Direct Construction of the Approximate Voronoi Diagram

Primoz Skraba October 30, 2006 CS 486

Well-Separatedness

• Definition

X and Y are well separated if they can be enclosed withing two disjoint d-dimensional balls of radius r, such that the distance between the centers of the balls is at least αr

Well-Separatedness

• Definition

X and Y are well separated if they can be enclosed withing two disjoint d-dimensional balls of radius r, such that the distance between the centers of the balls is at least αr

Well-Separatedness

• Definition

X and Y are well separated if they can be enclosed withing two disjoint d-dimensional balls of radius r, such that the distance between the centers of the balls is at least αr

Well-Separated Pair Decomposition

\bullet Definition

A well-separated pair decomposition (WSPD) is a set $P_{S,\alpha} = \{(X_1, Y_1), \dots, (X_m, Y_m)\}$ of pairs of subset so that each pair is well-separated and for any two distinct points $x, y \in S$ there exists a pair (X_i, Y_i) which separates them.

Well-Separated Pair Decomposition

\bullet Definition

A well-separated pair decomposition (WSPD) is a set $P_{S,\alpha} = \{(X_1, Y_1), \dots, (X_m, Y_m)\}$ of pairs of subset so that each pair is well-separated and for any two distinct points $x, y \in S$ there exists a pair (X_i, Y_i) which separates them.

Well-Separated Pair Decomposition

\bullet Definition

A well-separated pair decomposition (WSPD) is a set $P_{S,\alpha} = \{(X_1, Y_1), \ldots, (X_m, Y_m)\}$ of pairs of subset so that each pair is well-separated and for any two distinct points $x, y \in S$ there exists a pair (X_i, Y_i) which separates them.

• Properties

- Can be constructed in $O(n \log n + \alpha^d n)$ time
- Contains $O(\alpha^d n)$ pairs

- Due to Callahan and Kosaraju (Fair-Split Tree)
- Can use a quadtree
- Algorithm
 - \bullet Take cubes (u, v), if they are well separated, add the pair and terminate
 - \bullet If not, call function on (w,v) where w are the children of u

- Due to Callahan and Kosaraju (Fair-Split Tree)
- Can use a quadtree
- Algorithm
 - \bullet Take cubes (u, v), if they are well separated, add the pair and terminate
 - \bullet If not, call function on (w,v) where w are the children of u

 \circ^{v} $^{\circ}u$

- Due to Callahan and Kosaraju (Fair-Split Tree)
- Can use a quadtree
- Algorithm
 - \bullet Take cubes (u,v), if they are well separated, add the pair and terminate
 - \bullet If not, call function on (w,v) where w are the children of u

- Due to Callahan and Kosaraju (Fair-Split Tree)
- Can use a quadtree
- Algorithm
 - \bullet Take cubes (u,v), if they are well separated, add the pair and terminate
 - \bullet If not, call function on (w,v) where w are the children of u

- Due to Callahan and Kosaraju (Fair-Split Tree)
- Can use a quadtree
- Algorithm
 - Take cubes (u, v), if they are well separated, add the pair and terminate

- Due to Callahan and Kosaraju (Fair-Split Tree)
- Can use a quadtree
- Algorithm
 - \bullet Take cubes (u,v), if they are well separated, add the pair and terminate
 - \bullet If not, call function on (w,v) where w are the children of u

- Due to Callahan and Kosaraju (Fair-Split Tree)
- Can use a quadtree
- Algorithm
 - Take cubes (u, v), if they are well separated, add the pair and terminate
 - \bullet If not, call function on (w,v) where w are the children of u

Always take the children of the larger cell!

