CS468, Mon. Oct. 2nd, 2006

Quadtrees: Hierarchical Grids

Steve Oudot

From S. Har-Peled's notes, Chapter 2

Outline

- Examples and preliminary results.
- Static setting: compressed quadtrees.

(deterministic)

- Dynamic setting: skip-quadtrees. (randomized)
- Adaptive meshing: balanced quadtrees. (deterministic)

A first example (point location)

Goal: given a planar map M that partitions $\left[0,1\left[^{2}\right.\right.$, preprocess M such that, for any query point $q \in[0,1]^{2}$, the region containing q is found in sublinear time.

A first example (point location)

Goal: given a planar map M that partitions $\left[0,1\left[^{2}\right.\right.$, preprocess M such that, for any query point $q \in[0,1]^{2}$, the region containing q is found in sublinear time.

- triangulate each region

A first example (point location)
Goal: given a planar map M that partitions $\left[0,1\left[^{2}\right.\right.$, preprocess M such that, for any query point $q \in[0,1]^{2}$, the region containing q is found in sublinear time.

- triangulate each region
- build quadtree T whose leaves intersect at most 9 triangles

A first example (point location)
Goal: given a planar map M that partitions $\left[0,1\left[^{2}\right.\right.$, preprocess M such that, for any query point $q \in[0,1]^{2}$, the region containing q is found in sublinear time.

- triangulate each region
- build quadtree T whose leaves intersect at most 9 triangles

A first example (point location)

Goal: given a planar map M that partitions $\left[0,1\left[^{2}\right.\right.$, preprocess M such that, for any query point $q \in[0,1]^{2}$, the region containing q is found in sublinear time.

- triangulate each region
- build quadtree T whose leaves intersect at most 9 triangles

A first example (point location)

Goal: given a planar map M that partitions $\left[0,1\left[^{2}\right.\right.$, preprocess M such that, for any query point $q \in[0,1]^{2}$, the region containing q is found in sublinear time.

- triangulate each region
- build quadtree T whose leaves intersect at most 9 triangles

A first example (point location)

Goal: given a planar map M that partitions $\left[0,1\left[^{2}\right.\right.$, preprocess M such that, for any query point $q \in[0,1]^{2}$, the region containing q is found in sublinear time.

- triangulate each region
- build quadtree T whose leaves intersect at most 9 triangles

A first example (point location)

Goal: given a planar map M that partitions $\left[0,1\left[^{2}\right.\right.$, preprocess M such that, for any query point $q \in[0,1]^{2}$, the region containing q is found in sublinear time.

- $\forall q \in\left[0,1\left[^{2}\right.\right.$, walk down T to find leaf $v \in L$ that contains q , then check triangles that intersect \square_{v}.
\Rightarrow size $O(|L|)$, time $O(h)$
regular grid : size $\Theta\left(2^{2 h}\right)$, time $O(1)$
Q can we do better?

A first example (point location)

Goal: given a planar map M that partitions $\left[0,1\left[{ }^{2}\right.\right.$, preprocess M such that, for any query point $q \in[0,1]^{2}$, the region containing q is found in sublinear time.

- level i forms a 2^{-i}-regular grid of $\left[0,1\left[{ }^{2}\right.\right.$ $\Rightarrow \forall i, v_{i}(q)=\left(2^{-i}\left\lfloor 2^{i} q_{x}\right\rfloor, 2^{-i}\left\lfloor 2^{i} q_{y}\right\rfloor\right)$
- put nodes in hash-table
- $\forall q \in\left[0,1\left[^{2}\right.\right.$, binary search on height:

Let $i=\mathrm{hmax}+\mathrm{hmin} / 2$;
if $v_{i}(q) \neq \mathrm{NULL}$, then search between i and hmax; else search between hmin and i;

$$
\Rightarrow O(\log h)
$$

Another example (range searching)

Goal: given a finite point set $P \subset\left[0,1\left[^{2}\right.\right.$, preprocess P such that, for any query rectangle $r \subseteq[0,1]^{2}, r \cap P$ is found in time $O(|r \cap P|)$.

