CS 468

DIFFERENTIAL GEOMETRY FOR COMPUTER SCIENCE

Lecture 19 — Conformal Geometry

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

- Conformal maps
- Complex manifolds
- Conformal parametrization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Uniformization Theorem
- Conformal equivalence

Conformal Maps

Idea: Shapes are rarely isometric. Is there a weaker condition that is more common?

Conformal Maps

[Gu 2008]

- Let S_1, S_2 be surfaces with metrics g_1, g_2 .
- A conformal map preserves angles but can change lengths.
- I.e. φ : S₁ → S₂ is conformal if ∃ function u : S₁ → ℝ s.t.

$$g_2(D\phi_p(X), D\phi_p(Y)) = e^{2u(p)}g_1(X, Y)$$

for all $X, Y \in T_pS_1$

Isothermal Coordinates

Fact: Conformality is very flexible.

Theorem: Let S be a surface. For every $p \in S$ there exists an isothermal parametrization for a neighbourhood of p.

• This means that there exists $\mathcal{U} \subseteq \mathbb{R}^2$ and $\mathcal{V} \subseteq S$ containing p, a map $\phi : \mathcal{U} \to \mathcal{V}$ and a function $u : \mathcal{U} \to \mathbb{R}$ so that

$$g := [D\phi_x]^\top D\phi_x = \begin{pmatrix} e^{2u(x)} & 0\\ 0 & e^{2u(x)} \end{pmatrix} \qquad \forall x \in \mathcal{U}$$

• This is proved by solving a fully determined PDE.

Corollary: Every surface is locally conformally planar.

Corollary: Any pair of surfaces is locally conformally equivalent.

A Connection to Complex Analysis

The existence of isothermal parameters can be re-phrased in the language of complex analysis.

- Replace \mathbb{R}^2 with \mathbb{C} .
- Now every p ∈ S has a neighbourhood that is holomorphic to a neighboorhood of C.
- The fact that the metric is isothermal is key multiplication by $\sqrt{-1}$ in $\mathbb C$ is equivalent to rotation by $\pi/2$ in S.
- *S* becomes a complex manifold.

Fact: The connection to complex analysis is very deep!

The Uniformization Theorem

What happens globally?

Uniformization Theorem:

Let S be a 2D compact abstract surface with metric g. Then S possesses a metric \bar{g} conformal to g with constant Gauss curvature +1, -1 or 0.

Furthermore, S is conformal to a model space which is (the quotient by a finite group of self-conformal maps of) one of the following:

- The sphere with its standard metric if S has genus zero.
- The plane with its standard metric if S has genus one.
- The unit disk with the Poincaré metric if S has genus > 1.

The Gauss-Bonnet Formula

Useful formula: The Gauss curvature transforms as follows under a conformal map:

$$g_2 = e^{2u}g_1 \implies K_2 = e^{2u}(-\Delta_1 u + K_1)$$

Consequence: The Gauss-Bonnet formula implies that the sign of the uniformized curvature depends on topology.

const. × Area(S) =
$$\int_{S} K_2 dA_2$$

= $\int_{S} e^{2u} (-\Delta_1 u + K_1) \times e^{-2u} dA_1$
= $\int_{S} K_1 dA_1$
= $2\pi\chi(S)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Genus-One Surfaces

If S has genus zero then it is conformal to the sphere.

Key fact: The map $\phi: S \to \mathbb{S}^2$ is not unique.

- \mathbb{S}^2 is conformal to $\mathbb{C}\cup\{\infty\}$ by stereographic projection.
- The set *M* of conformal self-maps of C ∪ {∞} is the set of all Möbius transformations of the complex plane.
- Thus any two conformal maps $\phi_1, \phi_2: \mathcal{S}
 ightarrow \mathbb{S}^2$ satisfy

$$\sigma \circ \phi_1 \circ \phi_2^{-1} \circ \sigma^{-1} = m \in \mathcal{M}$$

Another Key Fact: Conformal maps to the sphere minimize the Dirichlet energy $\mathcal{E}_D(\phi) := \int_S \|D\phi\|_F^2 dA$.

- Thus we can find ϕ by flowing down the energy gradient.
- Must impose a condition to ensure convergence to a unique solution e.g. $\int_{S} \phi = 0$.

Higher-Genus Surfaces

For genus > 0 surfaces, there is more than one possible candidate for the "target surface in the Uniformization Theorem and its metric".

The conformal structure of S

Def: The set \mathcal{T}_S of conformal structure of S is called the Teichmüller space of S and is an abstract manifold of dimension

$$dim(\mathcal{T}_{\mathcal{S}}) = egin{cases} 2 & genus = 1 \ 6g-6 & genus = g > 1 \end{cases}$$

A parametrization of T_S is provided by holomorphic differentials:

- These are related to harmonic one-forms on S.
- The natural coordinates of T_S are the values of the line integrals of these differentials around homology generators of S.