Number of cells in a ball

 \bullet Place grid cells around point to fill up the ball of radius r

Balanced Box Decomposition Tree

\bullet Definition

Each cell is the difference between and *inner quadtree box* and *outer quadtree box*

• Properties

For any collection C of quadtree boxes

- 1. with O(|C|) nodes
- 2. $O(\log |C|)$ depth
- 3. Taking $O(|C| \log |C|)$ time to construct

Balanced Box Decomposition Tree

\bullet Definition

Each cell is the difference between and *inner quadtree box* and *outer quadtree box*

• Properties

For any collection C of quadtree boxes

- 1. with O(|C|) nodes
- 2. $O(\log |C|)$ depth
- 3. Taking $O(|C| \log |C|)$ time to construct

- Construct WSPD $P_{S,8}$
- For each pair, $P = (X, Y) \in P_{S,8}$
 - Place a set of balls with radius $2^i \ell$ for $-2 \le i \le \lceil \log(1/\epsilon) + 1 \rceil$
 - For each ball b take all quadtree boxes which intersect it and are smaller than $r_b \epsilon/(16d)$
 - Store in BBD along with a representative point

- Construct WSPD $P_{S,8}$
- For each pair, $P = (X, Y) \in P_{S,8}$
 - Place a set of balls with radius $2^i \ell$ for $-2 \le i \le \lceil \log(1/\epsilon) + 1 \rceil$
 - For each ball b take all quadtree boxes which intersect it and are smaller than $r_b \epsilon/(16d)$
 - Store in BBD along with a representative point

- Construct WSPD $P_{S,8}$
- For each pair, $P = (X, Y) \in P_{S,8}$
 - Place a set of balls with radius $2^i \ell$ for $-2 \le i \le \lceil \log(1/\epsilon) + 1 \rceil$
 - For each ball b take all quadtree boxes which intersect it and are smaller than $r_b \epsilon/(16d)$
 - Store in BBD along with a representative point

- Construct WSPD $P_{S,8}$
- For each pair, $P = (X, Y) \in P_{S,8}$
 - Place a set of balls with radius $2^i \ell$ for $-2 \le i \le \lceil \log(1/\epsilon) + 1 \rceil$
 - For each ball b take all quadtree boxes which intersect it and are smaller than $r_b \epsilon/(16d)$
 - Store in BBD along with a representative point

Lemma 3.1. Let S be a set of n points in \mathbb{R}^d and let $0 < \epsilon \leq 1/2$ be a real parameter. Let x_1 be a point inside a d-cube c of size $(\epsilon/(4d))|x_1y_1|$, where y_1 denotes the nearest neighbor of x_1 . If y_2 is an $(\epsilon/4)$ -NN of some point x_2 inside c, then y_2 is an ϵ -NN of x_1 .

 $|x_1y_2| \le (1 + \epsilon/4)(1 + \epsilon/4)|x_1y_1| \le (1 + \epsilon)|x_1y_1|$

$(1,\epsilon)\text{-}\mbox{Approximate Voronoi Diagram}$

- $\bullet \; P = (X,Y)$
- \bullet Query point q
- Notation

$(1,\epsilon)\text{-}\mbox{Approximate Voronoi Diagram}$

- P = (X, Y) q is in cell c
- Query point q
- Notation

$(1,\epsilon)\text{-}\mbox{Approximate}$ Voronoi Diagram

- P = (X, Y) q is in cell c
- Query point q
- $y \in S$ is NN of q

• Notation

$(1,\epsilon)\text{-}\mbox{Approximate}$ Voronoi Diagram

- P = (X, Y) q is in cell c
- Query point q
- $y \in S$ is NN of q

• Notation

x is rep_c
$(1,\epsilon)\text{-}\ensuremath{\mathsf{Approximate}}$ Voronoi Diagram

• P = (X, Y) q is in cell c• Query point q $y \in S$ is NN of q $\Rightarrow x$ is a ϵ -NN of q• Notation x is rep_c

$(1,\epsilon)\text{-}\mbox{Approximate Voronoi Diagram}$

- P = (X, Y) q is in cell c
- \bullet Query point q
- $y \in S$ is NN of $q \implies x$ is a ϵ -NN of q

