CS468, Mon. Oct. 2nd, 2006

Quadtrees: Hierarchical Grids

Steve Oudot

From S. Har-Peled's notes, Chapter 2

Outline

- Examples and preliminary results.
- Static setting: compressed quadtrees.
- (deterministic)

- Dynamic setting: skip-quadtrees.) (randomized)
- Adaptive meshing: balanced quadtrees.) (deterministic)

Goal: given a planar map M that partitions $[0, 1]^2$, preprocess M such that, for any query point $q \in [0, 1]^2$, the region containing q is found in sublinear time.

 $\bigcirc (0,0)$

- triangulate each region
- build quadtree T whose leaves intersect at most $9\ {\rm triangles}$

(0, 0)

Goal: given a finite point set $P \subset [0,1[^2, \text{ preprocess } P \text{ such that, for any query rectangle } r \subseteq [0,1]^2$, $r \cap P$ is found in time $O(|r \cap P|)$.

Goal: given a finite point set $P \subset [0,1]^2$, preprocess P such that, for any query rectangle $r \subseteq [0,1]^2$, $r \cap P$ is found in time $O(|r \cap P|)$.

Goal: given a finite point set $P \subset [0,1]^2$, preprocess P such that, for any query rectangle $r \subseteq [0,1]^2$, $r \cap P$ is found in time $O(|r \cap P|)$.

Goal: given a finite point set $P \subset [0,1[^2, \text{ preprocess } P \text{ such that, for any query rectangle } r \subseteq [0,1]^2$, $r \cap P$ is found in time $O(|r \cap P|)$.

Various bounds

Lemma Let $P \subset [0,1[^2 \text{ be finite. Assume wlog } \operatorname{diam}(P) = \max\{d(p,q|p,q \in P\} \ge 1/2. \text{ Then, } h = O(\log \Phi(P)), \text{ where } \Phi(P) = \operatorname{diam}(P)/\min\{d(p,q)|p,q \in P\}.$

Def $\forall p, q \in P$, let h(p,q) be the smallest i s.t. $v_i(p) \neq v_i(q)$. $\forall i, v_i(p) = \left(2^{-i} \lfloor 2^i p_x \rfloor, 2^{-i} \lfloor 2^i p_y \rfloor\right)$ Prop $\forall p, q \in [0, 1]^2, h(p, q) = \min\{-\lceil \log(p_x \lor q_x) \rceil, -\lceil \log(p_y \lor q_y) \rceil\}$

$$\leq \min\{-|\log|p_x - q_x|, -|\log|p_y - q_y|\}$$

$$= -\lceil \log\max\{|p_x - q_x|, |p_y - q_y|\}\rceil$$

$$\leq -\lceil \log\frac{1}{\sqrt{2}}\mathsf{d}(p,q)\rceil = \frac{1}{2} - \log\mathsf{d}(p,q)$$

Observation: for every internal node v of $T, \, |\Box_v \cap P| \geq 2$

$$\Rightarrow l(v) \le h(p,q) - 1, \ \forall p,q \in \Box_v$$
$$\Rightarrow h \le \frac{1}{2} - \log \min\{\mathsf{d}(p,q) | p,q \in P\}$$
$$\le \frac{3}{2} + \log \Phi(P)$$

Various bounds

Lemma Let $P \subset [0,1[^2 \text{ be finite. Assume wlog } \operatorname{diam}(P) = \max\{\mathsf{d}(p,q|p,q \in P\} \ge 1/2. \text{ Then, } h = O(\log \Phi(P)), \text{ where } \Phi(P) = \operatorname{diam}(P)/\min\{\mathsf{d}(p,q)|p,q \in P\}.$

Compressed quadtrees

Pb Bounds on complexity depend on $\Phi(P)$.

Compressed quadtrees

Note Computing the uncompressed quadtree can take unbounded time

Quadratic algorithm:

- 1. For all pairs of points $(p,q) \in P^2$, find $\Box_{v_{pq}} = \Box_{v_i(p)} = \Box_{v_i(q)}$, where i = h(p,q) 1.
 - $\rightarrow v_{pq}$ must be a node of compressed quadtree T
 - \rightarrow every node of T is a v_{pq} for some pair $(p,q) \in P^2$

 \Rightarrow this step computes the exact list of the nodes of T

2. For each node v in the list, find its most recent ancestor (in the list) and connect v to it.

Note a node is stored only once in the list, although it may have been found multiple times in step 1 (use hash-table).

