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CS 468 (Spring 2013) — Discrete Differential Geometry

Lecture 4 Note: Surface Theory I

Before we go into the definition of surfaces, we will review some important background knowledge including
the differential of a function and the Inverse and Implicit Function Theorems.

The Differential of a Function

(a) Tangent Spaces

We will restrict ourselves in Euclidean spaces. Consider the space Rn. Denote TpRn the tangent
spaces of Rn at p. What it menas here is that for each and every point p in Rn, we introduce a new
coordinate system where all the vectors originated at p will reside in. These coordinate frames can
either be moving around as we saw with the Frenet and Bishop frames, or they can be fixed as the
standard basis.

Figure 1: The space R3 and a tangent space at point p ∈ R3.

The important part here is that given any vector in the tangent space at p, we can always find a curve
passing through p and having the vector as its tangent at p. More formally, given Vp ∈ TpRn, we

can find a curve c : I → Rn with c(0) = p and c′(0) :=
dc(t)

dt

∣∣∣∣
t=0

= Vp. For example, we can find

c(t) = tVp + p, a straight line with slope Vp. Of course this is not unique.

(b) The Differential of a Function

Given a differentiable function f : Rn → Rm by f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)).
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The differential of f at p, Dfp, is the m× n matrix defined by

Dfp :=



∂f1

∂x1
∂f1

∂x2
· · · ∂f1

∂xn

∂f2

∂x1
∂f2

∂x2
· · · ∂f2

∂xn

...
...

. . .
...

∂fm

∂x1
∂fm

∂x2
· · · ∂fm

∂xn


As we all know, a matrix can be thought of as a linear transformation. Here as well, we can think of
Dfp as a linear mapping Dfp : TpRn → Tf(p)Rm. In other words, Dfp maps a vector in the tangent
space at the source point p to a vector in the tangent space at the target point f(p). More formally,

d

dt
f(c(t))

∣∣∣∣
t=0

= DfpVp

Why is this true? Let’s suppose we consider the curve c : [−ε, ε]→ Rn locally near p and let
dc(t)

dt

∣∣∣∣
t=0

=

Vp = (a1, a2, . . . , an)T in the standard basis. Apply forward f mapping. The whole curve c(t) is mapped
to f(c(t)) and in particular the point p is mapped to f(p). The tangent at t = 0 in the domain must
also be mapped to the tangent at t = 0 in the image as well. This means that the tangent at p, i.e. Vp,

is mapped to
d

dt
f(c(t))

∣∣∣∣
t=0

∈ Tf(p)Rm, which is the tangent at f(c(0)) = f(p) in the image. Now, by

applying the chain rule, we can calculate (in the standard basis)

d

dt
f(c(t))

∣∣∣∣
t=0

=


d

dt
f1(c(t))

∣∣∣∣
t=0

...
d

dt
fm(c(t))

∣∣∣∣
t=0



=


n∑

i=1

df1(c(t))

dxi
dci(t)

dt

∣∣∣∣
t=0

...
n∑

i=1

dfm(c(t))

dxi
dci(t)

dt

∣∣∣∣
t=0

 =


n∑

i=1

df1(p)

dxi
ai

...
n∑

i=1

dfm(p)

dxi
ai



=



∂f1(p)

∂x1
· · · ∂f1(p)

∂xn

...
. . .

...

∂fm(p)

∂x1
· · · ∂fm(p)

∂xn




a1
a2
...
an

 = DfpVp

This justifies our claim that Dfp is the linear map between the two tangent spaces.
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Figure 2: The forward mapping of f

(c) The Rank of the Differential

The differential of a function f can say a lot about local properties of the map f . In particular, if
f has locally constant rank K on an open Ω ⊆ Rn, i.e. rank(Dfp) = K,∀p ∈ Ω, then the behavior of
Dfp carries over to f in just the right way. Notice that this is true only locally. That is if Dfp has
constant rank in a small neighborhood, then Dfp dictates what f should look like near p. We call this
the Rank Theorems, which is stated below

Theorem (Rank Theorems) We can locally ”modify” f , i.e. there exists a change of coordinates
on the domain and the range of f , into an equivalent map f̃ such that

Case 1 Dfp is injective for all p ∈ Ω ⊆ Rn, then n ≤ m and

f̃(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0)

Case 2 Dfp is surjective for all p ∈ Ω ⊆ Rn, then n ≥ m and

f̃(x1, . . . , xm, xm+1, . . . , xn) = (x1, . . . , xm)

