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Approximate Nearest Neighbor Problem:

Improving Query Time
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• Need to know ε ahead of time

– Preprocessing time and storage feature O(ε−d), O(ε−(d−1)/2) etc.
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– Preprocessing time and storage feature O(ε−d), O(ε−(d−1)/2) etc.

• Timothy M. Chan. Approximate Nearest Neighbor Queries Revisited.
Discrete and Computational Geometry 1998.

– Decomposition of space into cones

– BBD-tree for range searching in Rd−k + point location in Rk

• Kenneth Clarkson. An Algorithm for Approximate Closest-point Queries.
SoCG 1994.

– Additional log(ρ/ε) in space complexity

– Polytope approximation in Rd+1



Chen’s Algorithm: Motivation
(1 + ε)-ANN among (sorted) points in a narrow cone

q
O(log n) by binary search

Need a data structure that returns a sorted points given q and a cone direction



Chen’s Algorithm: Motivation

Uses the BBD-tree data structure

Given a query point q ∈ Rd and a radius r
one can find O(log n) cells of the BBD-tree

which contain B(q, r)
and are contained in B(q, 2r).

This takes O(log n) time

Use for approximate range searching in Rd−1

(1 + ε)-ANN among (sorted) points in a narrow cone

q
O(log n) by binary search

Need a data structure that returns a sorted points given q and a cone direction



Conic ANN (with a Hint)

Output: A points s such that

||q − s|| ≤ (1 + ε)||q − p||

where p is the NN inside a cone with apex q and angle δ =
√

ε/16

Note: s need not be in the cone!

Input: Query point q and a 2-approximation r to the NN distance

Note: The cone is fixed (not a part of input, mod. translation to q)

δ

s

q

r

p



Main (1 + ε)-ANN Algorithm

Uses the ”conic-ANN with a hint” as a subrotine
Query (given only q)

• Obtain r by [Arya and Mount 1998]

• Get one point per data structure, return the one closest to q
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Main (1 + ε)-ANN Algorithm

Uses the ”conic-ANN with a hint” as a subrotine

Preprocessing

• ”Tile” Rd with O(ε−(d−1)/2) cones of angle δ = Θ(
√

ε)

• Build a ”conic-ANN” data structure for each cone

”floating”

Query (given only q)

• Obtain r by [Arya and Mount 1998]

• Get one point per data structure, return the one closest to q

q

p
sCorrectness

true NN

(1 + ε)-ANN (returned from
that cone’s data structure)

[# of cones]

Query time
O(ε−(d−1)/2 log n)

[conic query]



Conic-ANN Data Structure
For preprocessing given only direction of the cone (wlog: d-axis) and angle δ
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Conic-ANN Data Structure
For preprocessing given only direction of the cone (wlog: d-axis) and angle δ

Query Algorithm (given q and r)

Approximate range query on the set of projections
{p′ = [p1 p2 · · · pd−1]T , p ∈ P} with B(q, δr)

• returns O(log n) BBD-nodes (cells) in O(log n) time

O(log n) binary searches
Return the point s such that |sd − qd| is min
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For preprocessing given only direction of the cone (wlog: d-axis) and angle δ

Query Algorithm (given q and r)

Approximate range query on the set of projections
{p′ = [p1 p2 · · · pd−1]T , p ∈ P} with B(q, δr)

• returns O(log n) BBD-nodes (cells) in O(log n) time

O(log n) binary searches
Return the point s such that |sd − qd| is min

Correctness (proof for ||q − s|| ≤ (1 + ε)||q − p||)

δ

δr 2δr

s
q

d-axis

r

p
|sd − qd| ≤ |pd − qd| ≤ ||p− q||
|s′ − q′| ≤ 2δr ≤ 4δ||p− q||

||s− q|| ≤
√

1 + 16δ2||p− q|| = (1 + ε)||p− q||



Conic-ANN Data Structure
For preprocessing given only direction of the cone (wlog: d-axis) and angle δ

