or a video stream can be usedto effectively summarize

long, roughly planar scenes such as city streets. For example, we have generated a single

continuous image of a street spanning approximately 10 cityblocks. This image is over

300,000 pixels wide.

This single-image representation has several advantages over other possible represen-

tations (such as 360-degree panoramas, individual photographs, 3D models, or satellite

maps) in that it is continuous, compact, high resolution, and requires no special viewing

software. However, multiperspective images also suffer distortions caused by the deviation

from the familiar perspective image.

Constructing multiperspective images with minimum distortion is typically done man-

ually by an artist, however this is not practical for large-scale projects such as creating

images along every street in an entire city. We describe how these images can be automat-

ically constructed, including a technique to evaluate and minimize the distortion without

requiring user intervention.

This thesis presents three contributions toward the use of multiperspective images in

urban visualization. The first is a method of constructing images from serially blended

crossed-slits mosaics that makes it possible to along significantly reduce the distortion in

the final output. Second, an efficient method of rendering high-quality multiperspective

images is described, along with a user-driven GUI program that allows a user to quickly

manipulate the perspective structure of a multiperspective image and gain an intuition about

v

parameters of such images. Finally, we present a metric for quantifying the distortion in

these images, along with an optimization for automaticallyminimizing these distortions.

vi

Acknowledgements

There are many people without whom this work would not be possible. In general, I’d like

to thank the Stanford faculty for their insight and enthusiasm and my friends and family for

their support.

I’d like to thank my adviser, Marc Levoy, for his bottomless well of research ideas

and enthusiasm. Marc seized hold of my interest in computer graphics when teaching his

Introduction to Computer Graphics course and the related computer game competition. His

inspiring teaching is mirrored in his inspiration in research.

I am also grateful for the teachings of my committee chair, Brad Osgood. He taught

one of the first classes I took here at Stanford and his enthusiasm set a high bar for my

expectations.

Special thanks to my reading committee members Pat Hanrahanand Sebastian Thrun,

again both professors that have an inspiring enthusiasm fortheir subjects.

Also, I am extremely grateful for the collaborations in thiswork with Gaurav Garg and

Hendrik Lensch. Gaurav is both a great friend and a great researcher and instrumental to

the start of this research. Similarly, Hendrik provided keyinsights into the design of the

optimization and a joy to work with.

Much of this work depends heavily on having accurate camera pose and would not have

been possible without the excellent pose optimization by James Diebel.

In addition to the guidance from the faculty, the environment sustained by fellow mem-

bers of the computer graphics lab helped keep research both interesting and enjoyable.

My friends at Stanford, in particular Hrefna & Finnur, helped keep me sane at the

busiest of times and relaxed at the best of times.

Last, I owe a tremendous debt to Sarah Harriman for her companionship in all aspects

vii

of life.

This research was funded by the National Physical Science Consortium, the Stanford

Dean’s Doctoral Diversity fellowship, the Alfred P. Sloan Foundation, and Google Inc.

viii

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 3D Visualizations. 1

1.2 2D Visualizations. 2

1.3 Computer generated multiperspective images. 6

1.3.1 Camera Models. 7

1.4 Applications. 7

1.5 Our contributions. 9

2 Multiperspective Imaging Paradigm 11

2.1 Camera Models. 11

2.1.1 Perspective. 11

2.1.2 Pushbroom. 14

2.1.3 Crossed-slits. 14

2.2 Multiperspective Images. 18

2.3 Interpolating Two Crossed-Slits Images. 21

3 Interactive Specification of Multiperspective Images 22

3.1 Design Choices. 23

3.2 User Interface. 24

3.3 Results. 26

ix

3.4 Discussion. 27

4 Rendering Multiperspective Images from Real Data 32

4.1 Data Requirements. 32

4.2 Algorithm for Rendering MPIs. 33

4.3 View Interpolation . 38

4.3.1 Method 1: Optical Flow. 41

4.3.2 Method 2: Stereo Flow. 42

4.4 High Dynamic Range. 46

4.4.1 Capture. 46

4.4.2 Rendering. 47

4.4.3 Assembly. 47

4.5 Discussion. 51

5 Perspective Optimization 52

5.1 Input data . 52

5.2 Distortion . 54

5.2.1 Perspective Projection. 54

5.2.2 Aspect Ratio Distortion . 56

5.2.3 Discussion . 57

5.3 Cost function . 58

5.4 Optimization . 58

5.5 Implementation. 60

5.6 Results. 62

5.6.1 Discussion . 63

6 Discussion 69

6.1 Input requirements and rendering. 69

6.1.1 Implementation. 69

6.1.2 Relaxing the requirements. 69

6.1.3 Extensions . 70

6.2 Extending the optimization. 72

x

6.3 Combining multiple datasets. 73

6.3.1 Registration. 73

6.3.2 Occluders and moving objects. 73

6.3.3 Lighting compensation. 74

6.3.4 Other sensing modalities. 74

6.4 Privacy . 74

6.5 Segmentation. 74

6.6 After the image. 76

Bibliography 78

xi

List of Tables

5.1 Common aspect ratio distortions. 57

5.2 Optimization statistics . 64

xii

List of Figures

1.1 Google Earth Screenshot. 3

1.2 Seamless City example. 5

2.1 Pushbroom images. 15

2.2 Crossed-slits images. 16

2.3 Examples of perspective structures. 17

2.4 Multiperspective image structure. 19

2.5 Crossed-slits blending. 20

3.1 Summary of multiperspective image rendering process. 23

3.2 Interactive interface. 24

3.3 Castro street example. 28

3.4 Bio-x building example. 29

3.5 Image wrapping around a corner. 30

3.6 Pinching image around a corner. 31

4.1 Multiperspective image structure. 35

4.2 Choosing a camera. 38

4.3 Strip Artifacts . 39

4.4 High dynamic range weights. 48

4.5 High Dynamic Range Example. 49

4.6 High Dynamic Range Example 2. 50

5.1 Optimization overview. 53

5.2 Perspective Distortion. 55

xiii

5.3 Optimization process summary. 59

5.4 Plot of minimum aspect ratio error vsZ0 60

5.5 18th Street . 62

5.6 Mission Street. 63

5.7 Object depth affecting optimization. 64

5.8 Limitations of optimization 1. 65

5.9 Limitations of optimization 2. 66

5.10 Museum example. 68

6.1 Synthetic Aperture Image. 70

6.2 Lighting effects . 75

6.3 Image Map . 77

xiv

Chapter 1

Introduction

Visualization of cities and urban landscapes has been a theme in art for many centuries. The

key problem in making these visualizations successful is summarizing in a single image the

extended linear architectural fabric seen at eye level along a street, and doing so without

introducing excessive distortions. In this thesis we address the problem of creating these

visualizations easily and automatically. Possible applications include in-car navigation,

augmentation to online route mapping applications, and web-based tourism information.

1.1 3D Visualizations

The Google Earth software [Goo06b] combines stitched, geo-referenced aerial and satel-

lite imagery with terrain elevation information to allow the user to virtually fly over the

earth. Screenshots are shown in Figure1.1. By streaming the display data so that only

the resolution necessary for the user’s current view is transmitted, they can combine both a

massive back-end database of imagery that spans the entire earth and still allow the user to

seamlessly and interactively browse through the dataset. This geographic visualization is

excellent for getting an overhead view of places; however, because the terrain information

is coarse and the imagery is only from overhead views, when the user zooms into a partic-

ular location, the visualization does not scale well and buildings and urban structures are

flattened out. Recent updates have allowed 3D models of buildings to be inserted into the

visualization, however they are inserted over the 2D textured-mapped ground that still has

1

2 CHAPTER 1. INTRODUCTION

the aerial views mapped onto it, creating a confusing hybridwhere the image data does not

match the 3D data.

The Berkeley Urbanscan [FZ04] project approached this problem in a different way.

They attempted to directly create 3D textured models of an urban environment. Once these

models are created, they can be viewed through an interface similar to the Google Earth

software. These models were created by combining data from multiple sources. One source

was aerial imagery along with aerial LIDAR that provides high-resolution 3D information

about the scene at a much higher resolution than the terrain data included in Google Earth.

Once again, this allows only overhead views. To augment thatinformation, they addition-

ally captured video and LIDAR data from a vehicle traveling through the urban area. From

this data, they extracted texture and geometry informationthat is subsequently registered

and combined with the aerial views. From all of this data, they directly reconstruct textured

3D models of the buildings and the ground.

There are a number of drawbacks to this approach that encouraged us to investigate

other representations. In particular, the process of automatically extracting high quality 3D

geometry and texture is still an open research area, one in which the Urbanscan project

made substantial progress. A particularly difficult problem is extracting the texture for a

part of a building that is never seen by the video. For example, part of the wall that is

hidden by a tree on the sidewalk. Often in these cases, a texture synthesis approach is

taken, literally making up a plausible stand-in. Another issues that commonly arises is the

level of detail for the extracted geometry. The real world has detail far beyond what is

possible to extract, and so reconstructing the leaves on trees (for example) interferes with

both the tree’s reconstruction and the reconstruction of anything behind it.

1.2 2D Visualizations

One possible approach to depicting the eye level urban fabric using 2D images is using

wide angle or omnidirectional views around a single viewpoint, typically captured at street

corners. Omnidirectional cameras [Nay97] provide a possible optical solution for cap-

turing such views. Photo-mosaicing (the alignment and blending of multiple overlapping

1.2. 2D VISUALIZATIONS 3

Figure 1.1: Screenshots of the Google Earth software. The top image shows a top view of
downtown San Francisco created from geo-referenced aerialimagery. Because this view-
point closely approximates the actual aerial view, the images look natural. The bottom
image shows the same region viewed from an angle. The flattened out buildings look un-
natural when viewed from the side.

4 CHAPTER 1. INTRODUCTION

photographs) is an alternative approach for creating wide field of view images. These mo-

saics can be made by capturing a part of the scene surroundinga single point by panning

a camera around its optical center [Che95, SS00]. Such omnidirectional views, however,

are still perspective projections and therefore, objects at any considerable distance from the

camera become too small to be recognizable.

A set of georeferenced 360-degree panoramas (such as QuickTime VR images) is a

possible urban visualization. The Virtually-Vancouver website [Van06] is an example of

this – they have a 360-degree panorama at every street intersection within the targeted

region. This allows a potential visitor to visit every street corner and look all around,

almost as if they were standing there! Unfortunately, however, the visitor is restricted to

visiting only street corners, or in the more general sense, only the locations for which the

360 panorama is available. Even if 360 panoramas were available at any desirable location,

there is still the issue of transmitting the image information. Because of parallax, the entire

image can potentially change from one location to the next, and this essentially becomes

equivalently to transmitting an entire video stream to allow the user to move around in the

environment.

Similarly, a number of 2D photographs can be taken along streets and, if they are geo-

referenced, can allow a potential visitor to virtually walkalong the street by moving from

photograph to photograph. Unfortunately, there are again the two issues of sampling den-

sity (the spacing between photographs) and the bandwidth (amount of information that

needs to be sent for every new photograph). The lower the sampling density, the more dis-

connected each photo will be from the next, requiring a higher cognitive load on the user

to keep track of the location. On the other hand, increasing the sampling density so that the

user feels as though they are watching a video moving down thestreet again significantly

increases the required bandwidth.

Most images we are accustomed to viewing are formed via perspective projection,

that is, they correspond to rays passing through a single center of projection. While per-

spective projection is an accurate model of image formationon the retina and on camera

films/sensors, it has some limitations.

Multiperspective images, offer a promising alternative because they are not bound by

these constraints. A multiperspective image is a 2D image where every region can have a

1.2. 2D VISUALIZATIONS 5

Figure 1.2: A hand-crafted multiperspective image excerpted from Michael Koller’s Seam-
less City. Notice the distinct vanishing points at A and C, even though these two streets are
parallel, and the distortions in the depiction of building B. This image was constructed by
aligning and inter-cutting several ordinary perspective images. Artful placement of the cuts
between images yields a composite image without evident seams. However, this process
undoubtedly requires great care and labor. This thesis introduces a novel user interface for
semi-automatically constructing images like this one.

different center of projection. An example of this can be seen in Figure5.5, which shows

a small portion of a continuous multiperspective image thatspans approximately 2000m

along the street. Multiperspective images retain the simplicity of a single image, avoiding

the space, time, and viewing complexities of videos or collections of individual images.

They can efficiently summarize extended scenes.

An example of a high quality multiperspective image can be found in the work of artist

Michael Koller [Kol04]. An excerpt from his work is shown in Figure1.2. Koller synthe-

sizes a continuous visual image of the city of San Francisco made by sequential photos of

a walk through the city. In a manual process he aligns, cuts and pastes these images next

to each other to form a final image. By making his cuts follow architectural features in the

scene, he produces perspectives that look correct along thealleys and street intersections.

The resulting photomosaic is a high-quality, high-resolution continuous single image that

effectively summarizes a large geographic area without objectionable distortions.

One of the major disadvantages of the Koller’s approach is that the process is man-

ual and time-consuming. Creating a continuous visual representation of a 30-mile route

through San Francisco has taken several years of manually aligning and stitching images.

Our work can be thought of as an attempt to automate his approach.

A possible approach to automatically create similar imagesis to use pushbroom [HG94,

PRRAZ00] or crossed-slits imaging [ZFPW03a, ZFPW03b]. A pushbroom image is de-

fined as an image that is perspective in one direction (e.g., vertically) and orthographic in

6 CHAPTER 1. INTRODUCTION

the other while a crossed-slits image is an image which is perspective in one direction but

is perspective from a different location in the other direction. The perspective structure of

crossed-slits cameras are the set of all rays intersecting two fixed lines (slits) in space. For

pushbroom cameras, one of the slits is at infinity. In both cases, one is free to select the

placement of the slits. Changing these placements stronglyaffects the visualization and the

associated distortions as we show later in our results. In the context of visualizing eye level

urban landscapes, we show that we can combine multiple crossed-slits images seamlessly

to reduce distortions.