Another example (range searching)

Goal: given a finite point set $P \subset\left[0,1\left[^{2}\right.\right.$, preprocess P such that, for any query rectangle $r \subseteq[0,1]^{2}, r \cap P$ is found in time $O(|r \cap P|)$.

Another example (range searching)

Goal: given a finite point set $P \subset\left[0,1\left[^{2}\right.\right.$, preprocess P such that, for any query rectangle $r \subseteq[0,1]^{2}, r \cap P$ is found in time $O(|r \cap P|)$.

Another example (range searching)

Goal: given a finite point set $P \subset\left[0,1\left[^{2}\right.\right.$, preprocess P such that, for any query rectangle $r \subseteq[0,1]^{2}, r \cap P$ is found in time $O(|r \cap P|)$.

Various bounds

Lemma Let $P \subset\left[0,1\left[^{2}\right.\right.$ be finite. Assume $w \log \operatorname{diam}(P)=\max \{\mathrm{d}(p, q \mid p, q \in$ $P\} \geq 1 / 2$. Then, $h=O(\log \Phi(P))$, where $\Phi(P)=\operatorname{diam}(P) / \min \{\mathrm{d}(p, q) \mid p, q \in P\}$.

Def $\forall p, q \in P$, let $h(p, q)$ be the smallest i st. $v_{i}(p) \neq v_{i}(q)$.
$\forall i, v_{i}(p)=\left(2^{-i}\left\lfloor 2^{i} p_{x}\right\rfloor, 2^{-i}\left\lfloor 2^{i} p_{y}\right\rfloor\right)$
Prop $\forall p, q \in[0,1]^{2}, h(p, q)=$ $\min \left\{-\left\lceil\log \left(p_{x} \dot{\vee} q_{x}\right)\right\rceil\right.$, $\left.-\left\lceil\log \left(p_{y} \dot{\vee} q_{y}\right)\right\rceil\right\}$ $\leq \min \left\{-\left\lceil\log \left|p_{x}-q_{x}\right|,-\left\lceil\log \left|p_{y}-q_{y}\right|\right\}\right.\right.$
$=-\left\lceil\log \max \left\{\left|p_{x}-q_{x}\right|,\left|p_{y}-q_{y}\right|\right\}\right\rceil$
$\leq-\left\lceil\log \frac{1}{\sqrt{2}} \mathrm{~d}(p, q)\right\rceil=\frac{1}{2}-\log \mathrm{d}(p, q)$
Observation: for every internal node v of $T,\left|\square_{v} \cap P\right| \geq 2$
$\Rightarrow l(v) \leq h(p, q)-1, \forall p, q \in \square_{v}$
$\Rightarrow h \leq \frac{1}{2}-\log \min \{\mathrm{d}(p, q) \mid p, q \in P\}$
$\leq \frac{3}{2}+\log \Phi(P)$

Various bounds

Lemma Let $P \subset\left[0,1\left[^{2}\right.\right.$ be finite. Assume wog $\operatorname{diam}(P)=\max \{\mathrm{d}(p, q \mid p, q \in$ $P\} \geq 1 / 2$. Then, $h=O(\log \Phi(P))$, where $\Phi(P)=\operatorname{diam}(P) / \min \{\mathrm{d}(p, q) \mid p, q \in P\}$.

Corollary data structure size: $O(|P| \log \Phi(P))$ construction time: $O(|P| \log \Phi(P))$ query time: $O(\log \log \Phi(P))$

Q Can we do better?

Compressed quadtrees

Pb Bounds on complexity depend on $\Phi(P)$.

Compressed quadtrees

Pb Bounds on complexity depend on $\Phi(P)$.

