Nearest Neighbour Searching in Metric Spaces

Kenneth Clarkson (1999, 2006)

Nearest Neighbour Search

Problem NN

- Given:
 - Set U
 - Distance measure *D*
 - Set of sites $S \subset U$
 - Query point $q \in U$
- Find:
 - Point $p \in S$ such that D(p, q) is minimum

Outline

- Applications and variations
- Metric Spaces
 - Basic inequalities
- Basic algorithms
 - Orchard, annulus, AESA, metric trees

• Dimensions

- Coverings, packings, ε-nets
- Box, Hausdorff, packing, pointwise, doubling dimensions
- Estimating dimensions using NN

• NN using dimension bounds

- Divide and conquer
 - Exchangeable queries
- M(S, Q) and auxiliary query points

Applications

- "Post-office problem"
 - Given a location on a map, find the nearest postoffice/train station/restaurant...
- Best-match file searching (key search)
- Similarity search (databases)
- Vector quantization (information theory)
 - Find codeword that best approximates a message unit
- Classification/clustering (pattern recognition)
 - e.g. k-means clustering requires a nearest neighbour query for each point at each step

Variations

- k-nearest neighbours
 - Find k sites closest to query point q
- Distance range searching
 - Given query point q, distance r, find all sites $p \in S$ s.t. $D(q, p) \leq r$
- All (k) nearest neighbours
 - For each site *s*, find its (*k*) nearest neighbour(s)
- Closest pair
 - Find sites s and s' s.t. D(s, s') is minimized over S

Variations

- Reverse queries
 - Return each site with q as its nearest neighbour in $S \cup \{q\}$ (excluding the site itself)
- Approximate queries
 - (δ)-nearest neighbour
 - Any point whose distance to q is within a δ factor of the nearest neighbour distance
 - Interesting because approximate algorithms usually achieve **better running times** than exact versions
- Bichromatic queries
 - Return closest red-blue pair

Metric Spaces

- Metric space Z := (U, D)
 - Set U
 - Distance measure D
- *D* satisfies
 - 1. Nonnegativity: $D(x, y) \ge 0$
 - 2. Small self-distance: D(x, x) = 0
 - 3. Isolation: $x \neq y \Rightarrow D(x, y) > 0$
 - 4. Symmetry: D(x, y) = D(y, x)
 - 5. Triangle inequality: $D(x, z) \le D(x, y) + D(y, z)$
- Absence of any **one** of 3-5 can be "repaired".

Triangle Inequality Bounds

For $q, s, p \in U$, any value r, and any $P \subset U$

1. $|D(p,q) - D(p,s)| \le D(q,s) \le D(p,q) + D(p,s)$

Triangle Inequality Bounds

2. $D(q, s) \ge D_p(q, s) := \max_{p \in P} |D(p, q) - D(p, s)|$ 3. If

4. If $D(p, s) \ge 2D(p, q)$, then $D(q, s) \ge D(q, p)$

Triangle Inequality Bounds

- Utility: Give useful **stopping criteria** for NN searches
- Used by:
 - Orchard's Algorithm
 - Annulus Method
 - AESA
 - Metric Trees

Orchard's Algorithm

- For each site *p*, create a list of sites *L*(*p*) in increasing order of distance to *p*
- Pick an initial candidate site *c*
- Walk along L(c) until a site *s* nearer to *q* is found

Orchard's Algorithm

- Make *s* the new candidate: c := s, and repeat
- Stopping criterion:
 - L(c) is completely traversed for some c, or
 - D(c, s) > 2D(c, q) for some s in L(c) $\Rightarrow D(s', q) > D(c, q)$ for all subsequent s' in L(c) by Triangle Inequality Bound (4)
 - In either case, c is the nearest neighbour of q
- Performance:
 - $\Omega(n^2)$ preprocessing and storage BAD!
- Refinement: Mark each site after it has been rejected
 - Ensures distance computations are reduced

Annulus Method

- Similar to Orchard's Algorithm, but uses linear storage
- Maintain just one list of sites *L*(*p**) in order of increasing distance from a single (random) site *p**
- Pick an initial candidate site c
- Alternately move away from and towards p^*

Annulus Method

- If a site *s* closer to *q* than *c* is found, make *s* the new candidate: *c* := *s*, and repeat
- Stopping criterion:
 - A site *s* on the "lower" side has