A common problem inherent to these linear multiperspectiveprojections is the distor-

tion introduced when the perspective in the horizontal and vertical dimensions are not the

same. Depending on the depth variation in the scene these distortions can be severe and

make portions of the image unusable (see Figure5.6(a)). These distortions can be avoided

to some extend by carefully adjusting the perspective for each image region. In Chapter3,

we present a framework which allows an artist tomanuallyspecify different perspectives

for individual scene segments and to compute smooth transitions between them. Unfor-

tunately, as in other approaches, the selection of the perspectives is done manually and

thus tedious, error-prone, and cannot scale to larger datasets. We have therefore addition-

ally developed an optimization framework that can automatically define the structure of a

multiperspective image that minimizes the output distortion, described in Chapter5.

1.3 Computer generated multiperspective images

More recently there has been an interest in computer generated multiperspective imaging.

The synthesis of multiperspective images has been exploredin Wood et al. [WFH+97]

and Rademacher and Bishop [RB98]. Wood et al create a multiperspective image where

the perspective varies slowly across the image. This has theeffect that when a cropped

region of the image is viewed, it appears to be entirely perspective. However, as the crop

is moved across the image, it appears as though the viewpointis shifting. With a similar

goal, Rademacher et al create a multiperspective image by extracting the central column

from a video sequence of camera swept around a 3D model and abutting these columns

together. When viewed directly, this image has little meaning to a human. Together with

1.4. APPLICATIONS 7

the knowledge of the original camera trajectory, however, they use the multiperspective

image to reconstruct perspective views of the original model.

Glassner [Gla00] explores the use of multiperspective imaging as an effective tool for

illustration or story telling. He includes a plugin for a 3D modeling program that allows

creating a multiperspective image through a two-surface parameterization. Rather than the

two-surface parameterization, we use use crossed-slits images as the fundamental modeling

primitives for creating multiperspective images. We have also found it important to be

able to specify the parameterization of the picture surface. Vallance and Calder [VC01]

provide an in-depth analysis of the previous literature in multiperspective imaging. They

also describe an API to facilitate rendering of multiperspective images.

1.3.1 Camera Models

In addition to making multiperspective imaging practical,there has also been much theo-

retical work on multiperspective imaging. Gupta and Hartley [GH97] derive a projection

model for pushbroom cameras. Zomet et al. [ZFPW03a] extend this in their work to model

crossed-slits cameras. More recently, Yu and McMillan [YM04] provide a General Linear

Camera (GLC) model, which unifies the perspective, pushbroom and crossed-slits cameras

along with five other camera models under one framework. Although GLC’s encompass

eight cameras, we currently restrict our system to these three, which seem most useful for

our task. Specifically, the subset of GLCs we allow is that which can be created from a

camera traveling in a path, since the camera path naturally defines one slit of a crossed-slits

camera.

1.4 Applications

Multi-perspective images are nothing new in the art world. 10th century Chinese paintings

used multiple perspectives to depict many religious sites in a single image without notice-

able distortions [CT01]. More recently, the work of the cubists and M. C. Escher explored

combining multiple perspectives.

Artists frequently distort perspectives to emphasize features in the scene, in particular

8 CHAPTER 1. INTRODUCTION

in maps or other urban depictions. Prominent buildings or landmarks are drawn dispro-

portionately large, while minor streets or alleyways are sometimes suppressed alltogether.

Distances are often adjusted to make more efficient use of space.

Much of the early work in computer-generated multiperspective imaging used synthetic

3D data for illustrating results. More recently, multiperspective images have been used for

visualizing scenes that are large compared to the maximum available field of view of any

individual input image. In particular, stitching several perspective photos together to form a

single multiperspective image that describes the scene. There are many possible applicable

scenarios:

Digital Route Panoramas [Zhe03] was one of the first examples of using a particular

type of multiperspective images calledpushbroom panoramas(described in detail in Sec-

tion 2.1.2). Zheng generates route panoramas from a moving video by taking the central

column of pixels from each frame and abutting them together.In later work [Zhe04], he

demonstrated that less objectionable distortions can be obtained by selecting non-central

columns for the pushbroom projection. His choice of column is fixed for an entire ac-

quisition, however, and does not allow the flexibility of choosing columns based on scene

content as we do.

Seitz and Kim [SK03] investigate how to generate multiperspective images froma mov-

ing video camera. They treat the captured video as a stack of frames forming a 3D volume

and then allow arbitrary 2D slices through this volume. While this method allows genera-

tion of almost any multiperspective image that is possible given the video volume, it is not

clear what perspectives the resulting images represent except in special cases. For example,

a slice through the volume parallel to the first frame (essentially extracting a frame from the

volume) is a perspective image (Section2.1.1), a slice straight down the volume is a push-

broom image (Section2.1.2), and a diagonal slice is a crossed-slits image (Section2.1.3).

A non-linear slice through the volume will create a multiperspective image such as we cre-

ate in this thesis. However, it is difficult to associate any general non-linear slice with its

perspective structure in 3D. This in turn makes it hard to design a slice to accomplish a

particular task, such as displaying city blocks with their varying facade depths.

Another possible approach is that described by Agarwala et al [AAC+06]. Using a

semi-automatic approach, they construct a multiperspective image by reprojecting input

1.5. OUR CONTRIBUTIONS 9

camera images onto a single picture surface and extracting arbitrary regions that have min-

imum distortion along the seams. This approach obtains results similar to those of Koller

provided the seam is sufficiently planar.

There are many other possible uses for multiperspective images of extended, roughly

planar scenes. For example, one can imagine generating an image that spans rows of books

in a library to allow virtual browsing of books online. Similarly, warehouses could quickly

inventory items by creating multiperspective images of thestorage, allowing workers to

quickly and visually identify relevant sections of the warehouse.

It could also be useful for artistic purposes. For example, an entire walking route

through a museum could be assembled as a single continuous multiperspective image, sim-

ilar to the scene shown in Figure5.10.

Another interesting artistic example is visualizing coralreefs. One could imagine a

single, continuous image spanning the Great Barrier Reef inAustralia. In this case, imaging

a scene underwater introduces an additional limitation of visibility. Even if it were possible

to obtain an unoccluded view of the entire reef, it would be much too far away to see

anything through the water. Instead, by synthesizing an image from video frames taken

very close to the coral, a vivid and colorful panoramic imagecan be obtained. A similar

argument follows for obtaining images of shipwrecks that allow the wreck to be viewed as

if the viewer were thousands of feet away from the wreck itself but with the visibility as if

the viewer were only a few feet away.

1.5 Our contributions

There are three primary contributions of this research:

1. We demonstrate that multiperspective images can be created by abutting multiple

crossed-slits images and we describe the constraints necessary to seamlessly blend

between adjacent crossed-slits images. This is described in Chapter4.

2. We describe an interactive user interface that allows a user to easily create a mul-

tiperspective image comprised of abutted crossed-slits images. This software auto-

matically enforces our constraints and helps the user gain an intuition of how the

10 CHAPTER 1. INTRODUCTION

parameters of the individual crossed-slits images affect the final multiperspective

image. This software is described in Chapter3.

3. We describe an optimization framework that can automatically determine the pa-

rameters for a set of crossed-slits images that minimize thedistortions in the final

output image, described in Chapter5.

Chapter 2

Multiperspective Imaging Paradigm

Multiperspective images are considered in this thesis as a potentially nonlinear projection

from 3D to 2D. This mapping is used to sample from an input dataset of 2D perspective

images directly to the final 2D multiperspective image (see Chapter4).

Although the final multiperspective image may be nonlinear,it is constructed from a

set of linear projections. These linear projections are described in Section2.1. Constraints

on combining these are described in Sections2.3and2.2.

2.1 Camera Models

The relationship between the 3D world and the image of a projection of the world is de-

scribed by a camera model. Two common camera models are the perspective and ortho-

graphic projections. These are both used extensively in computer graphics, in particular

in 3D rendering and computer graphics; for example, the OpenGL graphics API [Ope92]

allows specifying only perspective or orthographic projections.

2.1.1 Perspective

The perspective projection camera model is a 3D to 2D projection based on the camera

obscura and is also known as thepinhole projection. In this case, an image is formed

by projecting all 3D points onto a 2D image plane through a single point in space called

11

12 CHAPTER 2. MULTIPERSPECTIVE IMAGING PARADIGM

the center of projection. In reality, rays pass through a small, finite region of space(the

aperture) that is approximated as a single point. A detaileddiscussion of the perspective

projection camera model can be found in [HZ04].

Traditionally, the projection is defined for a camera with a center of projection at the

origin and oriented facing along the−z axis. In addition, the image plane is typically

assumed to lie on the planez= −1.

This 3D-2D projection is typically using homogeneous coordinates with





x

y

w



= P





X

Y

Z

1




(2.1)

or

x2D = P x3D (2.2)

wherex2D is a 3×1 homogeneous 2D point,x3D is a 4×1 homogeneous 3D point, andP is a

3×4 projection matrix.

Note that for a homogeneous point, we have

x2D =





x′

y′

1



=





x/w

y/w

1



=





x

y

w



 (2.3)

The projection matrix is composed of both the internal camera parameters (those that

depend only on the camera, for example the lens focal length and the image plane res-

olution) and the external camera parameters (those that aren’t affected by the particular

camera, for example the position and orientation). These are referred to as the intrinsics

2.1. CAMERA MODELS 13

and extrinsics respectively. The intrinsic parameters (inunits of pixels) are

fx, fy The focal length of the camera along thex andy directions

cx,cy The optical center of the 2D projection plane

θ Pixel skew (typically zero and ignored in this discussion)

and the extrinsics are

t The position of the camera in the world coordinate system

Described by a 3×1 position vector

R The orientation of the camera in the world coordinate system

Described by a 3×3 rotation matrix

The intrinsics are gathered the matrixK as

K =





fx 0 cx

0 fy cy

0 0 1



 (2.4)

Using these parameters, the projection can be described with

x2D = K [R|t]x3D (2.5)

or equivalently





x′

y′

1



=





fx 0 cx

0 fy cy

0 0 1









R11 R12 R13 t1

R21 R22 R23 t2

R31 R32 R33 t3









X

Y

Z

1




(2.6)

Multiperspective images are any image in which the image rays do not all pass through

a single center of projection, making the space of all possible multiperspective images very

14 CHAPTER 2. MULTIPERSPECTIVE IMAGING PARADIGM

large. In this thesis, we instead limit ourselves to multiperspective projections that can be

described linearly. In particular, the pushbroom and crossed-slits projections.

2.1.2 Pushbroom

The linear pushbroom camera is a non-perspective projection mathematically described in

[GH97]. This projection is a combination of pushbroom and orthographic projections. In

this thesis, it describes an image that is perspective vertically and orthographic horizontally.

Consider the case where a video camera is facing down thez-axis and translating along

the x-axis at a constant velocity, as shown in Figure2.1(top). If the central column from

each video frame is extracted and abutted into a single image, the result will be a pushbroom

image. Notice that because each column of the final output image is taken from a single

input video frame, each column of pixels is perspective. However, because each column

of pixels is taken from a camera image at a different location, neighboring columns do not

share a single center of projection. In fact, because each column of the output pushbroom

image is taken from the same column from each input video frame, they are parallel. That

is, projection rays for any pixels in different columns of the final output image are parallel.

The image, therefore is vertically perspective and horizontally orthographic.

2.1.3 Crossed-slits

The crossed-slits camera is a non-perspective linear projection and is described in detail in

[ZFPW03a]. This projection is a superset of the perspective and pushbroom projections. It

describes both of those projections and can also smoothly transition between the two.

Consider the case of a translating video camera as describedabove for pushbrooms.

Instead of taking the center column out of each frame, instead take the left-most column of

the first frame and the right-most column of the last frame, asdepicted in Figure2.2. By

linearly varying the column that is taken according to the camera position, the result is a

crossed-slits projection.

All of the rays in this crossed-slits projection can be described by the set of rays inter-

secting two lines in space: the camera path and a second, perpendicular line. Intuitively, it

makes sense that all of the rays in this resulting image must pass through the camera path.

2.1. CAMERA MODELS 15

A

C

B

A

B

C

Top View 3D View

Pushbroom projection

Figure 2.1: Example of the acquisition and construction of apushbroom image. The right
images show the 3D setup of a translating camera oriented along thez-axis and moving
along thex-axis at a constant velocity while the left images show a top view. (A) shows
several example camera frames in blue along the camera’s trajectory (dotted black line). (B)
A picture surface is specified (dark blue on the left, the large plane on the right) and parallel
columns from each camera frame (shown in red) are indicated.(C) By extracting parallel
columns out of each input image and abutting them together, we create a pushbroom image.

16 CHAPTER 2. MULTIPERSPECTIVE IMAGING PARADIGM

A

C

B

A

B

C

Top View 3D View

Crossed-slits projection

Figure 2.2: Example of the acquisition and construction of acrossed-slits image. The right
images show the 3D setup of a translating camera oriented along thez-axis and moving
along thex-axis at a constant velocity while the left images show a top view. (A) shows
several example camera frames in blue along the camera’s trajectory (dotted black line). (B)
A picture surface is specified (dark blue on the left, the large plane on the right) and columns
from each camera frame (shown in red) are indicated. (C) By choosing the columns from
each input frame so that the direction of rays intersect at a point independent of the camera
trajectory, we create a crossed-slits image.

2.1. CAMERA MODELS 17

(d)(c)(b)(a)

Figure 2.3: Effect of varying perspective inx andy. The top row shows a 3D view of
the picture surface (in pink), the camera path and the ray manifold for different kinds of
projections. The second row provides a birds-eye view and the last the resulting images
when the picture surface is aligned with the front book cover. These are four types of
perspectives our system can generate. For all examples the perspective iny is given by the
input images. (a) A perspective projection simply corresponds to the original perspective
of the camera. Notice the limited field of view. (b) A crossed-slits perspective can be used
to extend the field of view inx by moving the horizontal center of projection off the camera
path. (c) Moving the horizontal center of projection to infinity results in a pushbroom which
is horizontally orthographic as can be seen in the checkerboard pattern. (d) In an inverse
perspective the center of projection is behind the picture surface. The effect is that objects
get larger with increasing distance and both sides of a cube are visible.

18 CHAPTER 2. MULTIPERSPECTIVE IMAGING PARADIGM

This is because the image is constructed by taking pixels from a set of perspective images.

Each of those perspective images is a video frame corresponding to a location along the

trajectory of the camera and therefore a corresponding center of projection. These centers

of projection form the line of the camera path. The second, perpendicular line in space de-

fines the intersection of the fans of rays described by each column extracted from the video

frames. By requiring that these fans intersect in this second line, we define the direction of

those rays and therefore the column from the input video frame.