Case 3 Dfp is bijective for all p ∈ Ω ⊆ Rn, then n = m and

f̃(x1, . . . , xn) = (x1, . . . , xm)

Case 4 Dfp has rank k for all p ∈ Ω ⊆ Rn where k < min(n,m), then

f̃(x1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0)

Figure 3: (Left) Straightening in Case 1 (Right) Projection in Case 2

3



In case 1, we can picture f̃ as straightening out the line. Consider an example of a curve, a map from
R to R3. By changing a coordinate system, we can make a curvy line into a straight line. In case 2, we
can picture it as a projection from Rn to Rm. Case 3 is the combination of case 1 and 2, for a bijection
is both injective and surjective. And finally in case 4, by saying k is strictly less than n and m, we are
saying that Dfp is neither injective nor surjective.

We will not go into the proof of the Rank Theorems. Instead, in the next section, we will state
two important theorems in multivariable analysis which the proof relies on.

The Inverse and Implicit Funcion Theorems

Theorem (Inverse Function Theorem) If f : Rn → Rn is smooth with Dfp bijective, then f is invert-
ible on a neighborhood of p.

Note that Dfp is bijective at p if and only if det((Dfp)TDfp) 6= 0. Our takeaway from the previous section
still applies to this theorem, i.e. f behaves similarly to Dfp locally.

Theorem (Implicit Function Theorem) If F : Rk × Rn → Rn is smooth with D2F(p,q) bijective and
F (p, q) = 0, then the equation F (x, y) = 0 can be solved for points (x, y) near (p, q) in the following sense

(i) There exists a function g : Rk → Rn defined near q such that q = g(p) and also F (x, g(x)) = 0.

(ii) We can compute Dgx in terms of D1F(x,g(x)) and D2F(x,g(x)).

Here D1 and D2 are defined similarly to the differential D but are differentiated with respect to the coordi-
nates of x and y, respectively, instead. To understand this theorem, let’s consider a simple example.

Example Consider F (x, y, z) = x2 + y2 + z2 − 1. Here k + n = 3, n = 1. The solution of F (x, y, z) = 0 is

the unit sphere in R3. Suppose we want to eliminate z. We can find z = ±
√

1− x2 − y2. So locally we can

define g(x, y) =
√

1− x2 − y2 and the solution becomes (x, y,
√

1− x2 − y2). How does this related to the

Implicit Function Theorem? We can see that D2F =
∂F

∂z
= 2z is invertible when z 6= 0. So we can solve

the equation F (x, y, z) = 0 locally provided z 6= 0, i.e. z = ±
√

1− x2 − y2 and find g(x, y) =
√

1− x2 − y2
where F (x, y, g(x, y)) = 0 for (x, y) near (p, q). This makes sense since when z = 0, the tangent becomes
vertical and the derivative is non-defined.

Three Kinds of Surfaces

For simplicity, we will focus our interest in R3. The common representations of surfaces in R3 are as follows

(1) Graphs of Functions We can represent a surface as a graph of a function f : R2 → R. That is for
every (x, y) ∈ R2, the point (x, y, f(x, y)) lies on the surface in R3. This type of representation has its
limitation, however, because not every surface is a graph of a function. One simple example is a sphere
since it has both the upper hemisphere and the lower hemisphere, so each point on the plane will be
mapped to two different points.

(2) Level Sets of Functions Alternatively, we can represent a surface using a function F : R3 → R. That is
the surface will be a solution to the equation F (x, y, z) = 0. As in the example in the previous section,
the solution to F (x, y, z) = x2 + y2 + z2 − 1 = 0 is the unit sphere in R3. Note that by the Implicit
Function Theorem, we can find a function g : R2 → R such that locally F (x, y, g(x, y)) = 0 and the
points on the surface are (x, y, g(x, y)).
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Figure 4: (Left) Surface as a graph of a function. (Right) A sphere cannot be represented as a graph
but can be represented as a level set of a function.

However, this method still has limitations since not all equations can be solved analytically nor given
an arbitrary surface can we find such a function F where the surface will be its level set.

(3) Parametric Surfaces This is a generalization of parametric curves. A surface σ : U → R3 where U ⊆ R2

is an open domain in the plane and

σ(u1, u2) := (σ1(u1, u2), σ2(u1, u2), σ3(u1, u2))

Again, we use the example of a unit sphere. By introducing the azimuthal angle θ and the polar angle
ϕ, we can parametrized the unit sphere by

σ(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ)

Figure 5: Spherical parametrization of a unit sphere
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