 $D(p^*, s) \le D(p^*, q) - D(c, q),$

in which case we can ignore all lower sites

• A site *s* on the "higher" side has

 $D(p^*, s) > D(p^*, q) + D(c, q),$

in which case we can ignore all higher sites (Triangle Inequality Bound (3))

Stop when L(p*) is completely traversed – the final candidate is the nearest neighbour

AESA

- "Approximating and Eliminating Search Algorithm"
- Precomputes and stores distances D(x, y) for all $x, y \in S$
- Uses lower bound $D_{p}(x, q)$

- Recall: $D_p(x, q) := \max_{p \in P} |D(p, x) - D(p, q)| \le D(x, q)$

- Every site *x* is in one of three states:
 - *Known*: D(x, q) has been computed
 - The known sites form a set *P*
 - *Unknown*: Only a lower bound $D_{p}(x, q)$ is available
 - *Rejected*: $D_p(x, q)$ is larger than distance of closest *Known* site

AESA

- Initial state: for each site *x*
 - x is Unknown
 - $D_{P}(x,q) = \infty$
- Repeat until all sites are *Known* or *Rejected*
 - Pick Unknown site with smallest $D_p(x, q)$ (break ties at random)
 - Compute D(x, q), so x becomes Known
 - Update smallest distance r known to q
 - Set $P := P \cup \{x\}$, and for all *Unknown x'*, update $D_p(x', q)$; make *x' Rejected* if $D_p(x, q) > r$
 - The update is easy since $D_{P \cup \{x\}}(x', q) = \max \{D_{P}(x', q), |D(x, q) - D(x, x')|\}$

AESA

- Performance:
 - Average constant number of distance computations
 - $\Omega(n^2)$ preprocessing and storage
- Can we do better?
 - Yes! Linear AESA uses a constant-sized pivot set
 - [Mico, Oncina, Vidal '94]

Linear AESA

- Improvement: Use a subset V of the states, called "pivots"
- Let *P* only consist of pivots, and update it only when *x* is a pivot itself
 - Hence, only store distances to pivots
- For a constant sized pivot set, the preprocessing and storage requirements are linear
- Works best when pivots are well-separated
 - A greedy procedure based on "accumulated distances" is described in [Mico, Oncina, Vidal '94]
 - Similar to ε-nets?

Metric Trees

- Choose a seed site, construct a ball B around it, divide sites into two sets $S \cap B$ and $S \setminus B$ ("inside" and "outside") and recurse
- For suitably chosen balls and centres, the tree is balanced
- Storage is linear

Metric Trees

NN query on a metric tree:

• Given q, traverse the tree, update the minimum d_{\min} of the distances of q to the traversed ball centres, and eliminate any subtree whose ball of centre p and radius R satisfies

$$|R - D(p, q)| > d_{\min}$$

- The elimination follows from Triangle Inequality Bound (3) – all sites in the subtree must be more than d_{\min} away from q

Dimension

What is "dimension"?

- A way of assigning a real number d to a metric space Z
- Generally "intrinsic", i.e. the dimension depends on the space *Z* itself and not on any larger space in which it is embedded
- Many different definitions
 - Box dimension
 - Hausdorff dimension
 - Packing dimension
 - Doubling dimension
 - Renyi dimension
 - Pointwise dimension

Coverings and Packings

- Given: Bounded metric space Z := (U, d)
- An ε -cover of *Z* is a set $Y \subset U$ s.t. for every $x \in U$, there is some $y \in Y$ with $D(x, y) < \varepsilon$

• A subset *Y* of *U* is an *ε*-packing iff $D(x, y) > 2\varepsilon$ for every pair $x, y \in Y$

Coverings and Packings

- Covering number $C(U, \varepsilon)$: size of smallest ε -covering
- Packing number $P(U, \varepsilon)$: size of largest ε -packing
- Relation between them:

 $P(U, \varepsilon) \leq C(U, \varepsilon) \leq P(U, \varepsilon/2)$

- Proof: A maximal (ε / 2)-packing is an ε-cover. Also, for any given ε-cover Y and ε-packing P, every p ∈ P must be in an ε-ball centred at some y ∈ Y, but no two p, p' ∈ P can be in the same such ball (else D(p, p') < 2ε by the Triangle Inequality). So |P| ≤ |Y|.
- An ε -net is a set $Y \subset U$ that is both an ε -cover and an $(\varepsilon / 2)$ -packing