• Notation

 $x ext{ is } ext{rep}_c$

Specifically, look at pair in WSPD which separates x and y

Case 1: $|qy'| \ge 2\ell/\epsilon$

Case 1: $|qy'| \ge 2\ell/\epsilon$

Case 1: $|qy'| \ge 2\ell/\epsilon$

Case 2: $\ell \le |qy'| < 2\ell/\epsilon$

Case 3: $|qy'| < \ell/4$

$(1,\epsilon)\text{-}\textsc{Approximate}$ Voronoi Diagram

Choosing representatives: x is a $\epsilon/4$ -NN to any point in c

If we return x, either it is the nearest neighbor of q or an ϵ -NN of q

Time and Space Bounds

Space Bounds

- O(n) pairs in WSPD
- $O(\frac{1}{\epsilon^d})$ cells per ball
- $O(\log(\frac{1}{\epsilon}))$ balls per pair
- $\Rightarrow O(\frac{n}{\epsilon^d} \log(\frac{1}{\epsilon}))$ cells

Algorithm

- Construct WPSD $P_{S,8}$
- For each pair, $P = (X, Y) \in P_{S,8}$
 - Place a set of balls with radius $2^i\ell$ for $-2 \leq i \leq \lceil \log(1/\epsilon) + 1 \rceil$
 - For each ball b take all quadtree boxes which intersect it and are smaller than $r_b\epsilon/(16d)$
 - Store in BBD along with a representative point

Time Bounds

BBD tree is of depth $\log(\frac{n}{\epsilon^d}\log(\frac{1}{\epsilon})) = \log(n/\epsilon)$

Algorithm: Multiple Representatives

- Construct WSPD $P_{S,4}$
- \bullet For each pair, $3 \leq i \leq \lceil \log \beta + 2 \rceil$
- Keep all overlapping cells not bigger than $\Delta_b = r_b/(32\gamma d)$
- Store in BBD tree along with t > 1 representatives

Idea: If we allow the more representatives, need fewer cells

 $NN_q(R) \le (1+\epsilon)NN_q(S \cap b_1)$

$|S \cap \gamma b_c| \le 1$

 $S \cap \gamma b_c \subseteq b'_c$ $\beta b'_c \cap c = \emptyset$

 $S \cap \gamma b_c \subseteq b'_c$ $\beta b'_c \cap c = \emptyset$

Why does this work?

$$S \cap \gamma b_c \subseteq b'_c$$
$$\beta b'_c \cap c = \emptyset$$

Why does this work?

If there was a point within γs not in βs then there would be a WSPD pair to force the cell to split

- Choose R' consisting of $O(1/(\epsilon \gamma^{(d-1)/2}))$ points so that $NN_q(R') \le (1+\epsilon)NN_q(S \cap \overline{\gamma b_c})$
- If $|S \cap \gamma b_c| \le 1 \Rightarrow R'' = S \cap \gamma b_c$
- Else R'' Consists of $O(1/(\epsilon \gamma)^{(d-1)/2})$ points such that $NN_q(R'') \leq (1+\epsilon)NN_q(S \cap b'_c) \leq (1+\epsilon)NN_q(S \cap \gamma b_c)$

- Choose R' consisting of $O(1/(\epsilon \gamma^{(d-1)/2}))$ points so that $NN_q(R') \leq (1+\epsilon)NN_q(S \cap \overline{\gamma b_c})$
- If $|S \cap \gamma b_c| \le 1 \Rightarrow R'' = S \cap \gamma b_c$
- Else R'' Consists of $O(1/(\epsilon \gamma)^{(d-1)/2})$ points such that $NN_q(R'') \le (1+\epsilon)NN_q(S \cap b'_c) \le (1+\epsilon)NN_q(S \cap \gamma b_c)$ $\Rightarrow R = R' \cup R''$

- Choose R' consisting of $O(1/(\epsilon \gamma^{(d-1)/2}))$ points so that $NN_q(R') \leq (1+\epsilon)NN_q(S \cap \overline{\gamma b_c})$
- If $|S \cap \gamma b_c| \le 1 \Rightarrow R'' = S \cap \gamma b_c$
- Else R'' Consists of $O(1/(\epsilon \gamma)^{(d-1)/2})$ points such that $NN_q(R'') \le (1+\epsilon)NN_q(S \cap b'_c) \le (1+\epsilon)NN_q(S \cap \gamma b_c)$ $\Rightarrow R = R' \cup R''$