Data structure
BBD-tree on the projection set
For every tree node v the associated list of points is sorted in the d coordinate

Query Algorithm (given q and r)

Approximate range query on the set of projections
{p′ = [p1 p2 · · · pd−1]T , p ∈ P} with B(q, δr)

• returns O(log n) BBD-nodes (cells) in O(log n) time

O(log n) binary searches
Return the point s such that |sd − qd| is min

Correctness (proof for ||q − s|| ≤ (1 + ε)||q − p||)

δ
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s
q
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|sd − qd| ≤ |pd − qd| ≤ ||p− q||
|s′ − q′| ≤ 2δr ≤ 4δ||p− q||

||s− q|| ≤
√

1 + 16δ2||p− q|| = (1 + ε)||p− q||



Conic-ANN Analysis

Construction (preprocessing)
BBD-tree O(n log n) +sorting O(n log n) = O(n log n)

O(1)

Improving query time by exploiting correlation [Lueker and Willard]

Query
Approximate range query O(log n) + bin. searches O(log2 n) = O(log2 n)

O(1)

O(1)

O(1)

O(1) O(1)
O(1)

O(1)

O(1)
O(1)

O(1)

O(1)

O(log n)

O(log n) nodes
v

left(v) right(v)



Summary and Remarks

Variant with projecting to d− 2 dimensions

• BBD tree + planar point location

Rough (≈ d3/2) approximation algorithms

• Polynomial dependence on d



Clarkson’s Algorithm: Iterative Improvement

q

Exact nearest neighbor problem

Data structure For each site s, a (small) list Ls of other sites such that

s

for any query point q
if s is not the nearest neighbor of q, then Ls contains a site closer to q
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return s

Algorithm



Clarkson’s Algorithm: Iterative Improvement

q

Exact nearest neighbor problem

Data structure For each site s, a (small) list Ls of other sites such that

s

for any query point q
if s is not the nearest neighbor of q, then Ls contains a site closer to q

s← arbitrary site
while ∃t ∈ Ls : ||t− q|| < ||s− q|| do s← t
return s

Algorithm

q′

Note
The same Ls valid for all q!



Not Useful for Exact NN

Reason 1: space complexity Ω(n2)

For all s, Ls has to include all Delaunay neighbors of s

For d > 2, Delaunay triangulation may have
Ω(n2) edges
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Not Useful for Exact NN

Reason 1: space complexity Ω(n2)

s c
q

For all s, Ls has to include all Delaunay neighbors of s

For d > 2, Delaunay triangulation may have
Ω(n2) edges

t

Reason 2: query time Ω(n)

No ”sufficient progress” guarantee, may have to visit all sites

Proof:
t Delaunay neighbor of s, but t /∈ Ls

t is the only site closer to q than s

q

s1

s2

s3
s4

s5

Conclusion
No improvement over the trivial algorithm!



Modification for ANN

Data structure For each site s, a (small) list Ls of other sites such that

for any query point q
if s is not a (1 + ε)-ANN of q,

then Ls contains a site (1 + ε/2)-closer to q

qs

||q−s||
1+ε

||q − s||
||q−s||
1+ε/2

t

b



Modification for ANN

Data structure For each site s, a (small) list Ls of other sites such that

for any query point q
if s is not a (1 + ε)-ANN of q,

then Ls contains a site (1 + ε/2)-closer to q

s← arbitrary site
while ∃t ∈ Ls : ||q − t|| ≤ ||q−s||

1+ε/2
do s← t

return s

Algorithm (simple version)

qs

||q−s||
1+ε

||q − s||
||q−s||
1+ε/2

t

b



Query Algorithm

[Arya and Mount 1993]

R0 = S

Skip list approach
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Query Algorithm

[Arya and Mount 1993]