Compressed quadtrees

Compressed quadtrees

every internal node has ≥ 2 sons

$$
\Rightarrow|T| \leq 2|L|-1=2|P|-1
$$

Q how to construct T efficiently?

Q how to locate a point efficiently?

Compressed quadtrees

Note Computing the uncompressed quadtree can take unbounded time

Quadratic algorithm:

1. For all pairs of points $(p, q) \in P^{2}$, find $\square_{v_{p q}}=\square_{v_{i}(p)}=\square_{v_{i}(q)}$, where $i=h(p, q)-1$.
$\rightarrow v_{p q}$ must be a node of compressed quadtree T
\rightarrow every node of T is a $v_{p q}$ for some pair $(p, q) \in P^{2}$
\Rightarrow this step computes the exact list of the nodes of T
2. For each node v in the list, find its most recent ancestor (in the list) and connect v to it.

Note a node is stored only once in the list, although it may have been found multiple times in step 1 (use hash-table).

Compressed quadtrees (construction)

More subtle algorithm: let $k=|P| / 10$.

Compressed quadtrees (construction)

More subtle algorithm: let $k=|P| / 10$. - Compute D_{r} sit. $r_{\mathrm{opt}}(P, k) \leq r \leq 2 r_{\mathrm{opt}}(P, k)$.

Compressed quadtrees (construction)

More subtle algorithm: let $k=|P| / 10$. - Compute D_{r} sit. $r_{\mathrm{opt}}(P, k) \leq r \leq 2 r_{\mathrm{opt}}(P, k)$.

\bullet					\bullet		\bullet
	\bullet						\bullet
					\bullet		\bullet
			\bullet	\bullet			
	\bullet		\bullet	\bullet			

- Let $l=2^{\lfloor\log r\rfloor} \geq r / 2$. Place the pts of P on $U G_{l}$, and find cell c with max number of points.

$$
\begin{aligned}
& P_{\text {in }}=P \cap c, P_{\text {out }}=P \backslash c . \\
& l \geq \frac{r}{2} \Rightarrow\left|P_{\text {in }}\right| \geq \frac{k}{25}=\frac{|P|}{250} . \\
& l \leq 2 r_{\text {opt }}(P, k) \Rightarrow\left|P_{\text {in }}\right| \leq \frac{4|P|}{5} .
\end{aligned}
$$

Compressed quadtrees (construction)

More subtle algorithm: let $k=|P| / 10$. - Compute D_{r} s.t. $r_{\mathrm{opt}}(P, k) \leq r \leq 2 r_{\mathrm{opt}}(P, k)$.
 - Let $l=2^{\lfloor\log r\rfloor} \geq r / 2$. Place the pts of P on $U G_{l}$, and find cell c with max number of points.
$P_{\mathrm{in}}=P \cap c, P_{\mathrm{out}}=P \backslash c$.
$l \geq \frac{r}{2} \Rightarrow\left|P_{\text {in }}\right| \geq \frac{k}{25}=\frac{|P|}{250}$.
$l \leq 2 r_{\text {opt }}(P, k) \Rightarrow\left|P_{\text {in }}\right| \leq \frac{4|P|}{5}$.

- Recursive call on $P_{\text {in }}$ and $P_{\text {out }}$.

Compressed quadtrees (construction)

More subtle algorithm: let $k=|P| / 10$. - Compute D_{r} s.t. $r_{\mathrm{opt}}(P, k) \leq r \leq 2 r_{\mathrm{opt}}(P, k)$.
 - Let $l=2^{\lfloor\log r\rfloor} \geq r / 2$. Place the pts of P on $U G_{l}$, and find cell c with max number of points.
$P_{\mathrm{in}}=P \cap c, P_{\mathrm{out}}=P \backslash c$.
$l \geq \frac{r}{2} \Rightarrow\left|P_{\text {in }}\right| \geq \frac{k}{25}=\frac{|P|}{250}$.
$l \leq 2 r_{\mathrm{opt}}(P, k) \Rightarrow\left|P_{\mathrm{in}}\right| \leq \frac{4|P|}{5}$.

