CS 468

Differential Geometry for Computer Science

Lecture 2 - Curves

Definition of a curve

- A parametrized differentiable curve is a differentiable map $\gamma: I \rightarrow \mathbb{R}^{n}$ where $I=(a, b)$ is an interval in \mathbb{R}.
- The parameter domain I.
- The image or trace of γ.
- The component functions of γ.

Velocity and Acceleration

- Instantaneous velocity.
- Instantaneous acceleration.
- Constant speed curves and constant velocity curves.
- Singular points.

Examples

- Lines in space.
- Circle in \mathbb{R}^{2}.
- Helix in \mathbb{R}^{3}.
- Self-intersection - embedded vs. immersed curves.
- Curve with a kink, curve with a cusp - smooth but singular, and non-smooth parametrizations thereof.

Change of parameter

- Definition of reparametrization.
- The trace remains unchanged.
- Effect on velocity and acceleration.

Arc-length

- Arc-length is the limit of a sequence of discrete approximations.
- Derivation: let $\gamma:[a, b] \rightarrow \mathbb{R}^{3}$ be a smooth curve and partition $I=\left[t_{0}, t_{1}\right] \cup \cdots \cup\left[t_{n-1}, t_{n}\right]$ with $t_{0}=a$ and $t_{n}=b$. Now

$$
\begin{aligned}
\operatorname{length}(\gamma([a, b])) & \approx \sum_{i=1}^{n}\left\|\gamma\left(t_{i}\right)-\gamma\left(t_{i-1}\right)\right\| \\
& =\sum_{i=1}^{n}\left\|\dot{\gamma}\left(t_{i}^{*}\right) \Delta t_{i}\right\| \\
& =\sum_{i=1}^{n}\left\|\dot{\gamma}\left(t_{i}^{*}\right)\right\| \Delta t_{i} \\
& \xrightarrow{n \rightarrow \infty} \int_{a}^{b}\|\dot{\gamma}(t)\| d t
\end{aligned}
$$

Parameter independence of arc-length

- Let $\phi:[a, b] \rightarrow[a, b]$ be a diffeomorophism with $\phi(a)=a$ and $\phi(b)=b$. Let $\tilde{\gamma}(s):=\gamma(\phi(s))$. Then

$$
\begin{aligned}
\operatorname{length}(\tilde{\gamma}([a, b])) & =\int_{a}^{b}\left\|\frac{d \gamma \circ \phi(s)}{d s}\right\| d s \\
& =\int_{a}^{b}\left|\phi^{\prime}(s)\right|\left\|\frac{d \gamma}{d t} \circ \phi(s)\right\| d s \\
& =\int_{a}^{b}\left|\phi^{\prime} \circ \phi^{-1}(t)\right|\left\|\frac{d \gamma(t)}{d t}\right\| \frac{d t}{\left|\phi^{\prime} \circ \phi^{-1}(t)\right|} \\
& =\int_{a}^{b}\left\|\frac{d \gamma(t)}{d t}\right\| d t \\
& =\operatorname{length}(\gamma([a, b]))
\end{aligned}
$$

Example calculations

- Mostly no closed form for arc-lengths.
- First example: logarithmic spiral $\gamma(t)=\left(e^{t} \cos (t), e^{t} \sin (t)\right)$.
- Second example: $\gamma(t)$ such that $\|\dot{\gamma}\|=$ const.
- Parametrization by arc-length.

Arc-length re-parametrization

- We can re-parametrize any curve so that it is parametrized by arc-length. (Useful theoretically but hard to put into practice.)
- Let $\gamma: I \rightarrow \mathbb{R}$ be a smooth curve and define the function

$$
\begin{aligned}
\ell: I & \rightarrow[0, \text { length }(\gamma(I))] \\
\ell(t) & :=\int_{0}^{t}\|\dot{\gamma}(x)\| d x
\end{aligned}
$$

- Invertibility of ℓ when γ is non-singular.
- Define a new parameter s that satisfies $s=\ell(t)$. Define the re-parametrized version of γ, namely $\tilde{\gamma}(s)=\gamma\left(\ell^{-1}(s)\right)$.
- This re-parametrized version is parametrized by arc-length.
- Example: the logarithmic spiral.

Curvature

- Definition of the geodesic curvature vector in an arbitrary parametrization - the normal component of the acceleration vector, normalized by the squared length of the tangent vector.

$$
\vec{k}_{c}:=\frac{[\ddot{c}]^{\perp}}{\|\dot{c}\|^{2}}
$$

- Definition of the geodesic curvature $k_{c}:=\left\|\vec{k}_{c}\right\|$.
- In the arc-length parametrization we have $\vec{k}_{c}=[\ddot{c}]^{\perp}$.
- Examples.

The Frenet frame

- Let $\gamma: \rightarrow \mathbb{R}^{3}$ be a curve, w.l.o.g parametrized by arc-length.
- We will find a choice of "moving axes best adapted to the geometry of γ.
- Let $T(s):=\dot{\gamma}(s)$.
- A point of non-zero curvature allows us to define a distinguished normal vector $N(s):=\dot{T}(s) /\|\dot{T}(s)\|$.
- The osculating plane at $\gamma(s)$ is spanned by $T(s), N(s)$.
- The binormal vector is $B(s):=T(s) \times N(s)$.
- The Frenet frame for γ is $\{T(s), N(s), B(s)\}$ and is defined at each point $\gamma(s)$ where $k_{\gamma}(s) \neq 0$.

The Frenet formulas

- The Frenet formulas explain the variation in the Frenet frame along γ.

$$
\begin{aligned}
\dot{T}(s) & =k_{\gamma}(s) N(s) \\
\dot{N}(s) & =\langle\dot{N}(s), T(s)\rangle T(s)+\langle\dot{N}(s), N(s)\rangle N(s)+\langle\dot{N}(s), B(s)\rangle B(s) \\
& =-k_{\gamma}(s) T(s)+\langle\dot{N}(s), B(s)\rangle B(s) \\
& =-k_{\gamma}(s) T(s)-\tau_{\gamma}(s) B(s) \\
\dot{B}(s) & =\langle\dot{B}(s), T(s)\rangle T(s)+\langle\dot{B}(s), N(s)\rangle N(s)+\langle\dot{B}(s), B(s)\rangle B(s) \\
& =-\langle B(s), \dot{T}(s)\rangle T(s)+\langle\dot{B}(s), N(s)\rangle N(s) \\
& =-k_{\gamma}(s)\langle B(s), N(s)\rangle T(s)-\langle N(s), \dot{B}(s)\rangle B(s) \\
& =\tau_{\gamma}(s) B(s)
\end{aligned}
$$

- Here we have introduced the torsion $\tau_{\gamma}(s):=-\langle\dot{N}(s), B(s)\rangle$.

A local theorem

- Locally, k and \dot{k} determine the amount of turning in the osculating plane.
- And τ and k determine the amount of lifting out of the osculating plane into its normal direction.

A global theorem

- The Fundamental Theorem of Curves.

Suppose we are give differentiable functions $k: I \rightarrow \mathbb{R}$ with $k>0$, and $\tau: \rightarrow \mathbb{R}$.

Then there exists a regular curve $\gamma: I \rightarrow \mathbb{R}^{3}$ such that s is the arc-length, $k(s)$ is the geodesic curvature, and $\tau(s)$ is the torsion.

Any other curve satisfying the same conditions differs from γ by a rigid motion.