This provides some interesting flexibility. All of the rays in a crossed-slits projection

are defined by these two lines (orslits). Of course, the camera path is determined by the

original trajectory of the input video camera, but we are free to choose the location of the

second slit.

Consider the case in which this second slit is positioned so that it intersects the camera

path. Since all of the rays of the resulting image must pass through both slits, then the only

place that is satisfied is at the point of intersection. Sinceall of the rays are passing through

a single point, the result is a perspective image.

Consider the case where the second slit is placed infinitely far away. In this case, the

fans of rays corresponding to each column of the final image become parallel and we are

left with a pushbroom image.

These effects of varying the slit location in a crossed-slits projection are illustrated in

Figure2.3. In general, the slits in crossed-slits cameras need not be perpendicular to each

other although they are constrained to be so in our application.

Perspective, pushbroom, crossed-slits, and orthographiccameras are all subsets of a

larger family of linear projection cameras calledgeneral linear cameras[YM04]. We re-

strict ourselves to using crossed-slits projections because that corresponds most naturally

to the useful perspective variations from a translating camera.

2.2 Multiperspective Images

Multi-perspective images can be specified as a 2D manifold ofrays and the mapping from

this manifold to a rectangular, regularly sampled image as described in Figure2.4. Note

that contrary to perspective images, objects in a scene may appear more than once in a

2.2. MULTIPERSPECTIVE IMAGES 19

u

v

Picture Surface

Multi-Perspective Image

Manifold of rays

y

z
x

t

s

Figure 2.4: The ray manifold is the set of rays in space. The sampling of these rays and
the mapping to the output image can be specified by a picture surface with a 2D parame-
terization of its 3D surface.

single multiperspective image because the direction of rays is less constrained. The user

specifies the manifold of rays as a sequence of crossed-slitscameras in the 3D scene, and

specifies the mapping to an image by placing a regularly sampled picture surface in the

scene. We find that distinguishing clearly in our user interface between specifying the ray

manifold and specifying the mapping to the output image improves the intuitiveness of our

system.

The manifold of rays can be specified in several ways. For a pinhole camera, the mani-

fold is the set of all rays passing through a point. In an orthographic camera, the manifold

describes all rays in a single direction. Similarly, for a crossed-slits camera the manifold is

described by all rays passing through two lines (or slits). These are three of the eight 2D

linear manifolds described by Yu and McMillan [YM04].

For our application, we choose to constrain the allowable set of manifolds based on

their applicability to urban landscapes and the ease of specification for the user. Specifi-

cally, we restrict the space of ray manifolds to crossed-slits images. Doing so allows us to

include perspective and pushbroom images while at the same time enabling the interpola-

tion scheme described in section2.3. The result is that our final image can be represented

as a mosaic of multiple crossed-slits images.

The picture surface defines the sampling of the manifold of rays as well as their map-

ping to the final image, as shown in Figure4.1. Traditionally, in a single perspective image,

20 CHAPTER 2. MULTIPERSPECTIVE IMAGING PARADIGM

P1 P2

Figure 2.5: We visualize urban landscapes using a blend of adjacent crossed-slits images.
The figure shows two user-specified crossed-slits cameras, represented by slit pairs WX-g
and YZ-b. This partitions the camera path WXYZ into three sections. The planeP1, formed
by the slitg and point X, represents the rightmost column of pixels in crossed-slits camera
WX-g and their associated ray directions. Similarly,P2 is the plane formed by slitb and
point Y. These two planesP1 andP2 intersect in liner, which becomes our interpolating slit.
The XY-r crossed-slits pair becomes our interpolating camera. Notethat the interpolating
camera has the same ray directions on its edges as its neighboring cameras. This ensures
that the generated image contains no discontinuities.

the picture surface is a plane. However, we can reduce distortion in the output image by

allowing the picture surface to change orientation to accommodate the storefronts. In our

application, we constrain the picture surface to be vertical with respect to the ground.

Lastly, every point on the picture surface must be associated with a ray from exactly

one ray manifold. This ensures that the resulting final output image has no missing regions.

Examples of the types of multiperspective images that we allow in our images are

shown in Figure2.3.

2.3. INTERPOLATING TWO CROSSED-SLITS IMAGES 21

2.3 Interpolating Two Crossed-Slits Images

Associating regions of the picture surface with crossed-slits cameras naturally leads to the

problem of how to handle unassigned regions between them. Our system adds an additional

crossed-slits camera between every two adjacent user-specified crossed-slits cameras, re-

sulting in smooth interpolation. The process of computing the location of the interpolating

slit is described in Figure2.3. As shown in the figure, the location of the interpolating slit

is uniquely defined by the geometry of the adjacent slits.

It should be clear from the figure that the insertion of these interpolating slits is indepen-

dent of the picture surface chosen by the user. Also, the camera path must be continuous

but need not be straight—the interpolating slit will dependonly on the points X and Y

along the camera path. Note that this interpolation scheme is not dependent on using the

camera path as one of the slits. In fact, this scheme will correctly interpolate any pair of

crossed-slits cameras provided that the slit joining them is continuous.

Chapter 3

Interactive Specification of

Multiperspective Images

While most people generally have a good idea of what a photograph will look like when

shown a diagram of the camera position and orientation relative to a scene, this intuition

does not exist for multiperspective images. The choice of 2Dmanifold of rays, the place-

ment of the picture surface and the sampling of the surface constitute a design problem.

We have designed a user interface which helps develop an intuition for the perspective

structure of multiperspective images as well as generates effective visualizations of urban

landscapes.

We describe an interactive system that can be used for constructing multiperspective

images from sideways-looking video captured from a moving vehicle. The input to our

system is a set of video frames with known camera pose. The interface then provides a set

of tools that allow the user to define the picture surface and place crossed-slits cameras. Our

system then automatically computes an additional crossed-slits camera between every pair

of adjacent user-specified cameras leading to a smooth interpolation of viewpoint in the

final multiperspective image. Our system provides the toolsnecessary to minimize distor-

tions and discontinuities for creating good multiperspective images for urban landscapes.

Using our system, a person can create a multiperspective image of a whole city block in a

few minutes. The process is summarized in Figure3.1.

22

3.1. DESIGN CHOICES 23

Figure 3.1: This figure summarizes our algorithm for generating multiperspective images.
(a) First, we process each input video frame to estimate the corresponding position and
orientation of the camera. (b) Second, the user specifies thepicture surface and any number
of crossed-slits camera locations (the green and blue regions), thereby defining valid region
(gray shading) on the picture surface. (c) For the remainingregions (gray shaded), we
automatically compute the interpolating crossed-slits camera (yellow). (d) Within each
camera, each planar fan of rays (blue or green triangles) denote one line of pixels (typically
vertical) in the final output image. To produce this image, these pixels must be extracted
from the appropriate frame of video, as described in section4.4.

In this chapter, we describe our system for interactive design and rendering of multiper-

spective images. Our system takes a set of video frames (captured with a sideways-looking

video camera) with known camera pose as input and produces one composite multiperspec-

tive image as output. The system consists of a user interfaceand uses the rendering engine

described in Chapter4.

3.1 Design Choices

There are a number of restrictions that we place on our system. We assume that the camera

path in the input video lies on a plane parallel to the ground plane. For each crossed-slits

image, the user specifies one slit, and the camera path is assumed to be the second slit.

We assume that the user-specified slit is vertical (perpendicular to the ground plane). This

allows a simplified plan view to be used in our user interface where the vertical slits are

projected as points.

24CHAPTER 3. INTERACTIVE SPECIFICATION OF MULTIPERSPECTIVEIMAGES

Figure 3.2: This is a snapshot of our interface. The diagram at top is a plan view of
the scene. You can see the partial 3D scene structure, picture surface, camera path, user-
specified slits, interpolating slits and a low-resolution preview image.

As shown in Figure4.1, the picture surface is a parametric surface in 3D. We chooseour

picture surface to have vertical sides. The restriction of vertical sides on the picture surface

applies naturally to urban facades on flat terrain. To aid theuser in specifying non-vertical

sides of the picture surface, we provide piecewise-continuous lines and quadratic splines.

Quadratic splines are approximated as piecewise-linear segments to simplify rendering.

This allows our surface to be represented as a series of planar facets. We constrain the

sampling of the picture surface to be regular.

3.2 User Interface

Shown in Figure3.2, our interface provides both a design section in which the user specifies

the multiperspective image and a preview section that can provide rapid, low-resolution

previews of the final image. Once satisfied with the design, the system can output the full

resolution image.

3.2. USER INTERFACE 25

To create a multiperspective image, the user must define the picture surface, place all

desired crossed-slits cameras, and associate the cameras with regions of the picture surface.

Because of the lack of natural intuition concerning these types of images, the interface

strives to present the design in terms of familiar concepts.With this in mind, the user

is shown the camera trajectory in plan view along with any estimated scene structure in

the form of a point cloud as output by our structure-from-motion algorithm. The camera

trajectory, as explained in section3.1, defines one of the two slits required for any crossed-

slits image.

To define the picture surface in our interface, the user needsto only draw a set of

connected line segments in plan view. This is possible because we restrict the picture

surface to be vertical. To help fit the picture surface to curved facades, segments of the

picture surface can also be toggled between straight lines and quadratic splines.

In plan view, the task of positioning user-specified slits involves simply placing the slits

as points and specifying their field of view. The intersection of the field of view with the

picture surface defines the region of the picture surface associated with that slit. If any

segment of the picture surface is associated with more than one user-specified slit, such as

if two fields of view overlap, there no longer exists a unique ray direction for points in that

segment, and therefore that is not a valid specification for amultiperspective image. As

long as the fields of view do not overlap on the picture surface, however, any number of

user slits may be described. The specified camera slits can also be toggled between slits

located at finite positions and slits located at infinity. Slits at infinity are represented by a

directional line next to the selected point. Placing a slit at infinity produces a pushbroom

image. Similarly, placing the slit directly on the camera path (thus intersecting both slits)

produces an ordinary perspective image.

Once any valid multiperspective image is specified, the interface immediately shows

a set of example ray directions at several points along the picture surface. The program

also automatically displays the interpolating crossed-slits camera between any two adjacent

user-specified cameras as explained in section 3.2.

26CHAPTER 3. INTERACTIVE SPECIFICATION OF MULTIPERSPECTIVEIMAGES

3.3 Results

We tested our system on several videos of city blocks taken under different challenging

scenarios. The input data for this system is described in Section 4.1 and the rendering

algorithm described in Chapter4. We first examine a scene with a relatively flat facade and

straight camera path. Figure3.3(a)shows a short section of a pushbroom representation of

this scene. A pushbroom image is perspective in one direction (vertical in our case) and

orthographic in the other direction (horizontal). Under this projection, only objects lying on

the picture surface can be rendered faithfully. In our example, the picture surface is placed

at the store facade. As expected with such a parameterization, trees (which are closer

than the facade) are horizontally compressed while the viewdown the alleyway (which is

farther) is expanded. By interactively manipulating the perspective structure of the image,

we can reduce these distortions as shown in Figure3.3(b). Using our user interface, we

achieve this by specifying ordinary perspective cameras near regions of significant depth

variation such as the trees and the alleyway. This creates animage that is more natural

looking in these areas. To keep the image continuous, the system inserts interpolating

cameras between the user-specified cameras.

Another example that illustrates the benefit of manipulating ray directions based on

scene geometry is shown in Figure3.4. The scene consists of a building with flat facade on

the left and a very deep plaza on the right. By choosing multiple crossed-slits as shown in

Figure3.4(b)we can get a more recognizable image than Figure3.4(a).

The ability to specify curved picture surfaces allows us to conform the picture surface

to the natural architecture of a corner. An example of this isshown in Figure3.5(a). This

type of image is impossible to create with a traditional single, planar picture surface.

Although this allows us a summary view of both sides of the corner, the apparent size of

facade is constant throughout the image. We can more naturally represent what a motorist

or pedestrian would see if we stretch the image near the corner, producing a pinching effect

as shown in Figure3.5(b). This is a nonlinear effect and would require sampling of the

picture surface as shown in Figure3.6(c). Instead, we achieve this effect by curving the

picture surface as shown in Figure3.5(d)and adjusting the horizontal sample density as

shown in Figure3.6(d)by using the control polygon. This is a departure from the earlier

3.4. DISCUSSION 27

imposed regular sampling on the picture surface. This sampling adjustment is performed

automatically by our program and is explained in Figure3.3.

3.4 Discussion

There are infinitely many possible multiperspective imagesthat visualize a city block. Our

tool helps manage the creation of such an image in three ways.First, by restricting the

space of multiperspective images to those most likely to be useful for visualizing urban

landscapes, we reduce the number variables involved in creating these images. Second,

our tool abstracts the away the ray manifold to a set of more intuitive virtual viewpoints.

Finally, by providing rapid feedback to the user, our tool helps develop an intuition about

the effects of the design parameters on the resulting image.This last point is key to the

effectiveness of our tool and is enabled only by the simple rendering system described in

Chapter4.

One limitation of our system is that we allow only regular sampling on the picture sur-

face (and the automatic adjustment of horizontal sampling density illustrated in Figure3.3).

We do not allow any user-specified sampling strategies. One can imagine sampling the im-

age more densely in the center than toward the edges, resulting in a fish eye like effect.

Also, the enforcement of vertical slit orientation, a limitation imposed by our user inter-

face, implies that the user interface cannot accurately depict changes in elevation such as

hills. Similarly, the user interface does not permit altering the orientation of the picture

plane from vertical. Finally, we choose to allow representing only three of the eight GLCs

from Yu and McMillan [YM04]. It would be interesting to incorporate these other cameras

into our design tool.