Various Dimensions

- Box dimension dim_B: d satisfying $C(U, \varepsilon) = 1 / \varepsilon^d$ as $\varepsilon \to 0$
- Hausdorff dimension \dim_{H} : "critical value" of Hausdorff tmeasure $\inf\{\Sigma_{B \in E} \operatorname{diam}(B)^{t} \mid E \text{ is an } \varepsilon\text{-cover of } U\}$
 - Here ε -cover is generalized to mean a collection of balls, each of diameter at most ε , that cover U
 - Critical value is the *t* above which the t-measure goes to 0 as $\varepsilon \rightarrow 0$, and below which it goes to ∞
- Packing dimension dim_p: Same as Hausdorff but with packing replacing cover and sup replacing inf

Various Dimensions

- Doubling dimension doub_A: Smallest *d* s.t. any ball B(x, 2r) is contained in the union of at most 2^d balls of radius *r*
 - Related to Assouad dimension \dim_A : *d* satisfying

$$\sup_{x \in U, r > 0} C(B(x, r), \varepsilon r) = 1 / \varepsilon^{d}$$

$$-\dim_{A}(Z) \leq \operatorname{doub}_{A}(Z)$$

• **Doubling measure doub**_M: Smallest *d* satisfying

 $\mu(B(x, 2r)) \leq \mu(B(x, r)) 2^d$

for a metric space with measure μ

• Pointwise (local) dimension $\alpha_{\mu}(x)$: For $x \in U$, d s.t.

$$\mu(B(x,\varepsilon)) = \varepsilon^d \text{ as } \varepsilon \to 0$$

Dimension Estimation using NN: An Example

- Given: sample of size *n*
- The pointwise dimension at *x* almost surely satisfies

$$\alpha_{\mu}(x) = \lim_{n \to \infty} \log(k/n) / \log \delta_{k:n}(x)$$

where $\delta_{k:n}(x)$ is the distance of *x* to its k^{th} nearest neighbour in the sample

• In other words:

$$\delta_{I:n}(x) = n^{-1/\alpha_{\mu}(x)}$$

NN in Constant Dimension

- We will first consider spaces (*S*, *D*) of constant doubling dimension/measure and bounded spread
 - Spread $\Delta(S)$ is the ratio of the distance between the farthest pair of sites to the distance between the closest pair

A Basic Lemma

- Definition: A site *a* is kth (γ)-nearest to a site *b* w.r.t. S if there are at most k − 1 sites in S whose distance to b is within a factor of γ of the distance of the nearest to b in S \ {b}
- Lemma: For a metric space Z = (S, D) with doubling dimension *d*, and any site $s \in S$, the number of sites $s' \in S$ for which *s* is $k^{\text{th}}(\gamma)$ -near in *S* to *s'* is $O((2\gamma)^d k \log \Delta(S))$, as $1 / \gamma \to 0$

Proof of Lemma

- Consider k = 1 and a ball B(s, 2r) for some r > 0
- There is an (r / γ) -cover Y of B(s, 2r) of size $O((2\gamma)^d)$
- Every site s' ∉ Y, with r < D(s, s') ≤ 2r has a site in Y within distance (r / γ) of it
 - \Rightarrow *s* is not a (γ)-nearest neighbour of *s'*
 - \Rightarrow only points in *Y* can have *s* as a (γ)-nearest neighbour
 - ⇒ the number of sites *s'* with $r < D(s, s') \le 2r$ that have *s* as a (γ)-nearest neighbour is at most $|Y| = O((2\gamma)^d)$
- If *p* is closest in *S* to *s*, at distance *r'*, then consider r = 2r', 4r', 8r',... At most $\log(\Delta S)$ values of *r* need be considered, each contributing at most $O((2\gamma)^d)$ sites with *s* (γ)-near.

Proof of Lemma

- For *k* = 2, remove all sites of covers in construction for *k* = 1 from *S*
 - Leaves a metric space with same doubling dimension
- Repeat the previous construction on the remaining sites
 - Gives O($(2\gamma)^d \log \Delta(S)$) new sites with *s* as a $2^{nd} (\gamma)$ -nearest neighbour

Q.E.D

• For k > 2, repeat this procedure k times

Divide-and-Conquer NN

• Idea:

- Break S into subsets S_1, S_2, S_3, \dots
- Characterize each subset by a representative site
- Use the distances of the query point to the representatives to locate a subset *S* containing the nearest neighbour
- Recurse within the subset S_{i}
- Typically, the set of representatives will be denoted P
- We'll look at spaces with:
 - Constant doubling dimension
 - Constant doubling measure
 - Constant doubling dimension *and* exchangeable queries

