CS 468

DIFFERENTIAL GEOMETRY FOR COMPUTER SCIENCE

Lecture 2 — Curves

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definition of a curve

• A parametrized differentiable curve is a differentiable map $\gamma: I \to \mathbb{R}^n$ where I = (a, b) is an interval in \mathbb{R} .

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

- The parameter domain *I*.
- The image or *trace* of γ .
- The component functions of γ .

Velocity and Acceleration

- Instantaneous velocity.
- Instantaneous acceleration.
- Constant speed curves and constant velocity curves.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Singular points.

Examples

- Lines in space.
- Circle in \mathbb{R}^2 .
- Helix in \mathbb{R}^3 .
- Self-intersection embedded vs. immersed curves.
- Curve with a kink, curve with a cusp smooth but singular, and non-smooth parametrizations thereof.

Change of parameter

- Definition of reparametrization.
- The trace remains unchanged.
- Effect on velocity and acceleration.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Arc-length

- Arc-length is the limit of a sequence of discrete approximations.
- Derivation: let $\gamma : [a, b] \to \mathbb{R}^3$ be a smooth curve and partition $I = [t_0, t_1] \cup \cdots \cup [t_{n-1}, t_n]$ with $t_0 = a$ and $t_n = b$. Now

$$length(\gamma([a, b])) \approx \sum_{i=1}^{n} \|\gamma(t_i) - \gamma(t_{i-1})\|$$
$$= \sum_{i=1}^{n} \|\dot{\gamma}(t_i^*)\Delta t_i\|$$
$$= \sum_{i=1}^{n} \|\dot{\gamma}(t_i^*)\|\Delta t_i$$
$$\xrightarrow{n \to \infty} \int_{2}^{b} \|\dot{\gamma}(t)\| dt$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ● ●

Parameter independence of arc-length

• Let $\phi : [a, b] \rightarrow [a, b]$ be a diffeomorphism with $\phi(a) = a$ and $\phi(b) = b$. Let $\tilde{\gamma}(s) := \gamma(\phi(s))$. Then

$$length(\tilde{\gamma}([a, b])) = \int_{a}^{b} \left\| \frac{d\gamma \circ \phi(s)}{ds} \right\| ds$$
$$= \int_{a}^{b} |\phi'(s)| \left\| \frac{d\gamma}{dt} \circ \phi(s) \right\| ds$$
$$= \int_{a}^{b} |\phi' \circ \phi^{-1}(t)| \left\| \frac{d\gamma(t)}{dt} \right\| \frac{dt}{|\phi' \circ \phi^{-1}(t)|}$$
$$= \int_{a}^{b} \left\| \frac{d\gamma(t)}{dt} \right\| dt$$
$$= length(\gamma([a, b]))$$

Example calculations

- Mostly no closed form for arc-lengths.
- First example: logarithmic spiral $\gamma(t) = (e^t \cos(t), e^t \sin(t))$.

- Second example: $\gamma(t)$ such that $\|\dot{\gamma}\| = const$.
- Parametrization by arc-length.

Arc-length re-parametrization

- We can *re-parametrize* any curve so that it is parametrized by arc-length. (Useful theoretically but hard to put into practice.)
- Let $\gamma: I \to \mathbb{R}$ be a smooth curve and define the function

$$\ell: I
ightarrow [0, length(\gamma(I))]$$
 $\ell(t) := \int_0^t \|\dot{\gamma}(x)\| dx$

- Invertibility of ℓ when γ is non-singular.
- Define a new parameter s that satisfies s = ℓ(t). Define the re-parametrized version of γ, namely γ̃(s) = γ(ℓ⁻¹(s)).
- This re-parametrized version is parametrized by arc-length.
- Example: the logarithmic spiral.

Curvature

 Definition of the geodesic curvature vector in an arbitrary parametrization — the normal component of the acceleration vector, normalized by the squared length of the tangent vector.

$$\vec{k}_c := \frac{[\ddot{c}]^{\perp}}{\|\dot{c}\|^2}$$

- Definition of the geodesic curvature $k_c := \|\vec{k}_c\|$.
- In the arc-length parametrization we have $\vec{k}_c = [\ddot{c}]^{\perp}$.
- Examples.

The Frenet frame

- Let $\gamma :\rightarrow \mathbb{R}^3$ be a curve, w.l.o.g parametrized by arc-length.
- We will find a choice of "moving axes best adapted to the geometry of $\gamma.$
- Let $T(s) := \dot{\gamma}(s)$.
- A point of non-zero curvature allows us to define a distinguished normal vector N(s) := T(s)/||T(s)||.
- The osculating plane at $\gamma(s)$ is spanned by T(s), N(s).
- The binormal vector is $B(s) := T(s) \times N(s)$.
- The Frenet frame for γ is {T(s), N(s), B(s)} and is defined at each point γ(s) where k_γ(s) ≠ 0.

The Frenet formulas

- The Frenet formulas explain the variation in the Frenet frame along $\gamma.$

$$\begin{split} \dot{T}(s) &= k_{\gamma}(s)N(s) \\ \dot{N}(s) &= \langle \dot{N}(s), T(s) \rangle T(s) + \langle \dot{N}(s), N(s) \rangle N(s) + \langle \dot{N}(s), B(s) \rangle B(s) \\ &= -k_{\gamma}(s)T(s) + \langle \dot{N}(s), B(s) \rangle B(s) \\ &= -k_{\gamma}(s)T(s) - \tau_{\gamma}(s)B(s) \\ \dot{B}(s) &= \langle \dot{B}(s), T(s) \rangle T(s) + \langle \dot{B}(s), N(s) \rangle N(s) + \langle \dot{B}(s), B(s) \rangle B(s) \\ &= -\langle B(s), \dot{T}(s) \rangle T(s) + \langle \dot{B}(s), N(s) \rangle N(s) \\ &= -k_{\gamma}(s) \langle B(s), N(s) \rangle T(s) - \langle N(s), \dot{B}(s) \rangle B(s) \\ &= \tau_{\gamma}(s)B(s) \end{split}$$

• Here we have introduced the torsion $au_{\gamma}(s) := -\langle \dot{N}(s), B(s) \rangle$.

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

A local theorem

- Locally, k and \dot{k} determine the amount of turning in the osculating plane.
- And τ and k determine the amount of lifting out of the osculating plane into its normal direction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A global theorem

• The Fundamental Theorem of Curves.

Suppose we are give differentiable functions $k : I \to \mathbb{R}$ with k > 0, and $\tau :\to \mathbb{R}$.

Then there exists a regular curve $\gamma: I \to \mathbb{R}^3$ such that s is the arc-length, k(s) is the geodesic curvature, and $\tau(s)$ is the torsion.

Any other curve satisfying the same conditions differs from γ by a rigid motion.