28CHAPTER 3. INTERACTIVE SPECIFICATION OF MULTIPERSPECTIVEIMAGES

User-specified slit at infinity (pushbroom)Camera path (fixed slit) Picture surfaceExample ray directions

(a)

User-specified slits (perspective)Camera path (fixed slit) Picture surfaceExample ray directions

(b)

Figure 3.3: This example shows how manipulation of the perspective structure of the image
can be used to generate a multi-perspective image with reduced distortion. The diagram
below each is a plan view of the scene, with the input video camera moving along the
indicated path and looking upward. The picture surface in both (a) and (b) is fixed at the
facade of the storefronts. (a) is a traditional pushbroom image generated by specifying a
vertical slit at infinity with all the ray directions being parallel. The resulting image has
the familiar distortions associated with a pushbroom image: objects in front of the picture
surface (e.g. trees) are compressed horizontally, and objects behind the picture surface are
expanded (the view down the alleyway). (b) has been generated using multiple crossed-
slits. By placing selected user-specified slits atop the camera path, ordinary perspective
views are generated in the vicinity of the trees and alleyway. This enhances the realism of
the image while still maintaining the extended field of view of the pushbroom. This does
not come for free, however. Notice that the sidewalk in the center of the image appears
curved and that one of the columns of the distant building appears tilted. These are artifacts
induced by the changing perspective structure across the image.

3.4. DISCUSSION 29

User-specified slit Camera path (fixed slit)Picture surface

(a)

User-specified slits
Camera path (fixed slit)

Picture surface

(b)

Figure 3.4: This example shows how our system can be used to generate effective multi-
perspective images of deep plazas. The picture surface in both (a) and (b) is fixed at the
facade of the building on the left. (a) is a traditional pushbroom image generated by speci-
fying a vertical slit at infinity. This causes the deep plaza on the right to stretch horizontally,
leading to apparent smearing due to limited resolution. In (b), by blending between two
almost perspective views on the right (one for the tree and one for the building) and the
same pushbroom view on the left results in a better visualization. In our multi-perspective
image, some unwanted curving is introduced into the walkwayat the center of the image.
This walkway is in fact straight.

30CHAPTER 3. INTERACTIVE SPECIFICATION OF MULTIPERSPECTIVEIMAGES

(a) (b)

Camera path
(fixed slit)

User-specified slit
at infinity

User-specified slit
at infinity

Interpolating slit

Picture surface
(with example ray directions)

(c)

Camera path
(fixed slit)

User-specified slit
at infinity

User-specified slit
at infinity

Interpolating slit

Picture surface
(with example ray directions)

(d)

Figure 3.5: Our visualization of a street corner with perpendicular storefronts. (a) shows
the multi-perspective image generated by our system for thechoice of picture surface
shown in (c). (b) shows the multi-perspective image generated by our system for the choice
of picture surface shown in (d). The picture surface in (c) conforms to the actual storefront
whereas it has been artificially curved in (d) using our interactive system. Note that the slits
are at the same location in both the setups. (a) gives the impression that the storefront is
continuous and there is no corner. By altering our picture surface we introduce an artificial
pinching effect in the multi-perspective image shown in (b). This helps emphasize that it is
a corner without causing severe distortions.

3.4. DISCUSSION 31

A

B

C

E

F

Camera Path Picture Surface 1

(a) (b)

A B C E F

Sampling for Picture Surface 1

showing constant s,t lines in u,v

(c)

A B D E F

Sampling for Picture Surface 2

showing constant s,t lines in u,v

(d)

Figure 3.6: This figure explains how our choice of a curved surface and a non-uniform
sampling strategy achieves a pinching effect at the cornersseen in Figure3.5(b). In (a),
picture surface 1 conforms to the storefront. To achieve thepinching effect in this case we
would need to stretch the image at C. This would mean non-linearly mapping the picture
surfaceuv coordinates to the final output imagest coordinates as shown in (b) to maintain
continuity in the image. We achieve the same effect by instead using a curved surface as
shown in (d) but sampling according to the strategy in (c). This solves the problem of
nonlinear vertical sampling, but now requires adjusting the horizontal sampling. This can
be easily done by using the control polygon to define the horizontal mapping from 3Dxyz
to u but still mapping tos linearly. If the control polygon corresponds to the storefront,
then a brick on the wall will not appear to be stretched horizontally.

Chapter 4

Rendering Multiperspective Images

from Real Data

With a user interface that allows a user to easily specify thestructure of a multiperspective

image, the next step is to render that image. This chapter describes the algorithm used

to render our multiperspective images that are composed of several abutting crossed-slits

images. First we describe the requirements on the input dataand then we describe the basic

rendering algorithm. In Section4.3, we improve upon the rendering method to handle

cases where the input data is not sufficiently dense, and in Section4.4we describe how we

handle the extremely large dynamic range typical in outdoorscenes.

4.1 Data Requirements

There are three basic assumptions about the input data required for rendering. The first is

that the input images are from a moving video camera. This results in a 3D video dataset

instead of a 4D lightfield, restricting the set of multiperspective images that can be created.

Second, we assume that the environment is approximately static.

The last assumption is that the camera trajectory must be known. Structure-from-

motion software can be used to extract this directly from thevideo in some cases. External

constraints (such as placing the camera on a track) or auxiliary sensors (GPS, accelerome-

ters, etc.) can also be used to robustly determine the camerapath and improve accuracy.

32

4.2. ALGORITHM FOR RENDERING MPIS 33

Video data must be captured densely enough so that the sampling on the picture surface

is equal both vertically and horizontally. That is, the height of a single pixel from an input

camera image (when projected onto the picture surface) should equal the width of a column

on the final multiperspective image.

In our current implementation, data is captured using a Basler A504kc high-speed cam-

era which captures 1280×1024 images at 300 frames per second with a 72-degree field of

view vertically. With a picture surface that is 10m from the camera path, each pixel is ap-

proximately 1.5cm high. The camera should therefore not move more than 1.5cm between

video frames. At 300 frames per second, that corresponds to amaximum speed of 10 mph.

The high speed capture ensures dense image data while still allowing a reasonable driving

speed for urban traffic; higher speeds are possible using view interpolation, as described in

Section4.3.

Camera pose is then estimated with a structure-from-motion(SFM) algorithm. We have

used both a commercial software package Boujou [2D306] and a freely available software

package Voodoo [Uni03]. SFM also outputs partial 3D scene structure, which helps the user

in choosing crossed-slits locations in the interactive UI or helps the optimization algorithm

for the automated specification. For some of our datasets, the camera pose is computed us-

ing a combination of external sensors. In these cases, additional scene structure is available

through the use of laser range scanners. We assume that the X-Z plane that camera pose is

estimated in corresponds to the real-world ground plane.

4.2 Algorithm for Rendering MPIs

Using an Intel 2.8 GHz Pentium 4 machine, the low-resolutionpreview image (up to 1000

× 200) in our user interface can typically be rendered in undera second. An efficient

rendering engine is necessary to provide this fast feedbackto the user.

Our task is to determine for each pixel in the output image which pixel position (which

may fall between captured pixels) in which frame of the inputvideo should be displayed

there. This is done in four steps:

1. Compute the projection of each input frame onto the outputimage.

34 CHAPTER 4. RENDERING MULTIPERSPECTIVE IMAGES FROM REAL DATA

2. Project the center-of-projection of each from onto the output image.

3. For each column of the output image, choose an input frame.

4. Use the projection of the input frame to extract and transform the appropriate pixels

onto the output image.

The constraints imposed by our design choices allow us to simplify and accelerate the

rendering, in particular the assumption of a discretized, piecewise-planar picture surface.

Since each point on the picture surface is associated with only one crossed-slits camera, the

final output image is composed from several distinct, abutting crossed-slits images. Each

crossed-slits camera can span multiple planar segments of the picture surface. Also, each

planar segment may contain multiple crossed-slits cameras. In both cases, we render only

a single crossed-slits image onto a single planar segment ata time. Each planar segment is

parameterized by(u,v). Finally, the restriction of vertical sides for the picturesurface and

of vertical user-specified slits allows us to assign entire columns of the final output image

from a single input video frame. For each crossed-slits image on a planar segment, there

is a mapping between the(u,v) coordinates of the planar segment to the(s, t) coordinates

of the final output image, defining the sampling of the picturesurface. This can be seen

in Figure4.1. The sampling on each planar segment is regular in theu andv parameter

directions.

A fast algorithm to render a single crossed-slits image ontoa single planar surface is

therefore the basic building block used in rendering. For each crossed-slits image, we

compute the homography between each input frame and the finaloutput image. We then

use this transform to compute which pixels will actually contribute to the final output image

and then transform only those pixels.

An important point is that theentire input image does not need to be transformed.

Instead, we first calculate the necessary transformation and then apply it to only a small

region from each input image. This speeds up rendering to thepoint that if all images can

be preloaded into RAM, previews can be rendered at interactive rates even for thousands

of input images.

We now describe the process of computing the homography transform from an input

video frame to the output image for a single planar segment. We use the convention of

4.2. ALGORITHM FOR RENDERING MPIS 35

u

v

Picture Surface

Multi-Perspective Image

Manifold of rays

y

z
x

t

s

Figure 4.1: The ray manifold is the set of rays in space. The sampling of these rays and
the mapping to the output image can be specified by a picture surface with a 2D parame-
terization of its 3D surface.

using bold for vectors (lowercase) and matrices (uppercase). Points in different coordinates

systems are

x =
[

x y z 1
]T

3D point in world coordinate system in which camera pose

is estimated

u =
[

u v 1
]T

2D point in the coordinate system of the planar segment of

the picture surface

p =
[

p q 1
]T

2D pixel location of a single input video frame

s =
[

s t 1
]T

2D pixel location of the final multiperspective image

These are also depicted in Figure4.1.

Let the origin of the planar segment in world 3D homogeneous coordinates be the 4x1

vectoro. Let w andh be 4x1 vectors defining the width and height extent of the segment.

Then, the mapping from a pointu (for all u,v∈ [0,1]) on the planar segment of the picture

surface to a corresponding world pointx is given by

36 CHAPTER 4. RENDERING MULTIPERSPECTIVE IMAGES FROM REAL DATA

x = uw+vh+o (4.1)

=
[

w h o
]




u

v

1



 (4.2)

= Q u (4.3)

In general, a point in the world coordinate systemx is mapped into a particular input

video framei by the relationship:

p = K [Ri | t i]x (4.4)

given the camera intrinsicsK , the rotation matrixRi , and the translation vectort i . Sub-

stituting forx, we obtain the relationship between the planar segment and the input video

frame:

p = K [Ri | t i]Q u (4.5)

With our restriction of regular sampling on the planar segments, we map the segment

to a rectangular region of the final output image using only translation and scaling. Note

that this choice of mapping is arbitrary. We can now define therelationship between this

planar segment of the picture surface and the final output image as:

s=





a 0 c

0 b d

0 0 1



u = M u (4.6)

or equivalently

u = M−1s (4.7)

4.2. ALGORITHM FOR RENDERING MPIS 37

wherec andd define the origin of the rectangular region on the final outputimage anda

andb define the width and height of the region respectively.

We can then obtain a direct relationship between each input video framei and the final

multiperspective image as

p = K [Ri | t i]QM−1s (4.8)

Using this formulation, all of the intermediate matrices reduce to a single invertible 3x3

matrix that we callH, giving

p = H s (4.9)

s= H−1p (4.10)

The matrixH defines the homography between an input video frame and a portion of the

final multiperspective image corresponding to one planar segment of the picture surface.

With the mapping from each input video frame to the final output image, each pixel on

the final output image will have multiple input frames overlapped onto it. We must now

choose which input frame to select for each pixel. For our crossed-slits images, one of

the slits is fixed—the camera path. The second, vertical slitis either a user-specified or

interpolated slit. We project a point on this vertical slit through each input video frame

onto the final output image.

To compute this, we take the 3D point on the second slit that intersects the ground plane,

xg, project it onto the input video frame (pg), and then use the homography derived above

to project the point onto the final output image (sg). For a particular input video framei,

the image ofxg through that camera’s center of projection maps to

pg = K [Ri | t i]xg (4.11)

sg = H−1pg (4.12)

As shown in Figure4.2, for each column of the final output image, we then select the

input frame with the closest projected pointsg and transform the pixels from that frame that

38 CHAPTER 4. RENDERING MULTIPERSPECTIVE IMAGES FROM REAL DATA

Picture
surface

Camera path

Slit

Figure 4.2: The slit is projected through each camera onto the picture surface. The region
closest to each projection is assigned to the correspondingcamera.

correspond to the output image column.

4.3 View Interpolation

This rendering algorithm relies on having very dense input video, ideally one frame for each

column of the output image. Often, however, such densely sampled video is not practically

available. In these cases, we use view interpolation to synthesize intermediate views.

For example, the initial acquisition of the Castro street dataset (Figure3.3) used a 30

frame per second video camera driving down the street at about 2 mph. This low speed

is not practical for more than test datasets. In contrast, even though the 18th street dataset

(Figure5.5) was taken with a high-speed camera operating at approximately 70 frames per

second, the average driving speed of 20 mph causes each imageto shift nearly 20 pixels

when reprojected onto the picture surface. Without view interpolation, artifacts such as

those shown in Figure4.3are common.

View interpolation fits very simply into the rendering algorithm described above. As

each input video frame projects onto the picture surface at locationsg (equation4.12), any

particular column will lie between two input video frames. If α ∈ [0,1] is the normalized

position of the column between the two input video frames, then we generate an inter-

polated intermediate viewIα between the two input video frames. If we also generate the

intermediate camera matricesRα andtα , we can render from the interpolated frame exactly

4.3. VIEW INTERPOLATION 39

(a)

(b) (c)

(d) (e)

Figure 4.3: Example of striping artifacts caused by insufficient video framerates. (a) A
section of Lytton Street in Palo Alto, CA. At full resolutionthis image is 7200 pixels wide
but is resampled here to only 1800 pixels wide. When displayed at this lower resolutions,
the video framerate has little effect on the resulting image. (b) A full-resolution crop of the
image around the car without optical flow. This image is 360 pixels wide. (c) The same
car rendered from the same video, but using optical flow to interpolate between input video
frames. (d) A 400-pixel wide crop of the image showing a sign.Notice that the phone
numbers are severely distorted. (e) The same crop rendered using optical flow. The phone
numbers are now legible.

40 CHAPTER 4. RENDERING MULTIPERSPECTIVE IMAGES FROM REAL DATA

as if it were an input video frame using the formulation in (4.8).

Notice that after generating an entire intermediate viewpoint, we extract only a small

region of the generated frame. It is desirable to reduce the computation and generate only

the necessary intermediate pixels. In our datasets, this typically implies generating an

intermediate view for a region only 10 pixels wide. Unfortunately, the view interpolation

requires sufficient context to robustly establish correspondence between pixels in both input

video frames. We have empirically found that our view interpolation requires 300-500 pixel

wide regions to match robustly.

