Reductions Among HighDimensional Proximity Problems

Goel, Indyk, Varadarajan, SODA 2001

Introduction

Problem:

- Proximity problems:
- Nearest neighbour
- Furthest neighbour
- Diameter
- ...
- Approximate versions for faster running time
- Approximation factor: $c=1+\varepsilon$
- Reduction to Approximate Nearest Neighbour Search
- Best known (randomized) running time: $\tilde{\mathrm{O}}\left(d n^{1 /(1+\varepsilon)}\right)$ per query/update in a dynamic setting [Indyk-Motwani STOC '98]

Problems

- Approximate Furthest Neighbour
- Approximate Diameter
- Approximate Discrete Centre
- Approximate Line Centre
- Approximate Bottleneck Matching
- Approximate Minimum Weight Matching
- Approximate Metric Facility Location

Contribution

Subquadratic running time

for all the problems

Outine

- (Warm-up exercise) $\sqrt{2}$-approximation algorithm for Furthest Neighbour Search
- Can be used to obtain $\sqrt{ }$ 2-approximations for Diameter and Discrete Centre problems
- $(1+\varepsilon)$-approximation algorithm for Diameter
- Also gives $(1+\varepsilon)$-approximation for Furthest Neighbour
- 2(1+ ε)-approximate Bottleneck Matching
- $(2+\mathrm{O}(\varepsilon))$-approximate Minimum Weight Matching

c-Furthest Neighbour Search

A $\sqrt{ }$ 2-approximation

c-Furthest Neighbour Search

- FNS: Given a set $P \subset \mathrm{R}^{d}$ and a query point q, return the element of P furthest from q
- The approximate version (c-FNS): Return a point of P that c-approximates the furthest neighbour
- Precisely, return p such that

$$
\mathrm{d}(q, p) \geq(1 / c) \max _{p^{\prime} \in P} \mathrm{~d}\left(q, p^{\prime}\right)
$$

- We look for a $\left(\sqrt{ } 2+1 / n^{\theta(1)}\right)$-approximation

Other problems reducible to c-FNS

- Given: an n-point set $P \subset \mathrm{R}^{d}$
- Approximate Discrete Centre Problem (c-DCP): Find $s \in P$ such that:

$$
\max _{p \in P} \mathrm{~d}(p, s) \leq c \min _{s \in P} \max _{p \in P} \mathrm{~d}(p, s)
$$

- Approximate Diameter Problem: Find $s \in P$ such that

$$
\mathrm{d}(p, q) \geq(1 / c) \max _{p, q \in P} \mathrm{~d}(p, q)
$$

c-FNS: The Reduction

- From c^{\prime}-Approximate Minimum Enclosing Ball (c^{\prime}-MEB): Given $P \subset \mathrm{R}^{d}$, find $s \in \mathrm{R}^{d}$ such that $\max _{p \in P} \mathrm{~d}(p, s) \leq c \min _{s \in \mathbb{R}^{d}} \max _{p \in P} \mathrm{~d}(p, s)$

Also known as:
c^{\prime}-Approximate Continuous
Centre Problem
Solution in
$\tilde{\mathrm{O}}\left(d^{\beta} n \log 1 / \varepsilon\right)$ time

Reduction Method

- Assume we could compute the exact minimum enclosing ball $B\left(O^{*}, r^{*}\right)$ for P
- There is a subset X of P such that

$$
\begin{aligned}
& -X \subset S\left(O^{*}, r^{*}\right) \\
& -|X| \leq d+2 \\
& -O^{*} \in \operatorname{conv}(X)
\end{aligned}
$$

- Hyperplane h_{q} passes through O^{*} and is orthogonal to $q-O^{*}$
- Return any point of X on the side of h_{q} opposite to q
- such a point MUST exist and be a $\sqrt{ } 2$-approximation

Graphically...

Caveats

- Can't compute exact minimum enclosing ball
- So compute an approximation (upto factor $1+1 /\left(n^{\theta(1)} \sqrt{ } d\right)$) introduces only log factors in running time
- X is all points within $\mathrm{O}\left(1 / n^{\theta(1)}\right)$ threshold
- X may be of size $\Omega(n)$
- So perturb points slightly (by random vectors of norm $\mathrm{O}\left(1 / n^{\theta(1)}\right)$ - the "smoothed complexity" of X is $\mathrm{O}(d \log n)$
- Running time:
- Construction: bounded by that of c^{\prime}-MEB: Õ $\left(d^{\beta} n\right)$
- Query: $\mathrm{O}\left(d^{2} \log n\right)($ lin. search in X for point furthest from $q)$

Lower Bound?

Can we do better than $c=\sqrt{ } 2$ as fast?

- Unlikely, because...
- On a random point set, a c-approximation for FNS $(c<\sqrt{ } 2)$ would yield a constant-factor approximation for nearest neighbour within same time bounds
- This problem was considered by Yianilios [SODA '00] and seems very difficult to achieve in time $\tilde{O}\left(d^{\theta(1)}\right)$

$(1+\varepsilon)$-Approximate Diameter and Furthest Neighbour Search

$(1+\varepsilon)$-approximating Diameter and Furthest Neighbour Search

- Answer $(1+\varepsilon)$-Diameter/FNS queries by using $\tilde{O}(1)(1+\varepsilon)$-NNS queries
- Preprocessing time: Õ $\left(d n^{1+1 /(1+\varepsilon)}\right)$
- We will look at only the diameter problem for simplicity.