- Choose R' consisting of $O(1/(\epsilon \gamma^{(d-1)/2}))$ points so that $NN_q(R') \le (1+\epsilon)NN_q(S \cap \overline{\gamma b_c})$
- If $|S \cap \gamma b_c| \le 1 \Rightarrow R'' = S \cap \gamma b_c$
- Else R'' Consists of $O(1/(\epsilon \gamma)^{(d-1)/2})$ points such that $NN_q(R'') \le (1+\epsilon)NN_q(S \cap b'_c) \le (1+\epsilon)NN_q(S \cap \gamma b_c)$ $\Rightarrow R = R' \cup R''$

- Choose R' consisting of $O(1/(\epsilon \gamma^{(d-1)/2}))$ points so that $NN_q(R') \leq (1+\epsilon)NN_q(S \cap \overline{\gamma b_c})$
- If $|S \cap \gamma b_c| \le 1 \Rightarrow R'' = S \cap \gamma b_c$
- Else R'' Consists of $O(1/(\epsilon \gamma)^{(d-1)/2})$ points such that $NN_q(R'') \le (1+\epsilon)NN_q(S \cap b'_c) \le (1+\epsilon)NN_q(S \cap \gamma b_c)$

 $\Rightarrow R = R' \cup R''$

• $O(1/(\epsilon \gamma)^{(d-1)/2})$ number of representatives

• $O(n\gamma^d \log \gamma)$ cells

Disjoint Ball Lemma

 $NN_q(R) \le (1+\epsilon)NN_q(S \cap b_2)$

$$|R| = \left(1 + O\left(\frac{\sqrt{r_1 r_2}}{\ell\sqrt{\epsilon}}\right)\right)^{d-1}$$
Number of cells - number of representatives tradeoff

• Size of quadtree boxes can increase linearly with the WSPD distance

Before $\Delta_b = r_b/(32\gamma d)$

Now $\Delta_b = r_b^2 / (256\ell\gamma d)$

Number of cells - number of representatives tradeoff

• Size of quadtree boxes can increase linearly with the WSPD distance

Before $\Delta_b = r_b/(32\gamma d)$

Now $\Delta_b = r_b^2 / (256\ell\gamma d)$

Get fewer number of cells $O(\gamma^d \log \gamma) \to O(\gamma^d)$

Number of cells - number of representatives tradeoff

• Size of quadtree boxes can increase linearly with the WSPD distance

Before $\Delta_b = r_b/(32\gamma d)$

Now $\Delta_b = r_b^2 / (256\ell\gamma d)$

Get fewer number of cells $O(\gamma^d \log \gamma) \to O(\gamma^d)$

• Bounds

Size: $(O(1/(\epsilon \gamma)^{(d-1)/2}), \epsilon)$ -approximate Voronoi diagram with $O(n\gamma^d)$ cells Query Time: $O(\log(n\gamma) + 1/(\epsilon \gamma)^{(d-1)/2})$ Tradeoff Parameter γ : $2 \le \gamma \le 1/\epsilon$

Summary

- Because any two points are well-separted in some pair choosing some close point is good enough
- Find representatives that are close to points
- Querying requires finding smallest quadtree cell
- With more representatives we need smaller separation and can use larger cells

• Definition

For a given point p, the side length of a box is $r2^i$, where r is the distance from p

 \bullet Definition

For a given point p, the side length of a box is $r2^i$, where r is the distance from p

• Definition

For a given point p, the side length of a box is $r2^i$, where r is the distance from p

• Overlapping with a ball

• Definition

For a given point p, the side length of a box is $r2^i$, where r is the distance from p

• Overlapping with a ball

Exponential Grid Arbitrary r

Exponential Grid Arbitrary r