The problem of view interpolation is therefore: Given two imagesI1, I2 along with the

associated camera matrices (K [R1|t1] andK [R2|t2] respectively) and a desired intermedi-

ate positionα ∈ [0,1], compute an estimated intermediate imageIα and the corresponding

camera matricesK [Rα |tα].

The camera motion between the two images is typically small and thus the intermediate

camera matrices are approximated by linear interpolation for the position and spherical

linear interpolation[Sho85] via quaternions for the orientation.

The intermediate image is generated using view interpolation. The two methods we

used are described here, however there is a rich literature for view interpolation [CW93,

SD96, GKG04, XS04].

1. Compute an unconstrained, dense optical flow field betweenthe two images. This

flow field is scaled according toα and used directly to generate the desired inter-

mediate view. A robust optical flow implementation based on [Bla92, BA93] was

implemented. This method is simpler and requires no additional information beyond

the two images. The disadvantage of this method is that it does not exploit the addi-

tional available information of the camera pose.

2. Extend the optical flow to exploit the known camera pose. First rectify the two im-

ages so that the epipolar lines are parallel and then constrain the optical flow com-

putation to be only along the epipolar lines. This gives a disparity estimate for each

pixel of the rectified images that is used to generate a rectified version of the desired

intermediate image. Finally, we apply an inverse homography that maps the rectified

4.3. VIEW INTERPOLATION 41

intermediate image to our desired intermediate image. While this method provides

improved estimation due to the added constraints, it requires accurate camera pose.

4.3.1 Method 1: Optical Flow

Optical Flow Field Computation

We implemented the robust optical flow described by [Bla92, BA93], briefly summarized

here. Given two luminance images,I1(x,y) andI2(x,y), of a scene with arbitrary motion,

the goal is to compute the motion for each pixelDu(x,y) andDv(x,y). We assume that

each pixel inI1 corresponds to a pixel inI2 and that the intensity of corresponding pixels is

equal.

Relying on the intensity constancy assumption, we assume that the image can be repre-

sented by

I1(x,y) = I2(x+Du(x,y),y+Dv(x,y)) (4.13)

for some flow field(Du,Dv).

These can be estimated by minimizing the robust residual error

ED(u,v) = ρ(IxDu+ IyDv + It ,σ1) (4.14)

whereρ is a robust estimator andσ1 weights the influence of intensity outliers in the

optimization. We use the Lorentzian estimator as in [BA93], so that

ρ(x,σ) = log

(
1+

1
2

(x
σ

)2
)

(4.15)

whereσ is the normalization parameter. When estimating a dense flowfield, (4.13) is

underconstrained, so we add the robust regularization termto favor smooth flow fields.

This term is

ES(Du,Dv) = ∑
u∈Du

∑
un∈N

ρ(u−un,σ2)+ ∑
v∈Dv

∑
vn∈N

ρ(v−vn,σ2) (4.16)

42 CHAPTER 4. RENDERING MULTIPERSPECTIVE IMAGES FROM REAL DATA

whereN contains the four neighbors (north, south, east, west) of a given point andσ2

weights the influence of smoothness outliers.

The final energy term that is minimized is

E = ED +λES (4.17)

whereλ controls the regularization. This is solved using a coarse-to-fine simultaneous

over-relation (SOR) implementation as described in [Bla92, BA93].

View Interpolation Using Flow Fields

To generate an intermediate image that isα between the two input images (withα ∈ [0,1]),

the images are bilinearly resampled using a fraction of the computed flow fields.

Iα1(x,y) = I1(x−αDu(x,y),y−αDv(x,y)) (4.18)

Iα2(x,y) = I2(x+(1−α)Du(x,y),y+(1−α)Dv(x,y)) (4.19)

Linearly blending these images creates the desired intermediate imageIα .

Iα = (1−α)Iα1 +αIα2 (4.20)

4.3.2 Method 2: Stereo Flow

Rectification

Stereo algorithms typically assume that the images arerectified, that is, the epipolar lines

are parallel. In many stereo applications, this is enforcedby the physical arrangement of a

pair of stereo cameras. In our case, we rectify the images based on their relative positions

and orientations that was required input for our system.

As in section4.2, we assume that the camera intrinsics (K), rotation matrices (R1,R2),

and the translation vectors (t1, t2) are known. The goal is to compute a new rotationR̂ and

translations for each camerat̂1, t̂2 that aligns the epipolar lines to scanlines. To center the

images, offset are applied to the intrinsics matrixK to form K̂1 andK̂2.

4.3. VIEW INTERPOLATION 43

We used the the rectification algorithm given by Fusiello et al [FTV00], summarized

here. First compute the center of projection for each cameraas

C1 = −RT
1 t1 (4.21)

C2 = −RT
2 t2

These two points define the direction of motion of the camera,and so we rotate the camera

image so that the x-axis of the rectified images is aligned with this baseline. A coordinate

basis aligned with this baseline is constructed by

x = C2−C1 Define baseline direction

z′ = RT
1

[
0 0 1

]T
Extract original z vector from input rotation matrix

y = x×z′ Choose orthogonal y

z = x×y Choose orthogonal z

With this orthogonal basis, we assemble the rotation matrixsimply using the basis vectors

as rows.

R̂ =
[

xT yT zT
]T

(4.22)

We also construct new intrinsics matrices. The intrinsics are equal to the original cam-

era’s intrinsics matrix except that an offset can be appliedto center the images after the

rectification. (See [FTV00] for details)

K̂1 = K +





0 0 dx1

0 0 dy1

0 0 0



 (4.23)

K̂2 = K +





0 0 dx2

0 0 dy2

0 0 0





44 CHAPTER 4. RENDERING MULTIPERSPECTIVE IMAGES FROM REAL DATA

Finally, we can compute the two homographies.

H1 = K̂1R̂(KR1)
−1 (4.24)

H2 = K̂2R̂(KR2)
−1

Because the epipolar lines are now aligned with the x-axis, all motion due to parallax

will manifest as offsets in the x direction in the rectified images. Apply this homography

to the input video framesI1,I2 gives us the rectified input framesÎ1 andÎ2.

Stereo

We now constrain the robust optical flow formulation described in section4.3.1 to only

estimate flow in the x direction. When computing the flow for the rectified images, this

has the effect of constraining the correspondence search tolie along the epipolar lines.

After rectification, this is done simply by constraining theflow field to thex axis, and is

accomplished by dropping thev term entirely from (4.13) to become

Î1(x,y) = Î2(x+ D̂u(x,y),y). (4.25)

Similarly, (4.14) and (4.16) become

ED(Du) = ρ(ÎxD̂u+ Ît ,σ1) (4.26)

ES(Du) = ∑
u∈D̂u

∑
un∈N

ρ(u−un,σ2). (4.27)

The resulting flow field for the rectified imageŝDu is now considered a disparity map

D̂(x,y) such that

Î1(x,y) = Î2(x+ D̂(x,y),y) (4.28)

View interpolation

Once we have computed the disparity between the rectified images, generating an inter-

mediate rectified image is straightforward. An inverse rectification homography must be

4.3. VIEW INTERPOLATION 45

applied to the intermediate rectified image before the imagecan be used as a virtual input

video frame in the rendering system.

The rectified intermediate image is computed by resampling both input rectified images

by a fraction of the disparity, and then linearly blending those images. To compute an

image that isα between the two input images (withα ∈ [0,1]), we first resample both input

rectified images by a fraction of the disparity:

Îα1(x,y) = Î1(x−αD̂(x,y),y) (4.29)

Îα2(x,y) = Î2(x+(1−α)D̂(x,y),y) (4.30)

Linearly blending these images creates an intermediate rectified imageÎα :

Îα = (1−α)Îα1 +α Îα2 (4.31)

In order to sample from this intermediate rectified image using the framework described

above, it is necessary to find the relationship between an intermediate camera image spec-

ified by K [Rα |tα] and the rectified intermediate camera imageÎα just computed. The

rectification homographyHα that relates these is computed as follows.

The offset inK̂ is simply

K̂α = (1−α)K̂1+αK̂2 (4.32)

The intermediate rectified image can be described by the camera matriceŝKα [R̂α |t̂α].

This is related to the desired non-rectified intermediate image by the desired homography

Hα .

Hα (K [Rα |tα]) = K̂α [R̂α |t̂α] (4.33)

From this we get

HαKRα = K
′

αR (4.34)

Hα = K
′

αR(KRα)−1 (4.35)

46 CHAPTER 4. RENDERING MULTIPERSPECTIVE IMAGES FROM REAL DATA

Notice the similarity between (4.35) and (4.24). TransformingÎα by H−
α 1 gives us the

desired intermediate imageIα which we use directly in the rendering system.

4.4 High Dynamic Range

On a sunny day, the dynamic range between a fully sunlit surface and a fully shadowed

surface can span a range of 10,000:1 [XDCW02]. This poses a challenge for most modern

digital cameras which typically have a 10- to 12-bit dynamicrange capability on the sen-

sors. For our application, our camera (a Basler A504kc) useda linear 8-bit sensor. In order

to increase the quality of the output images, we assembled high dynamic range versions of

the multiperspective images. This section describes how these images were created, and is

divided into three parts. First, we briefly described how thecamera was setup to camera

the images. Second, we describe how to assemble several low dynamic range images, and

finally we explain our decision to render the images before assembling into a high-dynamic

range composite.

4.4.1 Capture

The Basler camera is programmed to continuously cycle through a sequence of three pre-

programmed exposures. These are chosen according to the approximate average brightness

of the day and spaced by factors of 8. For example, 0.125ms, 1ms, and 8ms are typical

exposure times.

Because the vehicle is moving continuously, none of the frames are have exactly the

same viewpoint. Thus, the images cannot be directly recombined into a high dynamic

range composite as described by [DM97]. There are two possible approaches to generating

the high dynamic range result:

1. Use view interpolation to combine neighboring frames into a high-dynamic range

video and then use that video for rendering, as in [KUWS03].

2. Render the multiperspective image for each exposure separately and then combine

the separate images into a high-dynamic range composite.

4.4. HIGH DYNAMIC RANGE 47

We used the second approach. It has the advantage that it doesnot require any view

interpolation to function correctly if the input video stream is already sufficiently dense.

Otherwise the two methods require approximately the same amount of computation.

4.4.2 Rendering

Because we render each exposure separately, rendering is performed exactly as described

in previous sections, once for each video stream.

4.4.3 Assembly

Assembling high-dynamic range images is described in detail in [DM97, XDCW02]. Be-

cause we have a restricted input dataset, we can simplify theassembly process. In particu-

lar, we have a linear sensor with known, fixed exposure times and a fixed set of exposures.

We define three weighting functions used to normalize the radiance of the input images:

wlow(c) = 1−clip(s(K−c),0,1) (4.36)

wmed(c) = 1−abs(s(K−c)) (4.37)

whigh(c) = 1+clip(s(K−c),0,1) (4.38)

whereK determines the midpoint of the range andsnormalizes the values. In our case, we

useK = 110 ands= 100. These functions are plotted in Figure4.4.

These weights are then used to directly assemble the high-dynamic range image from

the low-dynamic range input images. For a set ofE exposures, we have a set ofE corre-

sponding pixelspe and exposure timeste. The high dynamic valuerp can computed by first

computing a weighted average of the scaled radiance:

rp =
∑ewe(pe)t−1

e pe

∑ewe(pe)
(4.39)

Here,we is used to denote the weighting function appropriate to the exposure. For only

three exposures,we ≡
{

wlow,wmed,whigh
}

for e≡ {1,2,3} respectively. For more expo-

sures,wmed is used for all interior exposures.

48 CHAPTER 4. RENDERING MULTIPERSPECTIVE IMAGES FROM REAL DATA

0 50 100 150 200 250

0

0.5

1

1.5

0 50 100 150 200 250

0

0.5

1

1.5

0 50 100 150 200 250

0

0.5

1

1.5

w
h
ig
h

w
m
ed

w
lo
w

pixel value (c)

K

Figure 4.4: Weighting function used for determining pixel contribution when assembling
high dynamic range images.

Once the high-dynamic range image has been assembled, it must be mapped back into

a low-dynamic range image for display. This process is called tone-mapping. There are

several tone-mapping operators available, including methods such as [FLW02]. However,

we found the operation that produces the most realistic images for our datasets was a simple

gamma-curve tone mapping. This simply maps radiance valuesto pixel values using

pi = rγ−1

i (4.40)

with appropriate scaling and offset to fit the desired outputrange.

Examples of the input and output of the high-dynamic range imagery can be seen in

Figures4.5and4.6.

4.4. HIGH DYNAMIC RANGE 49

(a) (b)

(c) (d)

Figure 4.5: An example of the high-dynamic range assembly. This example shows a crop
of a particularly dark area of the street, in contrast to the section shown in Figure4.6. These
two crops are taken from the same street dataset and appear indifferent sections of the same
multiperspective image. (a)-(c) A segment of the multiperspective images rendered at each
of three exposures. Note that the image in (a) has been brightened by a factor of 32 for
display purposes. (d) The same segment after combining the three low-dynamic range
images and tone-mapping using a gamma curve. Notice that detail is clearly visible both
inside the store and on the sidewalk in front, but that using any individual low dynamic
range input image would not be able to capture detail both here and in the example in
Figure4.6.

50 CHAPTER 4. RENDERING MULTIPERSPECTIVE IMAGES FROM REAL DATA

Figure 4.6: An example of the high-dynamic range assembly, including the effects of
optical flow. This example shows a crop of a brighter area of the street, in contrast to the
darker section shown in Figure4.5. (top row) A segment of the multiperspective images
rendered at each of three exposures. (middle left) The same segment after combining the
three low-dynamic range images and tone-mapping using a gamma curve, without optical
flow. (middle right) The same region after rendering the three segments using optical flow
and then combining them. (bottom row) Zoom of middle row. Notice the lack of color
artifacts on the front edge of the car.

4.5. DISCUSSION 51

4.5 Discussion

The rendering engine is essential to making our user interface effective, and consists of

three basic components:

1. The basic crossed-slits image rendering engine that resamples pixels from a set of

input images to the specified output image.

2. A view interpolation engine that can be used to trade-off dense input imagery against

computational complexity.

3. A high-dynamic range assembly engine to handle the large dynamic range of typical

outdoor scenes.