- Recursive call on $P_{\text {in }}$ and $P_{\text {out }}$.

Locate any $p \in P_{\text {in }}$ in $T_{\text {out }}$, and hang root of $T_{\text {in }}$ onto the node.

$$
\Rightarrow O(|P| \log |P|)
$$

Compressed quadtrees (pt location)

Note If T unbalanced, then query time $=\Omega(|P|)$.

Compressed quadtrees (pt location)

Preprocessing: compute sizes of subtrees of T.

Compressed quadtrees (pt location)

Preprocessing: compute sizes of subtrees of T.

- starting from root of T, keep going to son with highest number, until subtree has size at most $|T| / 2$.

Compressed quadtrees (pt location)

Note If T unbalanced, then query time $=\Omega(|P|)$.
\rightarrow Finger tree construction:
Preprocessing: compute sizes of subtrees of T.

- starting from root of T, keep going to son with highest number, until subtree has size at most $|T| / 2$.
- Update numbers of parents of the separator node.

Compressed quadtrees (pt location)

Note If T unbalanced, then query time $=\Omega(|P|)$.
\rightarrow Finger tree construction:
Preprocessing: compute sizes of subtrees of T.

- starting from root of T, keep going to son with highest number, until subtree has size at most $|T| / 2$.
- Update numbers of parents of the separator node.
- Recursive call on all subtrees.

Compressed quadtrees (pt location)

If T unbalanced, then query time $=\Omega(|P|)$.
\rightarrow Finger tree construction:
Preprocessing: compute sizes of subtrees of T.

- starting from root of T, keep going to son with highest number, until subtree has size at most $|T| / 2$.
- Update numbers of parents of the separator node.
- Recursive call on all subtrees.
- Hang finger trees of subtrees to separator node.
\rightarrow Construction time: $O(|T| \log |T|)=O(|P| \log |P|)$.
\rightarrow Finger tree has same size as T and is balanced, hence its height is $O(\log |T|)$.
\Rightarrow pt location time: $O(\log |T|)$.

Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Def A gradation of P is a subsampling sequence $\left(S_{m}, S_{m-1}, \cdots, S_{2}, S_{1}\right)$ such that:
(i) $S_{1}=P$,
(ii) $S_{i}=$ pts of S_{i-1} picked with proba. $1 / 2$,
(iii) $\left|S_{m}\right|=1<\left|S_{m-1}\right|$.

Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Def A gradation of P is a subsampling sequince $\left(S_{m}, S_{m-1}, \cdots, S_{2}, S_{1}\right)$ such that:
(i) $S_{1}=P$,
(ii) $S_{i}=$ pts of S_{i-1} picked with proba. ${ }^{1 / 2}$,
(iii) $\left|S_{m}\right|=1<\left|S_{m-1}\right|$.

Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Def A gradation of P is a subsampling sequince $\left(S_{m}, S_{m-1}, \cdots, S_{2}, S_{1}\right)$ such that:
(i) $S_{1}=P$,
(ii) $S_{i}=$ pts of S_{i-1} picked with proba. $1 / 2$,
(iii) $\left|S_{m}\right|=1<\left|S_{m-1}\right|$.

Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Def A gradation of P is a subsampling sequince ($S_{m}, S_{m-1}, \cdots, S_{2}, S_{1}$) such that:
(i) $S_{1}=P$,
(ii) $S_{i}=$ pts of S_{i-1} picked with proba. ${ }^{1 / 2}$, (iii) $\left|S_{m}\right|=1<\left|S_{m-1}\right|$.