Divide-and-Conquer NN

NN in Constant Doubling Dimension

- Metric space Z = (U, D) with $d := \text{doub}_A(Z)$, sites $S \subset U$
- Scale *S* to fit in ball of radius 1
- Take *P* to be a δ^2 -net for some $\delta > 0$
 - By doubling condition, *P* has at most O(1 / δ^{2d}) sites

NN in Constant Doubling Dimension

- Suppose q has
 - -p as nearest neighbour in P
 - -a as nearest neighbour in S
- Suppose p_a is the nearest neighbour of a in P

 $\Rightarrow D(a, p_a) \le \delta^2$

- $D(q,p) \leq D(q,p_a) \leq D(q,a) + D(a,p_a) \leq D(q,a) + \delta^2$
- If $D(q, a) > \delta$, then p is $(1 + \delta)$ -near to q in S
- Else $D(p, a) \leq D(p, q) + D(q, a) \leq 2\delta + \delta^2 \leq 3\delta$ (for $\delta < 1$)

NN in Constant Doubling Dimension

NN in Constant Doubling Dimension

- If p is not the required approximate nearest neighbour, we must have a solution in $B_p := B(p, 3\delta)$
- Recursively build a data structure as follows:
 - For each *p* ∈ *P*, construct $S_p := S \cap B_p$
 - Rescale each S_p , construct an δ^2 -net for it and recurse
- Assume $\delta < 1/6$. Because of the rescaling, at depth *t* the (unscaled) sites are in a ball of radius $1/2^t$
- The depth of the tree is $log(\Delta S)$
- Queries can be answered in $2^{O(d)} \log \Delta(S)$ time (assuming δ and hence |P| are constants)

NN in Constant Doubling Dimension

NN in Constant Doubling Dimension

NN in Constant Doubling Measure

• Metric space Z = (U, D) with $d := \text{doub}_M(Z)$, sites $S \subset U$

- Recall: $\mu(B(x, 2r)) \leq \mu(B(x, r)) 2^d$

- Let *P* be a random subset of *S*, obtained by choosing each site of *S* independently with probability *m* / *n*
 - The expected size of P is m
- For $p \in P$, consider ε_p s.t. $|S \cap B(p, \varepsilon_p)| = K n (\log n) / m$
- Let p be nearest to q in P
 - If $D(q, p) \le \varepsilon_p/2$, $B(p, \varepsilon_p)$ contains the NN of q
 - Else, if $\beta := D(q, p)$:
 - $|S \cap B(q, \beta)| \ge |S \cap B(q, 3\beta)| / 4^d \ge |S \cap B(p, \varepsilon_p)| / 4^d = K n (\log n) / m 4^d$

NN in Constant Doubling Measure

- $\Pr[D(q, p) > \varepsilon_p/2 \text{ and } p \text{ is nearest neighbour of } q \text{ in } P]$ $\leq \Pr[B(q, \beta) \text{ has no points of } P]$ $\leq (1 - m / n)^{K n (\log n) / m 4^d}$ $\leq 1 / n^{K/4^d}$
- Hence with high probability (at least $1 1 / n^{K/4^d}$), the nearest neighbour of *q* is in $B(p, \varepsilon_p)$, where *p* is the nearest neighbour of *q* in *P*
- Data structure:
 - Randomly pick P ($m := O(\log n)$ is good), and then construct a ball containing $K n (\log n) / m$ sites around each $p \in P$
 - Recurse in each ball

NN in Constant Doubling Dimension with Exchangeable Queries

We have an approximation algorithm for constant doubling *dimension* and an exact algorithm (with some prob. of error) for constant doubling *measure*

- But the former seems more robust than the latter
- Is there an exact algorithm?
- Yes! If we assume "exchangeability":
 - Sites and queries drawn from same distribution
- Use the usual divide-and-conquer method, using the results of the next slide to construct subsets at each step

NN in Constant Doubling Dimension with Exchangeable Queries

- Pick a random subset $P \subset S$ of size *m*
- Pick a random subset $P' \subset S$ of size Km
- For each p ∈ P, let q_p ∈ P' have p nearest in P, but be farthest away among all such sites in P'
- Lemma 1: If q is an exchangeable query point with p nearest in P, then with probability 1 - 1/K, the nearest neighbour to q in S is contained in $B_p := B(q_p, 3D(p, q_p))$
- Lemma 2: The expected number of sites in B_p is $2^{O(d)} (Kn/m) \log^2 \Delta(S)$

M(S, Q)

