CS 468 (Spring 2013) - Discrete Differential Geometry

Lecture 9 Supplement

1. The First Variation of Area

The mean curvature of a surface S is the gradient of surface area. I.e. the surface area of S decreases fastest when it is deformed by H in the unit normal direction. To see this: let $\phi: \mathcal{U} \rightarrow \mathbb{R}^{3}$ parametrize S and let $f: \mathcal{U} \rightarrow \mathbb{R}$ be a function. Then $\phi_{\varepsilon}:=\phi+\varepsilon f \cdot N$ parametrizes a small deformation of S when ε is sufficiently small. Here N is the unit normal vector field - note that a large class of nearby surfaces can be parametrized in this way (think about this!). Denote the deformed surface by S_{ε}.

We'd like to differentiate the quantity $($ Area $)\left(S_{\varepsilon}\right)$ and see what comes out. Let $g_{\varepsilon}(u):=$ $\left[D \phi_{\varepsilon}\right]_{u}^{\top}\left[D \phi_{\varepsilon}\right]_{u}$ and $g:=g_{0}$. Then we can express the area of $\phi_{\varepsilon}(\mathcal{U})$ as

$$
\operatorname{Area}\left(\phi_{\varepsilon}(\mathcal{U})\right)=\int_{\mathcal{U}} \sqrt{\operatorname{det}\left(g_{\varepsilon}(u)\right)} d u
$$

To differentiate this, we'll need a formula for the derivative of a determinant. The formula we'll use is a "standard" result but that you may not have seen yet. Suppose A_{ε} is a differentiable family of invertible matrices. Then

$$
\frac{d}{d \varepsilon} \operatorname{det}\left(A_{\varepsilon}\right)=\operatorname{det}\left(A_{\varepsilon}\right) \operatorname{Tr}\left(A_{\varepsilon}^{-1} \frac{d A_{\varepsilon}}{d \varepsilon}\right) .
$$

A way to re-derive this formula in case you forget is to assume A_{ε} is diagonal and apply the product rule to the derminant of A_{ε}, which is the product of the eigenvalues of A_{ε}. (The actual proof is close to this.) Now we have

$$
\begin{aligned}
\left.\frac{d}{d \varepsilon} \operatorname{Area}\left(\phi_{\varepsilon}(\mathcal{U})\right)\right|_{\varepsilon=0} & =\left.\frac{d}{d \varepsilon} \int_{\mathcal{U}} \sqrt{\operatorname{det}\left(g_{\varepsilon}(u)\right)} d u\right|_{\varepsilon=0} \\
& =\frac{1}{2} \int_{\mathcal{U}} \operatorname{Tr}\left(\left.g^{-1} \frac{d g_{\varepsilon}(u)}{d \varepsilon}\right|_{\varepsilon=0}\right) \sqrt{\operatorname{det}(g(u))} d u
\end{aligned}
$$

To finish, we need to differentiate g_{ε}. Recall that $\left[g_{\varepsilon}\right]_{i j}=\left\langle E_{i}(\varepsilon), E_{j}(\varepsilon)\right\rangle$ where

$$
E_{i}(\varepsilon)=\frac{\partial \phi_{\varepsilon}}{\partial u^{i}}=E_{i}(0)+\varepsilon \frac{\partial f}{\partial u^{i}} N+\varepsilon f(u) \frac{\partial N}{\partial u^{i}}
$$

are the coordinate vector fields. Hence

$$
\left[g_{\varepsilon}\right]_{i j}=\left[g_{0}\right]_{i j}+\varepsilon f\left(\left\langle E_{i}(0), \frac{\partial N}{\partial u^{j}}\right\rangle+\left\langle\frac{\partial N}{\partial u^{i}}, E_{j}(0)\right\rangle\right)+\mathcal{O}\left(\varepsilon^{2}\right)=\left[g_{0}\right]_{i j}+2 \varepsilon f A_{i j}+\mathcal{O}\left(\varepsilon^{2}\right)
$$

by the self-adjointness of the second fundamental form A of S at u in the parameter domain \mathcal{U}. We've kept track of g_{ε} up to first order in ε only because we'll eventually take the derivative and then set $\varepsilon=0$. In fact, we get

$$
\left.\frac{d}{d \varepsilon} \operatorname{Area}\left(\phi_{\varepsilon}(\mathcal{U})\right)\right|_{\varepsilon=0}=\int_{\mathcal{U}} f(u) \operatorname{Tr}\left([g(u)]^{-1} A(u)\right) \sqrt{\operatorname{det}(g(u))} d u=\int_{\mathcal{U}} f(u) H(u) \sqrt{\operatorname{det}(g(u))} .
$$

There's a small technicality at work here: the mean curvature is actually the sum of the eigenvalues of the shape operator T which we defined indirectly by the formula $\left\langle T\left(E_{i}\right), E_{j}\right\rangle=A_{i j}$. As mentioned in a previous document, the eigenvalues of T are not equal to those of A unless $\left\{E_{i}\right\}$ is an orthonormal basis. But we can show that the eigenvalues of T are equal to those of $g^{-1} A$. The matrix g^{-1} corrects for the non-orthonormality of the basis.

