CS 468 (Spring 2013) - Discrete Differential Geometry

Lecture 2: Curves

The arc-length re-parametrization

- The question we will answer here is: given any smooth, regular curve $\gamma: I \rightarrow \mathbb{R}$, is it possible to find a re-parametrization of γ by arc-length?
- In other words: is it possible to find a smooth bijection $\phi:[0$, length $(\gamma)] \rightarrow I$ so that $\tilde{\gamma}:[0, \operatorname{Length}(\gamma)] \rightarrow \mathbb{R}$ defined by $\tilde{\gamma}(s):=\gamma \circ \phi(s)$ has constant speed?
- The answer is YES. To see why, define the function $\ell: I \rightarrow[0, \operatorname{length}(\gamma(I))]$ by

$$
\ell(t):=\operatorname{length}(\gamma([0, t]))=\int_{0}^{t}\|\dot{\gamma}(x)\| d x
$$

- Note that $\frac{d \ell(t)}{d t}=\|\dot{\gamma}(t)\|$. Since γ is regular, there are no points where $\dot{\gamma}=0$. Hence $\frac{d \ell(t)}{d t}$ never vanishes, so that ℓ is invertible.
- Define the re-parametrization $\phi=\ell^{-1}$. So in other words, we introduce the new parameter s satisfying $s=\ell(t)$ or $t=\ell^{-1}(s)=: \phi(s)$. We let $\tilde{\gamma}(s):=\gamma(\phi(s))$.
- Now we can show that $\left\|\frac{d}{d s} \tilde{\gamma}(s)\right\|=1$ as follows:

$$
\frac{d \tilde{\gamma}(s)}{d s}=\frac{d \gamma}{d t} \circ \phi(s) \frac{d \phi(s)}{d s}=\dot{\gamma} \circ \phi(s) \frac{d \ell^{-1}(s)}{d s}=\frac{\dot{\gamma} \circ \ell^{-1}(s)}{\frac{d \ell}{d t} \circ \ell^{-1}(s)}=\frac{\dot{\gamma} \circ \ell^{-1}(s)}{\left\|\dot{\gamma} \circ \ell^{-1}(s)\right\|}
$$

- Thus $\left\|\frac{d \tilde{\gamma}(s)}{d s}\right\|=1$ and the re-parametrized version is parametrized by arc-length.

Arc-length example calculation

- Sadly, the arc-length function ℓ for most curves does not lead to a nice closed form expression. (Try it! Even something simple like $\gamma(t):=\left(t, t^{2}\right)$ is already problematic.) And then even if we manage to find ℓ, it may be impossible to find a nice expression for ℓ^{-1}.
- The arc-length parametrization is very useful theoretically (as we'll see) but difficult to work with in practice.
- A doable example is provided by the logarithmic spiral: $\gamma(t)=\left(e^{t} \cos (t), e^{t} \sin (t)\right)$. We have:

$$
\dot{\gamma}(t)=e^{t}(\cos (t), \sin (t))+e^{t}(-\sin (t), \cos (t))
$$

and so

$$
\|\dot{\gamma}(t)\|=e^{t}\|(\cos (t), \sin (t))+(-\sin (t), \cos (t))\|=\sqrt{2} e^{t}
$$

Consequently,

$$
\text { length }(\gamma([0, T]))=\int_{0}^{T}\|\dot{\gamma}(t)\| d t=\sqrt{2} \int_{0}^{T} e^{t} d t=\sqrt{2}\left(e^{T}-1 .\right)
$$

- Hence $s=\ell(t):=\sqrt{2}\left(e^{t}-1\right)$. Therefore $t=\ell^{-1}(s):=\log (s / \sqrt{2}+1)$
- Hence the re-parametrized version of the logarithmic spiral is

$$
\tilde{\gamma}(s)=\left(\frac{s}{\sqrt{2}}+1\right)(\cos (\log (s / \sqrt{2}+1)), \sin (\log (s / \sqrt{2}+1))) .
$$

- You can check that this curve has constant velocity equal to 1 .