More subtle algorithm: let k = |P|/10.

$$\begin{array}{ll} \underline{ \text{More subtle algorithm:}} & \text{let } k = |P|/_{10}. & \text{-Compute } D_r \text{ s.t.} \\ & r_{\mathrm{opt}}(P,k) \leq r \leq 2 \; r_{\mathrm{opt}}(P,k). \end{array} \end{array}$$

More subtle algorithm: let k = |P|/10.

- Compute
$$D_r$$
 s.t.
 $r_{\text{opt}}(P,k) \le r \le 2 r_{\text{opt}}(P,k).$

- Let $l = 2^{\lfloor \log r \rfloor} \ge r/2$. Place the pts of P on UG_l , and find cell c with max number of points.

$$P_{\mathrm{in}} = P \cap c$$
, $P_{\mathrm{out}} = P \setminus c$.

$$l \ge \frac{r}{2} \Rightarrow |P_{\rm in}| \ge \frac{k}{25} = \frac{|P|}{250}.$$
$$l \le 2 r_{\rm opt}(P,k) \Rightarrow |P_{\rm in}| \le \frac{4|P|}{5}.$$

Note If T unbalanced, then query time $= \Omega(|P|)$.

 \rightarrow Finger tree construction:

Preprocessing: compute sizes of subtrees of T.

Note If T unbalanced, then query time = $\Omega(|P|)$.

 \rightarrow Finger tree construction:

Preprocessing: compute sizes of subtrees of T.

- starting from root of T, keep going to son with highest number, until subtree has size at most |T|/2.

Note If T unbalanced, then query time = $\Omega(|P|)$.

 \rightarrow Finger tree construction:

Preprocessing: compute sizes of subtrees of T.

- starting from root of T, keep going to son with highest number, until subtree has size at most |T|/2.

- Update numbers of parents of the *separator* node.

Note If T unbalanced, then query time = $\Omega(|P|)$.

 \rightarrow Finger tree construction:

Preprocessing: compute sizes of subtrees of T.

- starting from root of T, keep going to son with highest number, until subtree has size at most |T|/2.

- Update numbers of parents of the *separator* node.

- Recursive call on all subtrees.

Note If T unbalanced, then query time $= \Omega(|P|)$.

 \rightarrow Finger tree construction:

Preprocessing: compute sizes of subtrees of T.

- starting from root of T, keep going to son with highest number, until subtree has size at most |T|/2.

- Update numbers of parents of the *separator* node.
- Recursive call on all subtrees.
- Hang finger trees of subtrees to separator node.

 \rightarrow Construction time: $O(|T| \log |T|) = O(|P| \log |P|).$

 \rightarrow Finger tree has same size as T and is balanced, hence its height is $O(\log |T|).$

 \Rightarrow pt location time: $O(\log |T|)$.

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Def A gradation of P is a subsampling sequence $(S_m, S_{m-1}, \dots, S_2, S_1)$ such that: (i) $S_1 = P$, (ii) $S_i = \text{pts of } S_{i-1}$ picked with proba. 1/2, (iii) $|S_m| = 1 < |S_{m-1}|$.

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Def A gradation of P is a subsampling sequence $(S_m, S_{m-1}, \dots, S_2, S_1)$ such that: (i) $S_1 = P$, (ii) $S_i = \text{pts of } S_{i-1}$ picked with proba. 1/2, (iii) $|S_m| = 1 < |S_{m-1}|$.

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Def A gradation of P is a subsampling sequence $(S_m, S_{m-1}, \dots, S_2, S_1)$ such that: (i) $S_1 = P$, (ii) $S_i = \text{pts of } S_{i-1}$ picked with proba. 1/2, (iii) $|S_m| = 1 < |S_{m-1}|$.

Prop $\forall i, \mathbf{E}[|S_i|] = \frac{|S_{i-1}|}{2}$ $\Rightarrow \mathbf{E}[|S_i|] = \mathbf{E}[\mathbf{E}[|S_i|]] = \frac{1}{2}\mathbf{E}[|S_{i-1}|] = \cdots = \frac{1}{2^{i-1}}\mathbf{E}[|S_1|] = \frac{|P|}{2^{i-1}}.$

In particular, for $k = \lceil 11 \log |P| \rceil$, we have $\mathbf{E}[|S_k|] = \frac{|P|}{2^k} \leq \frac{|P|}{2^{11 \log |P|}} = \frac{1}{|P|^{10}}$

 \Rightarrow By Markov's inequality, $\mathbf{Pr}(m \geq k) = \mathbf{Pr}(|S_k| \geq 1) \leq \frac{\mathbf{E}(|S_k|)}{1} \leq \frac{1}{|P|^{10}}$.