For our user interface, we typically use only the first component to render low-resolution

preview images. This provides interactive updates making the user-interface more effective

for constructing the desired image. For the final, high-quality output image, we additionally

enable the view interpolation and high-dynamic range engines.

Chapter 5

Perspective Optimization

The interactive user interface described in Chapter3 is useful for building an intuition about

multiperspective images. However, it is not practical for constructing multiperspective

images on a large scale such as for an entire city. At this scale, it is absolutely essential

to be able to automatically generate images. One possible automatic method is to simply

generate pushbroom images that face in a direction perpendicular to the vehicle motion,

similar to the work by Zheng [Zhe03]. The downside of this approach is that it negates the

potential benefits that adaptive multiperspective images can provide as shown in Chapter3.

We have developed an optimization that can automatically improve pushbroom images

and define multiperspective images similar to those shown inChapter3. This optimization

can be fully automatic or it can accept a user-specified importance map to guide the opti-

mization. The importance map is simply a 2D weighting function that modulates the cost

for each scene point. Because this importance map is specified in world space, it is plau-

sible to automatically generate it based on external metadata without requiring any image

processing.

5.1 Input data

The perspective optimization system has similar input requirements to the rendering re-

quirements specified in Section4.1, however the video images are not used in the opti-

mization. Therefore, the input is assumed to be a set of videoframe positions (Ci) and

52

5.1. INPUT DATA 53

(a)

(b)

(c)

(d)

Figure 5.1: Overview of the optimization process. Given theinput of a 3D point cloud (a),
the 3D points (blue) are projected downward inz to form a 2D histogram (green) shown
below the point cloud (a) and as an image in (b). The optimization is then performed on
this histogram and the results are shown in (c). The camera path is shown in cyan along
the bottom of (c), the optimized picture surface is shown in yellow, and the optimized ray
directions are shown in red. The ray directions are used to create the final multiperspective
image shown in (d).

54 CHAPTER 5. PERSPECTIVE OPTIMIZATION

orientations (Ri) that describe the camera trajectory through the world scene. In addition,

our optimization implementation assumes that the camera trajectory approximately follows

a straight line.

In addition, the automated perspective optimization requires some notion of the 3D

scene structure. In out implementation, this takes the formof a set of points (X j) that

form a point cloud of the scene. For example, the sparse pointcloud generated by most

structure-from-motion algorithms is sufficient (Figure5.10). External sensors such as laser

range finders can also provide this information quickly and reliably (Figures5.5 & 5.6).

Alternatively, the user may manually specify important regions in the scene into a 2D

importance map if the 3D structure is not appropriate (Figure5.10). An example of the 3D

point cloud can be seen in Figure5.1.

5.2 Distortion

The most undesirable effect of perspective distortion is a change in the aspect ratio of an

object, so we call it theaspect ratio distortion. This is caused by the crossed-slits projection

and is also described in Zomet [ZFPW03b]. We first quickly review how an object projects

onto the picture surface for a normal perspective projection. Then we examine how this

changes for a crossed-slits projection, remembering that pushbroom and perspective are

special cases of crossed-slits images. Finally, we interpret the result and show how it is

consistent with intuition and real-world results.

5.2.1 Perspective Projection

Consider a linear, translating camera path as shown in plan view in Figure5.2. The picture

surface is a plane facing the camera at a fixed distanceZ0 from the camera path. A single

planar object exists in the world with dimensionsW×H, having a canonical aspect ratio of

A= W
H . This object is parallel to the picture surface at a distance∆zaway. These are signed

distances, and all have positive values in the example in Figure5.2.

Under a perspective projection, the object will be imaged onthe picture surface with

dimensionsw×h (the diagram indicates the projected widthw). Using similar triangles, we

5.2. DISTORTION 55

Object

Picture surfacew

w’

W

∆z

∆p

Z0

Camera path

Slit Position

Original Camera

Position

C

C’

θ’

θ

θ

θ

Figure 5.2: Distortion due to non-uniform perspective. This is a plan view of a simple
scene consisting of only a single, planar object.

56 CHAPTER 5. PERSPECTIVE OPTIMIZATION

quickly see that

w = W
Z0

Z0 +∆z
(5.1)

That is, the width is reduced proportional to distance behind the picture surface. For ex-

ample, an object twice as far from the camera as the picture surface (∆z= Z0) appears half

as large and an object halfway between the picture surface and the camera (∆z= −Z0
2) will

appear twice as large. Similarly, the projected height willbe

h = H
Z0

Z0 +∆z
(5.2)

and so the aspect ratio of the object projected onto the picture surface will be

a =
w
h

=
W
H

= A (5.3)

There is no change in the object’s aspect ratio.

5.2.2 Aspect Ratio Distortion

Now consider the projection of the object in a crossed-slitsimage. Figure5.2 shows the

scene with a second slit placed a distance∆p away from the original camera path, changing

the perspective structure horizontally. Notice that this will change the projected width of

the object tow′. Again using similar triangles, we find that

w′ = W
Z0 +∆p

Z0 +∆z+∆p
(5.4)

Remember that vertically we still have a perspective image and so the projected height of

the object will not change:

h′ = h = H
Z0

Z0 +∆z
(5.5)

The aspect ratio of the object under this projection is then

a′ =
w′

h
= A

(Z0+∆z)(Z0+∆p)

Z0(Z0 +∆z+∆p)
(5.6)

5.2. DISTORTION 57

Case ∆z ∆p Da

Object on picture surface, any perspective 0 1
Object not on picture surface, normal perspective 0 1

Object not on picture surface, pushbroom ∞ (Z0+∆z)
Z0

Object at infinity, any projection ∞ (Z0+∆p)
Z0

Table 5.1: Common aspect ratio distortions. This table lists several common examples of
perspective distortion in multiperspective images. Notice that if an object is aligned with
the picture surface, then there is no distortion regardlessof the perspective. Similarly, in a
normal perspective there is no distortion regardless of theobject placement. For pushbroom
images, distortion is proportional to the distance from thepicture surface.

We define theaspect ratio distortion, Da as the change in the aspect ratio:

Da =
a′

a
=

(Z0+∆z)(Z0+∆p)

Z0(Z0+∆z+∆p)
(5.7)

This is the basis of our cost function used to evaluate the perspective distortion in a multi-

perspective image.

5.2.3 Discussion

We now verify that the distortion metric is consistent with several common cases (see

summary in Table5.1). Consider a perspective image where∆p = 0. The numerator and

denominator are then equal andDa = 1, regardless of the values ofZ0 or ∆z, confirming

that perspective images have no perspective distortion. Objects on the picture surface are

described by∆z= 0, and againDa = 1 regardless of the type or projection defined by∆p.

This explains why the book cover (Figure2.3) and the building front (Figure5.7) suffer

no distortion; in both cases they are aligned with the picture surface. For a pushbroom

image,∆p approaches∞. In this case, Equation5.7simplifies toDa =
(Z0+∆z)

Z0
and thus the

distortion is linear with the object’s distance from the picture surface.

The relation described in Equation5.7also applies to scenarios where the object, picture

surface, and camera path are not aligned and can be evaluatedby integrating the local

distortion for all points across the object. Thus, it is an appropriate metric for quantifying

the overall distortion in any multiperspective image.

58 CHAPTER 5. PERSPECTIVE OPTIMIZATION

5.3 Cost function

We want to define a cost function that converts the aspect ratio distortion into an error value.

To do this, we make the following observations:

1. Under no distortion, an aspect ratio of 1 should correspond to an error of zero.

2. An object that is stretched to be twice as wide as usual should have the same error as

an object that is half as wide as usual. More generally, an object with an aspect ratio

of Da should have the same error as objects with an aspect ratio of1
Da

.

We therefore define the following cost function to convert the aspect ratio distortion into an

error:

E =






Da−1 1≤Da

1
Da

−1 0≤Da < 1

λ −
1

Da
−1 −1 <Da < 0

λ −Da Da ≤−1

(5.8)

This relationship gives equal error to an object with half its normal aspect ratio and an

object with twice its normal aspect ratio. Values ofλ > 1 penalize negative aspect ratios

where objects are horizontally inverted. We have experimentally determinedλ = 10 to be

appropriate to suppress any significant inversion in the optimization.

5.4 Optimization

The optimization is initialized with a pushbroom image placing the picture surface at an

initial distanceZ0 from the camera path, as shown in Figure5.3(a).

The picture surface is then discretized intoN equal-length segments. Each of these seg-

ments represents a portion of the picture surface with a single type of perspective projec-

tion. The type of perspective projection is defined by the angle of the boundaries between

the two segments. To enforce that the perspective across segments varies smoothly, it is

5.4. OPTIMIZATION 59

cba
scene points

scene points

camera path

picture surface

ray directions

Figure 5.3: The optimization starts with an initial pushbroom image defined by a picture
surface and a set of parallel rays as shown in (a). (b) The picture surface is then divided
into several segments. For each segment, we compute the error of all scene points that are
projected into that segment, as indicated by the shaded regions. (C) The type of perspective
projection in each segment is defined by the angle of that segment’s boundaries. These
angles are altered to minimize the total aspect ratio distortion in the final image. The
position of the picture surface can be adjusted in combination with the ray directions to
further minimize distortion as described in Section5.4.

necessary for neighboring segments to share the boundary. Therefore the perspective of the

N segments can be parameterized by theN+1 boundaries.

These boundaries are defined in terms of the angle of the boundary with respect to the

picture surface,θi . For example, the initial pushbroom image is described byθi = π
2 . The

intersection of the two boundaries corresponds to the pointC′ in Figure5.2, and thus we

can directly compute the local perspective∆p for each of the segments. We can therefore

compute the error of any scene point in a particular segment.The range of values forθi is

limited by the field of view of the input imagery.

The error of a single segment is computed by summing the errorfrom all scene points

that project into that segment as indicated by the shaded regions in Figure5.3(b). The error

of the entire image is simply the sum of the errors of each of the segments. The optimization

therefore finds the set of(Z0,θi) that minimize the overall distortion. Optionally,Z0 can be

fixed and the set of boundary orientations that minimizes theerror for the picture surface

at that location can be found.

This can be described mathematically as follows. A given setof ray directionsθi

(i = 0...N + 1) definesN segmentsSi and corresponding local perspectives∆pi . Within

60 CHAPTER 5. PERSPECTIVE OPTIMIZATION

10
0

10
2

10
4

0

50

100

Total Distortion Error

P
ic

tu
re

 s
u

rf
a

c
e

 l
o

c
a

ti
o

n

Z
0

Pushbroom

Optimized Multiperspective

Figure 5.4: This diagram shows how the total distortion error of a multiperspective image
depends on the picture surface locationZ0. On the right is the importance map for a simple
synthetic scene consisting of only three planes. The graph on the left shows the error of
both the initial pushbroom configuration and the optimized multiperspective configuration
when the picture surface is fixed at the corresponding row in the importance map.

a particular segment,∆p andZ0 are constant, and therefore the error of a pointq is de-

scribed byE(Da(∆zq,∆pi ,Z0)) where∆zq is the orthogonal distance ofq to the picture

surface. The minimization therefore is:

argmin
θi ,Z0

(

∑
S

∑
q∈Si

E(Da(∆zq,∆pi,Z0))

)
(5.9)

5.5 Implementation

The optimization was implemented in C++ and used the Opt++[Mez94] numerical opti-

mization library to perform a bounded Newton optimization.There are several techniques

used to make computing the error function faster and easier.

Instead of manually computing the derivative of the cost function, we take advantage of

5.5. IMPLEMENTATION 61

an automatic differentiation technique described by Piponi[Pip04] which is faster and more

accurate than numerical differentiation. When evaluatingthe aspect ratio within a given

segment,∆pi is determined by the intersection of the two ray directions of the segment:

Z0 +∆pi = −
D
2

(
cos(θi +θi+1)−cos(θi+1−θi)

sin(θi+1−θi)

)
(5.10)

whereD is the length of the picture surface segment. Unfortunately, this can cause a divide-

by-zero error in the common situation that the rays are parallel. We avoid this intermediate

computation by substituting this expression into the equation 5.7and simplifying to obtain:

Da =
Z0 +∆z

Z0

1
K +1

(5.11)

where

K =
2∆z
D

(
sin(θi+1−θi)

cos(θi +θi+1)−cos(θi+1−θi)

)
(5.12)

Notice that the distortion in (5.7) depends only on the depth (∆z) and local perspective

(∆p) of that point. It doesnot depend on the height of that point above the ground plane.

We can therefore take the input 3D scene geometry and projectthe points down onto the

ground plane, removing thezcomponent. We then quantize thex andy values into bins and

count the number of points in each bin creating a 2D histogramas shown in Figure5.3(a).

Instead of searching for scene points that fit within each segment, we simply compute the

bounds of the segment within the histogram and compute the error for that region.

This histogram is simply an image analogous to an overhead density map of the scene.

An example can be seen in Figure5.1. By default all scene points contribute equally to the

error function. The user may optionally augment the histogram with a 2D importance map

that modulates the histogram. This allows the user to manually emphasize or de-emphasize

regions of the scene. We have used this in Figure5.10 to guide the optimization toward

important regions of the scene.

Assuming the picture surface is aligned with thex axis of the histogram, the distortion

is constant alongx within each segment. We can efficiently integrate the contribution of

each row using a summed area table [Cro84].

To avoid local minima, we perform a multiresolution optimization. Both the importance

62 CHAPTER 5. PERSPECTIVE OPTIMIZATION

Figure 5.5: A portion of a long multiperspective image spanning 2 km of 18th Ave in
San Francisco, south of Golden Gate National Park. The perspective varies continuously
along this image, enabling an arbitrarily long seamless panorama. The perspective is au-
tomatically computed to minimize aspect ratio distortionsin regions that have large depth
variation such as road intersections. The image isn’t perfectly horizontal because the city
itself has hills and they are captured in the panorama.

map and the number of segments along the picture surface are reduced hierarchically.

These implementation techniques make the optimization very fast. On a dual Xeon

3.2GHz PC with 1GB of ram, the entire city street example in Figure5.5 takes just over 5

minutes (302 seconds) to optimize, specifying the varying perspective for a 600 megapixel

image (325k pixels wide).