Prop $\forall i, \mathbf{E}\left[\left|S_{i}\right|\right]=\frac{\left|S_{i-1}\right|}{2}$
$\Rightarrow \mathbf{E}\left[\left|S_{i}\right|\right]=\mathbf{E}\left[\mathbf{E}\left[\left|S_{i}\right|\right]\right]=\frac{1}{2} \mathbf{E}\left[\left|S_{i-1}\right|\right]=\cdots=$ $\frac{1}{2^{i-1}} \mathbf{E}\left[\left|S_{1}\right|\right]=\frac{|P|}{2^{i-1}}$.

In particular, for $k=\lceil 11 \log |P|\rceil$, we have $\mathbf{E}\left[\left|S_{k}\right|\right]=\frac{|P|}{2^{k}} \leq \frac{|P|}{2^{11 \log |P|}}=\frac{1}{|P|^{10}}$
\Rightarrow By Markov's inequality, $\operatorname{Pr}(m \geq k)=$ $\operatorname{Pr}\left(\left|S_{k}\right| \geq 1\right) \leq \frac{\mathbf{E}\left(\left|S_{k}\right|\right)}{1} \leq \frac{1}{|P|^{10}}$.
\Rightarrow with high proba., $m=O(\log |P|)$.

Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Def Given gradation ($S_{m}, \cdots, S_{1}=P$), build compressed quadtrees $T_{i}\left(S_{i}\right)$

Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Def Given gradation ($S_{m}, \cdots, S_{1}=P$), build compressed quadtrees $T_{i}\left(S_{i}\right)$

Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Def Given gradation ($S_{m}, \cdots, S_{1}=P$), build compressed quadtrees $T_{i}\left(S_{i}\right)$

Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Def Given gradation ($S_{m}, \cdots, S_{1}=P$), build compressed quadtrees $T_{i}\left(S_{i}\right)$

Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Def Given gradation $\left(S_{m}, \cdots, S_{1}=P\right)$, build compressed quadtrees $T_{i}\left(S_{i}\right)$ and connect the internal nodes of S_{i} to their instances in S_{i-1}. \Rightarrow hierarchy of compressed quadtrees.

Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Pt location Given $q \in\left[0,1\left[^{2}\right.\right.$, locate q in T_{m}, then follow link of latest internal node v_{m} to T_{m-1}, then locate q in T_{m-1} from v_{m}, \cdots, locate q in T_{1} from v_{2}.

Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Pt location Given $q \in\left[0,1\left[{ }^{2}\right.\right.$, locate q in T_{m}, then follow link of latest internal node v_{m} to T_{m-1}, then locate q in T_{m-1} from v_{m}, \cdots, locate q in T_{1} from v_{2}.

Backward analysis Let v be last node visited in T_{i}. Let $v_{1}=v, v_{2}, \cdots, v_{r}$ be path to root. $\forall j, U_{j}:=S_{i} \cap \square_{v_{j}} \rightarrow\left|U_{j}\right| \geq j$, and $\left[\left|U_{j} \cap S_{i+1}\right| \leq 1 \Leftrightarrow v_{j} \in T_{i}\right]$.
Let $V_{j}=1$ ff $v_{j} \notin T_{i+1} \rightarrow$
$\mathbf{E}\left[V_{j}\right]=\operatorname{Pr}\left(V_{j}=1\right)=\operatorname{Pr}\left(\left|U_{j} \cap S_{i+1}\right| \leq 1\right)=$ $\frac{1}{2^{1 U_{j} \mid}}+\frac{\left|U_{j}\right|}{2^{\left|U_{j}\right|-1}} \frac{1}{2}=\frac{1+\left|U_{j}\right|}{2^{\left|U_{j}\right|}} \leq \frac{1+j}{2^{j}}$.
$\mathbf{E}\left[\right.$ time spent in $\left.T_{i}\right] \leq \sum_{j} \mathbf{E}\left[V_{j}\right]=\sum_{j} \frac{j+1}{2^{j}}=O(1)$.
$\Rightarrow \mathbf{E}[$ location time $]=O(\log |P|)$.

Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Pt insertion Given $q \in\left[0,1\left[^{2}\right.\right.$,

- locate q in $\left(T_{m}, \cdots, T_{1}\right)$ and store path.
- insert q in T_{1} by splitting last node of path.
- toss coin: if neg. result, then done. Else, add q to S_{2} and insert it in T_{2} using last node of location path in T_{2}.
- iterate process, until coin toss gives neg. result (create new layers if necessary).

Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Pt insertion Given $q \in\left[0,1\left[^{2}\right.\right.$,

- locate q in (T_{m}, \cdots, T_{1}) and store path.
- insert q in T_{1} by splitting last node of path.
- toss coin: if neg. result, then done. Else, add q to S_{2} and insert it in T_{2} using last node of location path in T_{2}.
- iterate process, until coin toss gives neg. result (create new layers if necessary).

Analysis Outside location path, time spent per layer is $O(1)$. Since q raised $w /$ probe. $\frac{1}{2}$ per layer, $\mathbf{E}[$ max. layer reached $]=\sum_{i} \frac{i}{2^{i}}=O(1)$.
$\Rightarrow \mathbf{E}[$ insertion time $]=O(\log |P|)$.
$\Rightarrow \mathbf{E}[$ iterative construction time $]=O(|P| \log |P|)$.

Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under point insertion/deletion, but not finger trees.

Pt deletion Given $p \in P$,

- locate p in (T_{m}, \cdots, T_{1}) and store path.
- delete q from leaves of the T_{i}.
- recursively remove empty nodes from the T_{i} and transform internal nodes with only 1 pt into leaves (plus remove empty layers).

Analysis Only the nodes of the location path are to be considered for deletion or status change. If the instance of v in T_{i} is deleted, then its parent node in T_{i} is still non-empty, hence only v and its parent have to be updated $\Rightarrow O(1)$ update time per layer.
$\Rightarrow \mathbf{E}[$ deletion time $]=O(\log |P|)$.

Dynamic quadtrees (derandomization)

[D. Eppstein, M. Goodrich, J. Sun, SCG 2005] (deterministic quadtrees)
[J. Munro, T. Papadakis, R. Sedgewick, SODA 1992] (deterministic skip-lists)

Balanced quadtrees

Adaptive mesh generation Given $P \subset] 0,1\left[^{2}\right.$ finite, construct the smallest possible triangulation T of $] 0,1\left[^{2}\right.$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Balanced quadtrees

Adaptive mesh generation Given $P \subset] 0,1\left[{ }^{2}\right.$ finite, construct the smallest possible triangulation T of $] 0,1\left[^{2}\right.$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Balanced quadtrees

Adaptive mesh generation Given $P \subset] 0,1\left[{ }^{2}\right.$ finite, construct the smallest possible triangulation T of $] 0,1\left[^{2}\right.$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Strategy:

- compute compressed quadtree
T_{P} of $P \rightarrow O(|P| \log |P|)$.

Balanced quadtrees

Adaptive mesh generation Given $P \subset] 0,1\left[{ }^{2}\right.$ finite, construct the smallest possible triangulation T of $] 0,1\left[^{2}\right.$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Strategy:

- compute compressed quadtree
T_{P} of $P \rightarrow O(|P| \log |P|)$.
- uncompress T_{P}

Balanced quadtrees

Adaptive mesh generation Given $P \subset] 0,1\left[{ }^{2}\right.$ finite, construct the smallest possible triangulation T of $] 0,1\left[^{2}\right.$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Strategy:

- compute compressed quadtree T_{P} of $P \rightarrow O(|P| \log |P|)$.
- uncompress T_{P}
- refine T_{P} so that, $\forall p \in P$, the 1-ring neighb. of p contains no pt of $P \backslash\{p\}$ (\forall cell, use pointers to adjacent cells in 8 -connectivity).