 \Rightarrow with high proba., $m = O(\log |P|)$. 9

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Def Given gradation $(S_m, \dots, S_1 = P)$, build compressed quadtrees $T_i(S_i)$ and connect the internal nodes of S_i to their instances in S_{i-1} . \Rightarrow hierarchy of compressed quadtrees.

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Pt location Given $q \in [0, 1]^2$, locate q in T_m , then follow link of latest internal node v_m to T_{m-1} , then locate q in T_{m-1} from v_m , \cdots , locate q in T_1 from v_2 .

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Pt location Given $q \in [0, 1]^2$, locate q in T_m , then follow link of latest internal node v_m to T_{m-1} , then locate q in T_{m-1} from v_m , \cdots , locate q in T_1 from v_2 .

Backward analysis Let v be last node visited in T_i . Let $v_1 = v, v_2, \cdots, v_r$ be path to root. $\forall j, U_j := S_i \cap \Box_{v_j} \rightarrow |U_j| \ge j$, and $[|U_j \cap S_{i+1}| \le 1 \Leftrightarrow v_j \in T_i]$. Let $V_j = 1$ iff $v_j \notin T_{i+1} \rightarrow$ $\mathbf{E}[V_j] = \mathbf{Pr}(V_j = 1) = \mathbf{Pr}(|U_j \cap S_{i+1}| \le 1) =$ $\frac{1}{2^{|U_j|}} + \frac{|U_j|}{2^{|U_j|-1}} \frac{1}{2} = \frac{1+|U_j|}{2^{|U_j|}} \le \frac{1+j}{2^j}$.

 $\mathbf{E}[\text{time spent in } T_i] \leq \sum_j \mathbf{E}[V_j] = \sum_j \frac{j+1}{2^j} = O(1).$ $\Rightarrow \mathbf{E}[\text{location time}] = O(\log |P|).$

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Pt insertion Given $q \in [0, 1]^2$,

- locate q in (T_m, \cdots, T_1) and store path.
- insert q in T_1 by splitting last node of path.
- toss coin: if neg. result, then done. Else, add q to S_2 and insert it in T_2 using last node of location path in T_2 .

- iterate process, until coin toss gives neg. result (create new layers if necessary).

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Pt insertion Given $q \in [0, 1]^2$,

- locate q in (T_m, \cdots, T_1) and store path.
- insert q in T_1 by splitting last node of path.
- toss coin: if neg. result, then done. Else, add q to S_2 and insert it in T_2 using last node of location path in T_2 .

- iterate process, until coin toss gives neg. result (create new layers if necessary).

Analysis Outside location path, time spent per layer is O(1). Since q raised w/ proba. $\frac{1}{2}$ per layer, $\mathbf{E}[\max$. layer reached] = $\sum_{i} \frac{i}{2^{i}} = O(1)$.

 \Rightarrow **E**[insertion time] = $O(\log |P|)$.

 $\Rightarrow \mathbf{E}[\text{iterative construction time}] = O(|P| \log |P|).$

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Pt deletion Given $p \in P$,

- locate p in (T_m, \cdots, T_1) and store path.
- delete q from leaves of the T_i .

- recursively remove empty nodes from the T_i and transform internal nodes with only 1 pt into leaves (plus remove empty layers).

Analysis Only the nodes of the location path are to be considered for deletion or status change. If the instance of v in T_i is deleted, then its parent node in T_i is still non-empty, hence only v and its parent have to be updated $\Rightarrow O(1)$ update time per layer.

 $\Rightarrow \mathbf{E}[\text{deletion time}] = O(\log |P|).$

Dynamic quadtrees (derandomization)

[D. Eppstein, M. Goodrich, J. Sun, SCG 2005] (deterministic quadtrees)

[J. Munro, T. Papadakis, R. Sedgewick, SODA 1992] (deterministic skip-lists)

Adaptive mesh generation Given $P \subset]0,1[^2$ finite, construct the smallest possible triangulation T of $]0,1[^2$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Adaptive mesh generation Given $P \subset]0,1[^2$ finite, construct the smallest possible triangulation T of $]0,1[^2$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Adaptive mesh generation Given $P \subset]0,1[^2$ finite, construct the smallest possible triangulation T of $]0,1[^2$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Strategy:

- compute compressed quadtree T_P of $P \to O(|P| \log |P|)$.