Method

- Compute an approximate minimum enclosing ball $B(O, r)$
- Construct a series of k "shells", each of radius $1 /(1+\alpha)$ times that of its predecessor. The first shell is $S(O, r)$.
- α will be specified later
- k is $\mathrm{O}(1 / \alpha)$
- Round each point to nearest shell
- Construct $(1+\varepsilon)$-NNS data structure for each shell

Graphically...

Method (contd)

- For each point $p \in P$ and each shell S_{i}
- Reflect p in O and promote to S_{i} to get the "antipode" p^{\prime}
- Find (approximate) nearest neighbour q of p^{\prime} from points on S_{i}
- This gives a "candidate diameter pair" (p, q)
- Return the pair among the candidate pairs from all the shells that is furthest apart
- This is a $(1+\varepsilon)$-approximation to the diameter

Graphically...

Running Time

- Set $\alpha=1 /(c \log n)$
- There are $n k c$-NNS queries
- So running time $=\tilde{\mathrm{O}}(n T)$, where T is the running time of c-NNS

$$
=\widetilde{\mathrm{O}}\left(d n^{1+1 /(1+\varepsilon)}\right)
$$

Approximate Bottleneck Matching

Approximate Bottleneck Matching

- P is a subset of R^{d} with $2 n$ points
- Perfect Matching: Partition of P into disjoint pairs
- "Bottleneck Cost": Distance between furthest pair in matching
- Bottleneck Matching Problem: Find perfect matching with minimum bottleneck cost
- Approximate version: we'll compute a $2(1+\varepsilon)$ approximation

Graphically...

"Short Hop Graph"

- Let $G(r)$ be the graph with $V=P$ and $E=$ set of pairs that are r-close
- "short hop graph"?
- Let r^{*} be smallest r for which each connected component has an even number of vertices

Bounds

- Lemma 1 (lower bound): The $\operatorname{cost} c^{*}$ of the optimal matching is at least r^{*}
- Lemma 2 (upper bound): Let T be a tree on a vertex set V of even cardinality $2 m$. Let l be the length of the longest edge of T. We can construct a perfect matching on V with bottleneck cost at most 2l. Given T, construction time is $\mathrm{O}(m)$.
- Gives method of computing perfect matching with bottleneck cost at most $2 r^{*} \leq 2 c^{*}$

Reduction to NNS

- Compute a spanning forest $\left\{T_{1}, \ldots, T_{k}\right\}$ of P such that
- Each edge has length at most $r^{*}(1+\varepsilon)$
- Each tree T_{i} has an even number of vertices
- Can be done by running Kruskal's MST algorithm until each connected component is even, with $n \log n$ calls to (an approximate algo for) \boldsymbol{k}-Chromatic Dynamic Closest Pair
- k-CDCP: Given a dynamic set of coloured points, find closest pair with different colours

Reduction to NNS (contd)

- Eppstein [DCG '95 etc] reduces $(1+\varepsilon)-k-\mathrm{CDCP}$ to $(1$ $+\varepsilon)$-NNS via $(1+\varepsilon)$-2-CDCP
- Polylogarithmic overhead
- Now apply method of Lemma 2 to find perfect matching with bottleneck cost at most $2(1+\varepsilon) c^{*}$
- Running time: $\mathrm{O}\left(d n^{1+1 /(1+\varepsilon)}\right)$

Minimum-Weight Matching

Improving the Goemans-Williamson Method for approximate MWM

Minimum-Weight Matching

- Goemans-Williamson Method for 2-approximation
- Active component: odd vertices
- Inactive component: even vertices
- Grow balls around vertices in active components until two balls collide
- Add edge between centres of colliding balls to solution
- Merge colliding components and continue
- Resulting forest weighs at most twice MWM
- Trivial to convert forest to matching

Graphically...

Graphically..

$$
\begin{aligned}
& 0_{\infty}{ }^{\circ} \\
& 0 \quad 0
\end{aligned}
$$

Graphically...

$$
\begin{aligned}
& Q \\
& 0
\end{aligned}
$$

Graphically...

Graphically...

Graphically...

Graphically...

Minimum-Weight Matching

- Running time can be improved by use of an Approximate Multichromatic NNS data structure
- Question: Given a set of n coloured points X, a number r, and a coloured query point q, is there a point in X with colour different from q, which is $r(1+\varepsilon)$-close to q ?

Minimum-Weight Matching

- Solution: Use a set of $2[1+\log n]$ Approximate NNS data structures
- $N_{i}(b)$ is a $(1+\varepsilon)$-NNS structure for all points whose colours have bit b in i th position
- q has colour C, C_{i} is i th bit of C
- Search for (approximate) nearest neighbour of q in each $N_{i}\left(1-C_{i}\right)$
- Return closest such neighbour