- [Clarkson '99]
- A skiplist-type data structure for NN
- Requires auxiliary set Q of m points
- Achieves:
 - Near-linear preprocessing and storage
 - Sublinear query time
- Analysis requires:
 - Exchangeability of q, Q and S
 - Q is "typical set of queries"

M(S, Q)

• Definition:

- *p* ∈ *S* is a (γ)-nearest neighbour of *q* w.r.t. *R* ⊂ *S* if $D(p,q) \le \gamma D(q,R)$
- Denote this by $q \rightarrow^{\gamma} p$ or $p^{\gamma} \leftarrow q$
- Pick γ , and construct M(S, Q) as follows:
 - Let $(p_1, p_2, ..., p_n)$ be a random permutation of S
 - Let $R_i := \{p_1, p_2, ..., p_i\}$
 - Similarly shuffle Q
 - Q_j is a random subset of Q of size j
 - Define $Q_j := Q$ for j > m

M(S, Q)

• Define A_i as:

 $\{p_i \mid i > j, \exists q \in Q_{Ki} \text{ with } p_j \stackrel{1}{\leftarrow} q \rightarrow^{\gamma} p_i, \text{ w.r.t. } R_{i-1}\}$

• p_j is the nearest neighbour of q in R_{i-1}

•
$$D(q, p_i) \leq \gamma D(q, p_j)$$

- Construction can be done by adding random points (without repetition) from S one at a time to construct R_i from R_{i-1} , and updating A_i 's at each step
- The sites in A_i are in increasing order of index *i*
- Searching is exactly the same as for Orchard's Algorithm, with p_1 the initial candidate

M(S, Q): Failure Probability

- Assume *Q* and *q* are exchangeable and $Kn < m = n^{O(1)}$. If $\gamma = 3$, the probability that M(S, Q)fails to return a nearest site to *q* in *S* is $O(\log^2 n) / K$
 - Holds in *any* metric space
- For general γ : Suppose Z := (U, D) has a " γ dominator bound". Under the same conditions as above, but for general γ , the failure probability is $O(D_{\gamma} \log^2 n) / K$

M(S, Q): Failure Probability

- γ-dominator bound:
 - Let $R \subset U$. The "nearest neighbour ball" B(q, R) of qw.r.t. R is the set of all points in U closer to q than to any (other) point in R
 - Let C(p, R) be the union of balls B(q, R) over all potential query points q with p closest in R
 - The union is over the Voronoi cell Vor(*p*) of *p* w.r.t. *R*
 - Approximate C(p, R) by $C_{y'}(p, R)$:
 - Take the union only over $Q \cap Vor(p)$
 - Expand each ball by a factor *γ*
 - U has a γ -dominator bound if for every p, R, \exists finite Q of size at most D_{γ} s.t. $C(p, R) \subset C_{\gamma}'(p, R)$

M(S, Q): Query Time

- Z has a nearest neighbour bound if \exists a constant N s.t. for all $a \in U$ and any $W \subset U$, the number of $b \in W$ s.t. a is a nearest neighbour of b w.r.t. to W is at most N
- $v(x, W) := \max \{ D(x, y) \mid x \in R \} / D(x, R)$
- N_γ(x, W) := points of W for which x is a (γ)-nearest neighbour w.r.t. W
- $N_{y,v} := \max\{|N_{y}(x, W)| : x \in U, W \subset U, v(x, W) \le v\}$
 - ... if it exists
 - $-\gamma \ge 1, \nu > 0$

M(S, Q): Query Time

- Z has a γ -nearest neighbour bound if it has a nearest neighbour bound and $N_{\gamma,\nu}$ exists for every $\nu > 0$
- If S, Q and q are *all* exchangeable and Z has a γnearest neighbour bound, M(S, Q) returns an answer in time

$$O(N_{\gamma,\Delta(S \cup Q)} N_1 K \log n)$$

M(S, Q): Storage

- *Z* has a sphere-packing bound if for any real number ρ , \exists an integer constant S_{ρ} s.t. for all $a \in U$ and $W \subset V$, if $|W| > S_{\rho}$ and $D(w, a) \leq C$ for all $w \in W$ for some *C*, then $\exists w, w'$ s.t. $D(w, w') < C / \rho$
- Sphere-packing bounds imply the other two bounds
- If *Q* and *S* are exchangeable and *Z* has a spherepacking bound, M(S, Q) uses $O(S_{2\gamma} \log \Delta(S \cup Q)) Kn$ expected space