5.6 Results

We have applied our technique to indoor and outdoor scenes: aroom inside a museum

(Figure5.10), Mission Street (presented in Figure5.6), and 18th Ave (Figure5.5) in San

Francisco. The museum scene was acquired moving a sideways looking video camera

along a straight line parallel to the scene and spans approximately 20m. The camera path

was extracted from the video using the freely-available Voodoo Camera Tracker [Uni03]

structure-from-motion software which also outputs a sparse 3D point cloud. The street

scenes were captured using a sideways-looking, high-speedcamera (Basler A504kc) in a

car driving in normal traffic (0-20mph). The camera pose was estimated using accelerome-

ters and GPS via a Kalman filter. The 3D scene structure was acquired using time-of-flight

range finders. The Mission street image spans about 860m while the 18th Ave image spans

about 2088m. It is possible to use SFM to generate the required projection matrices and

scene estimates for the street scenes, however many SFM algorithms do not handle ex-

tremely long, linear scenes robustly.

5.6. RESULTS 63

(a)

(b)

(c)

Figure 5.6: Multiperspective images generated automatically from a video stream with
lateral movement: (a) A pushbroom image, which uses the perspective provided by the
input stream in they-direction and an orthographic projection inx, in order to combine the
information of all frames. Notice the difference in perspective in x andy leads to severe
distortion at the intersection and the alleyway. (b) A multiperspective image generated
automatically using our technique. While the perspective iny is still the same, we optimized
the perspective inx in each image segment in order to minimize distortion. Notice that this
is an image with multiple perspectives – there is a vanishingpoint down the alleyway and
a separate vanishing point down the intersection. (c) A planview of the street showing the
optimized ray directions (red). You can see how the rays nearly converge to a perspective
at the intersection and again near the alleyway. The yellow line denotes the picture surface.
The blue channel is a visualization of the cost function overthe entire space. Notice that
this set of ray directions minimizes the intersection between the scene points (green) and
the error (blue).

Table5.2summarizes the scene size, the number of input frames, number of optimiza-

tion segments, output sizes, and the timings for the perspective optimization. The only

user-selectable parameter is the number of segments to optimize, which should be chosen

according to the scene length. Due to the hierarchical optimization and the use of summed

area tables the optimization performs well even for the larger street scenes.

5.6.1 Discussion

In all three scenes the artifacts due to aspect ratio distortion after optimization have been

reduced to a minimum compared to the pushbroom panoramas. Wewill now focus on the

64 CHAPTER 5. PERSPECTIVE OPTIMIZATION

(a) (b) (c) (d)

Figure 5.7: These figures indicate how the image is effected by changes in∆z. The bottom
row shows the ray directions (red), the picture surface (yellow), the scene histogram (green)
and the distortion error (increasing shades of blue). Portions of the scene that are aligned
with the picture surface, such as the store front in (a) and (b), are not affected by the ray
directions. In contrast, the error of regions that have significant depth variation, such as in
(c) and (d), is sensitive to the ray directions.

scene size # input histogram # segments output optimization
(in m) frames size resolution (in min.)

Museum Scene 20 941 896×425 64 2522×438 0:35
Mission Street 860 21520 2482×183 512 61320×1000 2:16
18th Ave 2088 61092 7312×200 512 325240×11538† 5:02

Table 5.2: Facts about the different scenes. The optimization is fast even for large scenes.
† Because 18th Ave is not flat, large sections of this image are blank. The actual image area
is approximately 600MP instead of 3.4GP.

performance of the optimization by analyzing special casesin the Mission St. panorama.

Figure5.7visualizes the dependence of the error function with regardto the placement of

the picture surfacez0. If the scene is at the picture surface (Fig.5.7(a) and (b)) there is no

aspect ratio distortion, no matter which perspective is selected. For surface points off the

picture surface, (c) and (d), the error can only be minimizedby approaching the original

camera perspective. If the area of the depth deviation is toolarge to be covered by a single

input image, as in case of Figure5.8, our optimization resorts to the closest crossed-slits

perspective that spans the entire gap.

The proposed error metric only accounts for aspect ratio distortion. This has the effect

5.6. RESULTS 65

Figure 5.8: Limitations of our algorithm. The optimizationis unable to eliminate the dis-
tortion of the cars because the cars form a continuous regionwith large depth variation. The
best solution therefore is an extreme crossed-slits – approaching a pushbroom perspective
across the entire region. Furthermore, our error metric does not account for shear in the
projection. The shear is influenced by neighboring regions not shown.

that a sheared perspective contributes the same error as a more symmetric setup. In Fig-

ure5.8all cars are shown from an oblique view. Notice that the oblique view in fact does

not introduce any further distortions. Our optimization does not prefer one over the other

and has the freedom to chose whatever shear fits best in order to optimize for neighboring

regions.

Our approach is unaware of occlusions (Figure5.10(bottom)). In this case our algo-

rithm during optimization may consider the error even for anobject that will be occluded

in the final output. An optimization considering occlusionswould have some impact on

the resulting shear. One expects that the shear will be chosen such that foreground objects

occlude as many scene points which are off the picture surface as possible.

An artifact due to an incorrect estimate of scene geometry ispresented in Figure5.9.

Because of the limited range of the 3D range finders the building in the background does

not show up in the depth histogram and the algorithm allows some rays to cross in front

of the building resulting in multiple copies of the buildingin the output image. In the

pushbroom image the building is visible only once.

The method uses a rough estimate of the depth variation in thescene, currently in the

66 CHAPTER 5. PERSPECTIVE OPTIMIZATION

Picture surface

Camera path

Distant object

3 Crossed-slits images

Figure 5.9: Limitations of our algorithm. On top is a pushbroom image showing a single,
distant, distorted building. Unfortunately the building was too far for the 3D scanner to
detect and therefore was not considered in our optimization. The resulting optimized rays
cross in front of the building causing a triple image to occur, highlighted in the second
image. This effect is shown in the bottom diagram. Objects that are behind the the inter-
section of rays appear in three separate images. In the diagram, the object will appear as
perspective in both the blue and the green images. The intermediate red crossed-slits image
will also show the object, however the object will be horizontally reverse. The final result
is a triple image of the object.

5.6. RESULTS 67

form of a histogram of scene points in thex-zplane. One can easily modify the influence of

particular scene objects on the optimization by manipulating their contribution to the his-

togram. By analyzing the input sequence one might be able to perform an object segmenta-

tion and determine which scene parts are important to have minimum distortion. Similarly,

one could think of detecting and emphasizing scene regions with highly regular textures for

which aspect ratio distortion produces a higher visual impact than for non-textured regions.

In the future we plan to extend our work to correctly handle occlusions. Instead of

evaluating the error metric on a projected depth histogram one could evaluate it for each

rendered pixel in the final output image. This way, pixels that are occluded would not

contribute to the overall error. While this approach might yield even more precise results it

is inherently much costlier to compute than our presented technique.

Another aspect which is interesting to investigate is to allow for non-planar picture sur-

faces which could be used to emphasize or enlarge specific features in the scene. However,

it is not yet clear what kinds of artifacts will be introducedby the change in sampling

resolution and the resulting change in relative size of real-world objects in the final out-

put. While our optimization algorithm is flexible enough to handle even curved picture

surfaces our current error metric does not account for this kind of distortion introduced by

the variation in the output sampling.

68 CHAPTER 5. PERSPECTIVE OPTIMIZATION

(a)

(b)

(c)

(d) (e)

Figure 5.10: Museum scene. (a) Pushbroom. The sculptures onthe left and the hallway
on the right are severely distorted. (b) Automatic perspective. The optimization reduces
the distortion but is unable to distinguish artwork and other scene content. There is still
some distortion in the hallway. (c) Importance map. Adjusting the histogram to emphasize
the relevant artwork results in less distortion for these objects. However, the overall geo-
metric distortion has been increased. Notice that our algorithm does not consider effects of
occlusions as seen in the sculptures on the left.

Chapter 6

Discussion

The ideas presented in this thesis are only a start toward thetask of digitizing an entire

city. In this chapter, I will discuss important extensions and considerations in extending

this work to a larger scale.

6.1 Input requirements and rendering

6.1.1 Implementation

The dense input video requirements are the most stringent requirement for the results de-

scribed in this thesis. Capturing this input video on a largescale is certainly an engineering

challenge. In our case, we used a high-speed camera so that wecan acquire images as dense

as an image every centimeter even while driving at speeds of up to 10 mph. However, in

the common case that speeds above 10 mph were necessary, the view interpolation schemes

described in Section4.3were used successfully.

6.1.2 Relaxing the requirements

A key concept in this work is the reliance on using the linear crossed-slits camera pro-

jection and compositing those projections to form the final multiperspective image. This

representation has many benefits as described in Section2.1.3, however it suffers from the

69

70 CHAPTER 6. DISCUSSION

(a) Perspective image (b) Integration on picture surface (c) Synthetic focus image

Figure 6.1: Here we show an extension of our rendering algorithm to generate synthetically
focused images. By integrating over an angular arc for each point on the picture surface
as shown in (b), we can simulate a large 1D aperture focused atthe picture surface. (c) is
an example of such a synthetically focused image with the focus fixed at the plane of the
facade. Note that the tree present in (a) is blurred out.

requirement of dense input video imagery. In recent literature, there have been a number

of related research publications that suggest alternatives or workarounds to this limitation.

For example, Agarwala et al. [AAC+06] have described a graph-cut rendering algo-

rithm that chooses nonlinear seams between images and minimizes the distortion along the

seam. By using this approach, they have demonstrated that with properly aligned input im-

ages they can reconstruct a high resolution, high quality photomosaic. Unfortunately, their

algorithm does not robustly handle significant depth variation. One could imagine integrat-

ing our distortion metric into their seam-selection cost function to improve the output.

6.1.3 Extensions

There are a number of interesting extensions to the collected data that could improve both

the utility of the dataset and quality of the resulting images.

6.1. INPUT REQUIREMENTS AND RENDERING 71

Synthetic Aperture Photography

All of our examples have an effectively infinite depth of field(assuming pinhole cameras

for input). By averaging multiple input video frames projected onto the picture surface, we

can simulate a synthetic aperture as discussed in Vaish et al. [VWL04]. This results in an

extremely shallow depth of field image. Because our input dataset is only 3D (as opposed

to a 4D lightfield), our synthetic aperture is only 1D, whereas the apertures in [VWL04] are

2D. Figure6.1shows an example of this effect. Synthetic aperture imagingcould be used

both to enhance a relevant portion of the scene (e.g. deciphering partially occluded text) or

to blur out an undesireable portion of the scene (e.g. blur out people to protect privacy).

Field of view trade-off

The trade-off between the image resolution and the field of view of the input imagery is a

difficult one to handle. On the one hand, having a very wide input field of view increases

the flexibility of the optimization in choosing viewpoints for regions of the image. For

example, if the input imagery has a sufficiently wide field of view, even a very wide street

intersection could conceivably come from a single input image, completely removing any

distortion. On the other hand, a wider field of view inherently reduces the detail for each

pixel throughout the image.

It would be interesting to investigate using a non-uniformly sampled image sensor (or

equivalently, a nonuniform lens) that allows both a very wide overall field of view but

similarly keeping a high-resolution central region on the assumption that the straight-on

view is preferable. So far, this effectively describes a fish-eye lens. For this particular

application, however, a lens that is horizontally fish-eye only might be preferable since we

are taking only vertical strips from each input image.

Multiple cameras

It’s possible to combine images from multiple cameras. For example, instead of using

only a single video camera mounted on a vehicle, consider mounting an entire column of

video cameras. As the vehicle moves down the street, the column of video cameras will

acquire a full 4D lightfield. A similar dataset can also be acquired by driving multiple times

72 CHAPTER 6. DISCUSSION

with a camera at different heights, although in this case there is the additional problem of

combining multiple datasets taken at different times (see Section6.3below).

Once you have a full 4D lightfield, there are many interestingpossibilities that open up.

For example, you can construct fully perspective images (rather than crossed-slits) that are

set much further back, removing distortion caused by the difference between the vertical

and horizontal perspectives. In addition, image-based rendering techniques could be used

to virtually explore the region.

6.2 Extending the optimization

There are a number of assumptions in the described optimization implementation that re-

strict the applicability of this research. Here I want to briefly examine what these assump-

tions are, how they can be overcome, and other interesting extensions to this work.

The primary restriction lies in the constraint that the picture surface must be parallel

to the original camera trajectory. This restriction is not imposed by any of the theoretical

constructions of our optimization, but rather by our particular implementation and is a

result of the desire to have a very fast optimization that canbe run quickly even over

massive datasets. Without the projection to a ground plane,instead of using a histogram to

represent the scene, the full list of 3D points can be used. This will also lose the summed-

area-table implementation speedup, however the optimization can still be run simply by

applying the error function to all 3D points that lie betweenthe two planes that represent the

boundaries of the crossed-slits projection. All of this only affects the speed of evaluating the

cost function for a particular arrangement of crossed-slits projections, not the optimization

itself.

A second major restriction in the optimization is that the picture surface is assumed

to be vertical. While this is appropriate for most urban environments, it is possible that

non-vertical picture surfaces may be desired. If the orientation of the picture surface is

known, the optimization can be implemented by computing thecost function from the full

list of 3D points and taking into account the orthogonal distance between each point and

the picture surface. Ideally, the orientation of the picture surface would be included in the

optimization.

6.3. COMBINING MULTIPLE DATASETS 73

6.3 Combining multiple datasets

A new and very interesting challenge introduced by this visualization technique is how to

remove undesirable occluders by combining multiple datasets. In particular, imagine that

the first dataset images the first part of the street satisfactorily but a large truck occludes the

second part of the street. On a second pass, the second part isimaged satisfactorily but the

first part is occluded. There are a number of challenges involved in combining these two

datasets, even in the simplest case where you might simply want to take half from the first

and half from the second.

6.3.1 Registration

In order for two datasets to be seamlessly combined, they must be correctly registered to

each other. The case of visualizing an urban environment, itis reasonable that the datasets

should all be registered to a global reference frame, for sample GPS-based. However, GPS

measurements typically only accurate to within a few meters, or a few centimeters if differ-

ential GPS is used. Worse, GPS measurements are especially noisy in urban environments

because of the reflections off buildings and it is therefore often very difficult to get precise

global positioning between two datasets.