Adaptive mesh generation Given $P \subset]0,1[^2$ finite, construct the smallest possible triangulation T of $]0,1[^2$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Strategy:

- compute compressed quadtree T_P of $P \to O(|P| \log |P|)$.
- uncompress T_P

Adaptive mesh generation Given $P \subset]0,1[^2$ finite, construct the smallest possible triangulation T of $]0,1[^2$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Strategy:

- compute compressed quadtree T_P of $P \rightarrow O(|P| \log |P|)$.
- uncompress T_P

- refine T_P so that, $\forall p \in P$, the 1-ring neighb. of p contains no pt of $P \setminus \{p\}$ (\forall cell, use pointers to adjacent cells in 8-connectivity).

Adaptive mesh generation Given $P \subset]0,1[^2$ finite, construct the smallest possible triangulation T of $]0,1[^2$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Strategy:

- compute compressed quadtree T_P of $P \rightarrow O(|P| \log |P|)$.
- uncompress T_P

- refine T_P so that, $\forall p \in P$, the 1-ring neighb. of p contains no pt of $P \setminus \{p\}$ (\forall cell, use pointers to adjacent cells in 8-connectivity).

- insert 1-ring neighbs. in ${\cal T}_{\cal P}$

Adaptive mesh generation Given $P \subset]0,1[^2$ finite, construct the smallest possible triangulation T of $]0,1[^2$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Strategy:

- compute compressed quadtree T_P of $P \rightarrow O(|P| \log |P|)$.
- uncompress T_P

- refine T_P so that, $\forall p \in P$, the 1-ring neighb. of p contains no pt of $P \setminus \{p\}$ (\forall cell, use pointers to adjacent cells in 8-connectivity).

- insert 1-ring neighbs. in T_P and refine T_P so that it is balanced.

Adaptive mesh generation Given $P \subset]0,1[^2$ finite, construct the smallest possible triangulation T of $]0,1[^2$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Strategy:

- compute compressed quadtree T_P of $P \rightarrow O(|P| \log |P|)$.
- uncompress T_P

- refine T_P so that, $\forall p \in P$, the 1-ring neighb. of p contains no pt of $P \setminus \{p\}$ (\forall cell, use pointers to adjacent cells in 8-connectivity).

- insert 1-ring neighbs. in T_P and refine T_P so that it is balanced.

- snap nearest vertices onto pts of P.

Adaptive mesh generation Given $P \subset]0,1[^2$ finite, construct the smallest possible triangulation T of $]0,1[^2$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Strategy:

- compute compressed quadtree T_P of $P \rightarrow O(|P| \log |P|)$.
- uncompress T_P

- refine T_P so that, $\forall p \in P$, the 1-ring neighb. of p contains no pt of $P \setminus \{p\}$ (\forall cell, use pointers to adjacent cells in 8-connectivity).

- insert 1-ring neighbs. in T_P and refine T_P so that it is balanced.

- snap nearest vertices onto pts of P.

- triangulate cells (3 cases: unsplit bound., split bound., moved vertex).

Adaptive mesh generation Given $P \subset]0,1[^2$ finite, construct the smallest possible triangulation T of $]0,1[^2$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Strategy:

- compute compressed quadtree T_P of $P \rightarrow O(|P| \log |P|)$.
- uncompress T_P

- refine T_P so that, $\forall p \in P$, the 1-ring neighb. of p contains no pt of $P \setminus \{p\}$ (\forall cell, use pointers to adjacent cells in 8-connectivity).

- insert 1-ring neighbs. in T_P and refine T_P so that it is balanced.

- snap nearest vertices onto pts of P.

- triangulate cells (3 cases: unsplit bound., split bound., moved vertex).

 \Rightarrow time: $O(|P| \log |P| + |\text{output}|)$ 11

Take-home message

- Quadtrees vs. uniform grids: space-time trade-off.
- Effective location data structure in low dimensions, both in static (compressed quadtrees) and dynamic (skipquadtrees) settings.
- Main advantages: easy to implement, good average behaviour in practice (time and space).
- Downside: fundamentally anisotropic (*cf.* point location among triangles, mesh generation, *etc.*).
- Very useful for approximation (*cf.* snap-rounding).