Balanced quadtrees

Adaptive mesh generation Given $P \subset] 0,1\left[{ }^{2}\right.$ finite, construct the smallest possible triangulation T of $] 0,1\left[^{2}\right.$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Strategy:

- compute compressed quadtree T_{P} of $P \rightarrow O(|P| \log |P|)$.
- uncompress T_{P}
- refine T_{P} so that, $\forall p \in P$, the 1-ring neighb. of p contains no pt of $P \backslash\{p\}$ (\forall cell, use pointers to adjacent cells in 8 -connectivity).
- insert 1-ring neighbs. in T_{P}

Balanced quadtrees

Adaptive mesh generation Given $P \subset] 0,1\left[{ }^{2}\right.$ finite, construct the smallest possible triangulation T of $] 0,1\left[^{2}\right.$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Strategy:

- compute compressed quadtree T_{P} of $P \rightarrow O(|P| \log |P|)$.
- uncompress T_{P}
- refine T_{P} so that, $\forall p \in P$, the 1-ring neighb. of p contains no pt of $P \backslash\{p\}$ (\forall cell, use pointers to adjacent cells in 8 -connectivity).
- insert 1-ring neighbs. in T_{P} and refine T_{P} so that it is balanced.

Balanced quadtrees

Adaptive mesh generation Given $P \subset] 0,1\left[{ }^{2}\right.$ finite, construct the smallest possible triangulation T of $] 0,1\left[^{2}\right.$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Strategy:

- compute compressed quadtree T_{P} of $P \rightarrow O(|P| \log |P|)$.
- uncompress T_{P}
- refine T_{P} so that, $\forall p \in P$, the 1-ring neighb. of p contains no pt of $P \backslash\{p\}$ (\forall cell, use pointers to adjacent cells in 8 -connectivity).
- insert 1-ring neighbs. in T_{P} and refine T_{P} so that it is balanced.
- snap nearest vertices onto pts of P.

Balanced quadtrees

Adaptive mesh generation
Given $P \subset] 0,1\left[^{2}\right.$ finite, construct the smallest possible triangulation T of $] 0,1\left[^{2}\right.$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Strategy:

- compute compressed quadtree T_{P} of $P \rightarrow O(|P| \log |P|)$.
- uncompress T_{P}
- refine T_{P} so that, $\forall p \in P$, the 1-ring neighb. of p contains no pt of $P \backslash\{p\}$ (\forall cell, use pointers to adjacent cells in 8 -connectivity).
- insert 1-ring neighbs. in T_{P} and refine T_{P} so that it is balanced.
- snap nearest vertices onto pts of P.
- triangulate cells (3 cases: unsplit bound., split bound., moved vertex).

Balanced quadtrees

Adaptive mesh generation
Given $P \subset] 0,1\left[^{2}\right.$ finite, construct the smallest possible triangulation T of $] 0,1\left[^{2}\right.$, with bounded minimum angle, s.t. every point of P is a vertex of T.

Strategy:

- compute compressed quadtree T_{P} of $P \rightarrow O(|P| \log |P|)$.
- uncompress T_{P}
- refine T_{P} so that, $\forall p \in P$, the 1-ring neighb. of p contains no pt of $P \backslash\{p\}$ (\forall cell, use pointers to adjacent cells in 8 -connectivity).
- insert 1-ring neighbs. in T_{P} and refine T_{P} so that it is balanced.
- snap nearest vertices onto pts of P.
- triangulate cells (3 cases: unsplit bound., split bound., moved vertex).

$$
\Rightarrow \text { time: } O(|P| \log |P|+\mid \text { output } \mid)
$$

Take-home message

- Quadtrees vs. uniform grids: space-time trade-off.
- Effective location data structure in low dimensions, both in static (compressed quadtrees) and dynamic (skipquadtrees) settings.
- Main advantages: easy to implement, good average behaviour in practice (time and space).
- Downside: fundamentally anisotropic (cf. point location among triangles, mesh generation, etc.).
- Very useful for approximation (cf. snap-rounding).