Instead, it is likely to be necessary to register the datasets themselves, either by scan-

matching the LIDAR data or by using image-based alignment such as structure-from-

motion (SFM) algorithms that track features across both sequences. For the feature track-

ing, special care will have to be taken because the two sequences are likely to violate many

of the common assumptions such as static scenes and constantlighting, as described in

sections6.3.2and6.3.3described below. Sand et al [ST04] have demonstrated a robust

video registration technique that is resilient to changes in motion, timing, and lighting.

6.3.2 Occluders and moving objects

Video and LIDAR data of the same region captured at differenttimes have some interesting

properties. Assuming that this data can be properly registered, this provides the ability

to quickly and easily segment out transient objects such as people, delivery trucks, other

74 CHAPTER 6. DISCUSSION

moving vehicles, and other undesirable occluders. Any significant differences between the

data make it difficult to use in the registration process, however.

6.3.3 Lighting compensation

A significant challenge in combining multiple datasets taken at different times into a single

datasets is in the rendering. Specifically, how to combine image data from both datasets

while avoiding ugly seams between the images. This is especially difficult when the

datasets are collected at different times of the day, and will therefore have different lighting

conditions. Lighting conditions can drastically affect the color and appearances of objects

as shown in Figure6.2.

6.3.4 Other sensing modalities

It is also possible to combine this data with completely separate collection sensors, such

as aerial LIDAR and aerial photography. This has been investigated by Früh and Zakhor

[FZ04]. Automatically combining street-level imagery with aerial imagery provides a con-

venient mechanism for handling tall buildings that exceed the field of view of the ground-

based input video camera.

6.4 Privacy

The possibility of having public urban areas automaticallyimaged and easily publicly ac-

cessible opens up new concerns about privacy. It may be necessary to remove people to

protect their identities if the resulting data is to be publicly accessible. If this is the case,

then it is not desirable for this process to be done manually.Instead, it would be better to

automatically detect and remove or blur people out.

6.5 Segmentation

In addition to applying special processing to people in order to protect privacy, it is desir-

ably to detect and segment out other world objects in a semantic sense. This can enable

6.5. SEGMENTATION 75

Figure 6.2: This figure shows how variation in lighting conditions can drastically affect
the appearance of a region. Both of these images were taken inapproximately the same
location and of the same scene only a few hours apart. Notice in the top image the cloudy
sky and soft shadows, along with the dark blue and beige colors of the storefronts. Contrast
that with the bottom image. The sky is now a clear, deep blue. The storefronts are more
vibrant with entirely different shades of blue and a light tan color. Also, there are now
strong, sharp shadows. Also, notice that the differing angle of the sunlight causes the
opposite highlights on the tree on the far left. Finally, thereflections in the stores of the two
images are vastly different, causing significant differences in the visibility into the stores
between the two images.

76 CHAPTER 6. DISCUSSION

separate rendering algorithms for objects at varying depths, for example.

6.6 After the image

There is much interesting work to be done after a satisfactory multiperspective image is

created. Optical character recognition (OCR) could be usedto automatically extract street

addresses or store names from the resulting image. Notice that extracting information from

the multiperspective image results in a substantial decrease in the amount of image data

that must be processed compared to the original video sequence. In addition, because the

picture surface is defined in world coordinates, external knowledge of the location of the

picture surface can guide text extraction. For example in Figure5.6: Because it’s known

that this is Mission St. in San Francisco, a list of stores that are known to be on that street

can be used to constrain text extraction. Many types of metadata could be extracted in a

similar fashion: street names and addresses, parking information, store hours, etc.

The presentation of the multiperspective image also provides a unique challenge. As

demonstrated by the example in Figure5.5, these images can be extremely wide—much

wider than generally available display technology—and require special consideration for

presentation. Multiresolution display approaches similar to Google Maps [Goo06a] that

allow a user to quickly and naturally browse enormous imagesseem like an appropriate

interface.

An alternative to viewing these as purely 2D images is to combine with with aerial or

satellite imagery. As noted in the introduction, one of the drawbacks of aerial imagery is

that it does not adequately represent the view a user expectswhen standing at a particular

location. These multiperspective images do represent thatview. Combining the two views

effectively poses a challenge. Another approach entirely is to incorporate the images into

abstract maps as in the map in Figure6.3.

6.6. AFTER THE IMAGE 77

Figure 6.3: A mockup map that embeds multiperspective images of street blocks into a
traditional city map. With this map, a person can see the actual storefronts along the street
and more easily locate a desired store. This can also help a person locate themselves by
comparing their view to the map images.

Bibliography

[2D306] 2D3. Boujou. http://www.2d3.com, 2001-2006.33

[AAC+06] Aseem Agarwala, Maneesh Agrawala, Michael Cohen, DavidSalesin, and

Richard Szeliski. Photographing long scenes with multi-viewpoint panora-

mas.ACM Trans. Graph., 25(3):853–861, 2006.8, 70

[BA93] Michael Black and P. Anandan. A framework for the robust estimation of

optical flow. Fourth International Conference on Computer Vision (ICCV),

pages 231–236, 1993.40, 41, 42

[Bla92] Michael Black.Robust Incremental Optical Flow. PhD thesis, Yale Univer-

sity, Sep 1992.40, 41, 42

[Che95] Shenchang Eric Chen. Quicktime VR: An image-based approach to virtual

environment navigation. InProceedings of the 22nd annual conference on

Computer Graphics and Interactive Techniques, pages 29–38. ACM Press,

1995.4

[Cro84] Franklin C. Crow. Summed-area tables for texture mapping. InSIGGRAPH

’84: Proceedings of the 11th annual conference on Computer graphics and

interactive techniques, pages 207–212, New York, NY, USA, 1984. ACM

Press.61

[CT01] Nelson Siu-Hang Chu and Chiew-Lan Tai. Animating chinese landscape

paintings and panorama using multi-perspective modeling.In CGI ’01: Com-

puter Graphics International 2001, pages 107–112, Washington, DC, USA,

2001. IEEE Computer Society.7

78

BIBLIOGRAPHY 79

[CW93] Shenchang Eric Chen and Lance Williams. View interpolation for image syn-

thesis. Computer Graphics, 27(Annual Conference Series):279–288, 1993.

40

[DM97] Paul E. Debevec and Jitendra Malik. Recovering high dynamic range radiance

maps from photographs. InSIGGRAPH ’97: Proceedings of the 24th annual

conference on Computer graphics and interactive techniques, pages 369–378,

New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co. 46,

47

[FLW02] Raanan Fattal, Dani Lischinski, and Michael Werman. Gradient domain high

dynamic range compression. InSIGGRAPH ’02: Proceedings of the 29th

annual conference on Computer graphics and interactive techniques, pages

249–256, New York, NY, USA, 2002. ACM Press.48

[FTV00] A. Fusiello, E. Trucco, and A. Verri. A compact algorithm for rectification of

stereo pairs.Machine Vision and Applications, 12(1):16–22, 2000.43

[FZ04] Christian Früh and Avideh Zakhor. An automated method for large-scale,

ground-based city model acquisition.Int. J. Comput. Vision, 60(1):5–24,

2004.2, 74

[GH97] Rajiv Gupta and Richard I. Hartley. Linear pushbroomcameras.IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 19(9):963–975, 1997.

7, 14

[GKG04] Indra Geys, Thomas P. Koninckx, and Luc Van Gool. Fast interpolated cam-

eras by combining a gpu based plane sweep with a max-flow regularisation

algorithm. Second International Symposium on 3D Data Processing, Visual-

ization and Transmission (3DPVT’04), pages 534–541, 2004.40

[Gla00] Andrew S. Glassner. Cubism and cameras: Free-form optics for computer

graphics.Microsoft Research Technical Report MSR-TR-2000-05, 2000.7

[Goo06a] Google. Maps. http://maps.google.com, 2002-2006. 76

80 BIBLIOGRAPHY

[Goo06b] Google. Earth. http://earth.google.com, 2004-2006. 1

[HG94] Richard I. Hartley and Rajiv Gupta. Linear pushbroomcameras. InProceed-

ings of the third European conference on Computer Vision, pages 555–566.

Springer-Verlag New York, Inc., 1994.5

[HZ04] R. I. Hartley and A. Zisserman.Multiple View Geometry in Computer Vision.

Cambridge University Press, ISBN: 0521540518, second edition, 2004.12

[Kol04] Michael Koller. Seamless city. http://www.seamlesscity.com, 2004.5

[KUWS03] Sing Bing Kang, Matthew Uyttendaele, Simon Winder, and Richard Szeliski.

High dynamic range video.ACM Trans. Graph., 22(3):319–325, 2003.46

[Mez94] J. C. Meza. Opt++: An object-oriented class libraryfor nonlinear optimiza-

tion. Technical report, Sandia National Laboratories, Livermore, CA, March

1994.60

[Nay97] Shree K. Nayar. Catadioptric omnidirectional camera. InProceedings of the

IEEE conference on Computer Vision and Pattern Recognition, pages 482–

488. IEEE Computer Society, 1997.2

[Ope92] OpenGL Architecture Review Board.OpenGL Reference Manual: The of-

ficial reference document for OpenGL, Release 1. Addison Wesley, 1992.

11

[Pip04] Dan Piponi. Automatic differentiation, c++ templates, and photogrammetry.

In The Journal of Graphics Tools, volume 9, 2004.61

[PRRAZ00] Shmuel Peleg, Benny Rousso, Alex Rav-Acha, and Assaf Zomet. Mosaicing

on adaptive manifolds.IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(10):1144–1154, 2000.5

[RB98] Paul Rademacher and Gary Bishop. Multiple-center-of-projection images.

In Proceedings of the 25th annual conference on Computer Graphics and

Interactive Techniques, pages 199–206. ACM Press, 1998.6

BIBLIOGRAPHY 81

[SD96] Steven M. Seitz and Charles R. Dyer. View morphing.Computer Graphics,

30(Annual Conference Series):21–30, 1996.40

[Sho85] Ken Shoemake. Animating rotation with quaternion curves. InSIGGRAPH

’85: Proceedings of the 12th annual conference on Computer graphics and

interactive techniques, pages 245–254, New York, NY, USA, 1985. ACM

Press.40

[SK03] Steven M. Seitz and Jiwon Kim. Multiperpective imaging. IEEE Computer

Graphics and Applications, 23(6):16–19, 2003.8

[SS00] Heung-Yeung Shum and Richard Szeliski. Construction of panoramic image

mosaics with global and local alignment.International Journal of Computer

Vision, 36(2):101–130, 2000.4

[ST04] Peter Sand and Seth Teller. Video matching.ACM Trans. Graph., 23(3):592–

599, 2004.73

[Uni03] University of Hannover. Voodoo camera tracker. http://www.digilab.uni-

hannover.de/docs/manual.html, 2003.33, 62

[Van06] Virtually Vancouver. Virtual visit of vancouver.

http://www.virtuallyvancouver.com/index2.html, 2004-2006.4

[VC01] Scott Vallance and Paul Calder. Multi-perpective images for visualisation. In

Proceedings of the Pan-Sydney area workshop on Visual Information Process-

ing 2001, pages 69–76. Australian Computer Society, Inc., 2001.7

[VWL04] Vaibhav Vaish, Bennett Wilburn, and Marc Levoy. Using plane + parallax

for calibrating dense camera arrays. InProceedings of the IEEE conference

on Computer Vision and Pattern Recognition (to appear). IEEE Computer

Society, 2004.71

82 BIBLIOGRAPHY

[WFH+97] Daniel N. Wood, Adam Finkelstein, John F. Hughes, Craig E. Thayer, and

David H. Salesin. Multiperspective panoramas for cel animation. In Pro-

ceedings of the 24th annual conference on Computer Graphicsand Interac-

tive Techniques, pages 243–250. ACM Press/Addison-Wesley Publishing Co.,

1997.6

[XDCW02] Feng Xiao, Jeffrey M. DiCarlo, Peter B. Catrysse, and Brian A. Wandell. High

dynamic range imaging of natural scenes. InThe Tenth Color Imaging Con-

ference: Color Science and Engineering Systems, Technologies, Applications,

pages 337–342, 2002.46, 47

[XS04] J. Xiao and M. Shah. Tri-view morphing.Computer Vision and Image Un-

derstanding, 2004.40

[YM04] Jingyi Yu and Leonard McMillan. General linear cameras. InProceedings

of the eighth European conference on Computer Vision (to appear). Springer-

Verlag New York, Inc., 2004.7, 18, 19, 27

[ZFPW03a] A. Zomet, D. Feldman, S. Peleg, and D. Weinshall. Mosaicing new views:

The crossed-slits projection, 2003.5, 7, 14

[ZFPW03b] Assaf Zomet, Doron Feldman, Shmuel Peleg, and Daphne Weinshall. Mosaic-

ing new views: The crossed-slits projection.IEEE Transactions on Pattern

Analysis and Machine Intelligence, 25(6):741–754, 2003.5, 54

[Zhe03] Jiang Yu Zheng. Digital route panoramas.IEEE MultiMedia, 10(03):57–67,

2003.8, 52

[Zhe04] Jiang Yu Zheng. Stabilizing route panoramas. InICPR (4), pages 348–351,

2004.8

	Abstract
	Acknowledgements
	Introduction
	3D Visualizations
	2D Visualizations
	Computer generated multiperspective images
	Camera Models

	Applications
	Our contributions

	Multiperspective Imaging Paradigm
	Camera Models
	Perspective
	Pushbroom
	Crossed-slits

	Multiperspective Images
	Interpolating Two Crossed-Slits Images

	Interactive Specification of Multiperspective Images
	Design Choices
	User Interface
	Results
	Discussion

	Rendering Multiperspective Images from Real Data
	Data Requirements
	Algorithm for Rendering MPIs
	View Interpolation
	Method 1: Optical Flow
	Method 2: Stereo Flow

	High Dynamic Range
	Capture
	Rendering
	Assembly

	Discussion

	Perspective Optimization
	Input data
	Distortion
	Perspective Projection
	Aspect Ratio Distortion
	Discussion

	Cost function
	Optimization
	Implementation
	Results
	Discussion

	Discussion
	Input requirements and rendering
	Implementation
	Relaxing the requirements
	Extensions

	Extending the optimization
	Combining multiple datasets
	Registration
	Occluders and moving objects
	Lighting compensation
	Other sensing modalities

	Privacy
	Segmentation
	After the image

	Bibliography