R0 = S
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Skip list approach



Query Algorithm

Algorithm

• start with any tK−1 ∈ RK−1

• for j = K − 2, K − 3, . . . , 0

– find tj =(1 + ε)-ANN of q in Rj starting from tj+1

• return t0

[Arya and Mount 1993]

R0 = S

R1

R2

R3

RK

Skip list approach

[using naive algorithm]



Query Time Analysis

Compare with a regular path

• Visit nodes in the order of proximity to q, then go to the lower level

Suppose that any node’s list size is at most c
Observation: Query time = c· number of visited nodes
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t

q
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Claim: Our path visits at most 2K nodes more



Query Time Analysis

Pr[regular path length ≥ C log n] ≤ O(n−C)

Compare with a regular path

• Visit nodes in the order of proximity to q, then go to the lower level

q

t
tj+1Rj+1

Rj
t′

(1 + ε/2)2 ≥ 1 + ε ⇒ ||q − t′|| ≤ ||q − t||

t

q

tj+1

Suppose that any node’s list size is at most c
Observation: Query time = c· number of visited nodes

Claim: Our path visits at most 2K nodes more

[distribution of points across levels]

[starting search point]



Query Time Analysis
What about any q?

Skip list
n possible search targets
Probability of failure n ·O(n−C) = O(n−(C−1))



Query Time Analysis
What about any q?

Only nO(d) ”combinatorially distinct” regular paths

• If q1 and q2 incude the same distance ordering on the input
sites, their regular paths are the same

• Arrangement of
(
n
2

)
bisecting hyperplanes has((
n
2

)
d

)
≤ (n2)d = n2d

d-dimensional cells

Skip list
n possible search targets
Probability of failure n ·O(n−C) = O(n−(C−1))
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Query Time Analysis
What about any q?

Only nO(d) ”combinatorially distinct” regular paths

• If q1 and q2 incude the same distance ordering on the input
sites, their regular paths are the same

• Arrangement of
(
n
2

)
bisecting hyperplanes has((
n
2

)
d

)
≤ (n2)d = n2d

d-dimensional cells

Skip list
n possible search targets
Probability of failure n ·O(n−C) = O(n−(C−1))

Setting C = 2d + C ′

Pr[regular path length ≤ O(d) log n] = O(n−C′
)

q



Weighted Voronoi Diagrams

∀q ∈ Rd

∀b ∈ S : ||q − b|| ≥ ||q−s||
1+ε

⇐ ∀t ∈ Ls : ||q − t|| ≥ ||q−s||
1+ε/2

Goal For each site s, compute Ls such that

[s is an (1 + ε)-ANN of q] [no ”improvement” in Ls]
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∀q ∈ Rd

∀b ∈ S : ||q − b|| ≥ ||q−s||
1+ε

⇐ ∀t ∈ Ls : ||q − t|| ≥ ||q−s||
1+ε/2

Goal For each site s, compute Ls such that
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∀b ∈ S : q ∈ Q(b, ε) ⇐ ∀t ∈ Ls : q ∈ Q(t, ε/2)T
b∈S

Q(b, ε) ⊇
T

t∈Ls

Q(t, ε/2)



Linearization (”Lifting”)

Example for d=1

A point inside/outside a sphere in Rd?
m

A point above/below a hyperplane in Rd+1?

D
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q′

y = ||q||2
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A point inside/outside a sphere in Rd?
m

A point above/below a hyperplane in Rd+1?

D
q

q′

y = ||q||2
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Linearization (”Lifting”)

Example for d=1

A point inside/outside a sphere in Rd?
m

A point above/below a hyperplane in Rd+1?

D
q

q′

y = ||q||2
D′ b s

q

Q(b, ε)

H(b, ε), halfspace in Rd+1

(note: contains the origin)

P (b, ε) = {(q, y) : αy ≥ 2〈q, b〉 − ||b||2} ∩ {(q, y) : y = ||q||2}

Ψ, standard paraboloid in Rd+1

(note: independent of b, ε)

Q(b, ε) = {q ∈ Rd : ||q − s|| ≤ (1 + ε)||q − b||}

α ≈ 2ε



Final Formulation
Paraboloid
Ψ = {(q, y) : y = ||q||2}

−||b||2/α

y

qs b

1
4
||b||2

4
α2 ||b||2



Final Formulation

Halfspaces
H(b, ε) = {(q, y) : αy ≥ 2〈b, q〉 − ||b||2}
for all b ∈ S

Paraboloid
Ψ = {(q, y) : y = ||q||2}

[can compute using S and ε]

y

qs

query points for which s is
a (1 + ε)-ANN

H(b, ε)



Final Formulation

Halfspaces
H(b, ε) = {(q, y) : αy ≥ 2〈b, q〉 − ||b||2}
for all b ∈ S

Halfspaces
G(t, ε′ = ε/2) = {(q, y) : α′y ≥ 2〈t, q〉 − ||t||2}
for all t ∈ Ls

Paraboloid
Ψ = {(q, y) : y = ||q||2}

[can compute using S and ε]

[unknown]
y

qs
Goal
It suffices to make sure that

⊆



Preprocessing

initialize the weight of all sites to 1

repeat

pick a (weighted) random sample R ⊆ S of size C1cd log c

if
T

t∈R
G(t, ε/2) ∩Ψ ⊆

T
b∈S

H(b, ε)

return R

else

v = a violating vertex of
T

t∈R
G(t, ε/2) ∩Ψ

double the weight of V = {t ∈ S \R : v /∈ G(t, ε/2)}

The sample size depends on c, the optimal size of Ls

Next we bound c using polytope approximation



Size of Ls

Exhibit a list of size O
(
ε−(d−1)/2 log ρ

ε

)
, where ρ = maxs,t∈S ||s−t||

mins,t∈S ||s−t||

Lemma For any convex and compact set P ⊂ Rd contained in the
unit sphere and any ε ∈ (0, 1), there is a polytope P ′ ⊃ P with at
most O(ε(d−1)/2) facets which is in the ε-neighborhood of P .

1

ε
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ε

P

P ′

ε

Note Always ”outer” approximation



Size of Ls

Exhibit a list of size O
(
ε−(d−1)/2 log ρ

ε

)
, where ρ = maxs,t∈S ||s−t||

mins,t∈S ||s−t||

Lemma For any convex and compact set P ⊂ Rd contained in the
unit sphere and any ε ∈ (0, 1), there is a polytope P ′ ⊃ P with at
most O(ε(d−1)/2) facets which is in the ε-neighborhood of P .

1

ε

ε

ε

ε

P

P ′

ε

Note Always ”outer” approximation

y

q

Recall We need an ”inner” approximation
of this

H(b, ε), b ∈ S
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Size of Ls
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q

”stretching”
≈ 2 times

Want an ”inner” approximation of this using only these hyperplanes as potential facets



Size of Ls

y

q

y

q

”stretching”
≈ 2 times

Goal: Subsample (as much as possible) the
hyperplanes on the right so that

Want an ”inner” approximation of this using only these hyperplanes as potential facets

⊆



Size of Ls

y

q

Dudley approximation

≥ ε (in Dudley’s Theorem)

Straightforward application of Dudley’s Theorem does not work!

The value of ε dictated by the smallest scale



Size of Ls

y

q

vertical slice

Slices have

• geometrically increasing height

• ”constant” gap

Solution: height-dependent slicing, per-slice Dudley approximations



Size of Ls

y

q
d0 = 1

4
min
b∈S

||b||2

dm > 4
α2 max

b∈S
||b||2

di = 3
2
di−1

Number of slices
m = O(log(ρ/α))

Complexity (number of facets) of
approximation O(ε−(d−1)/2) per
sliceRecall: ρ – spread

Key fact
Red and blue projections into the q-hyperplane within one slice are at least a factor
of 1 + ε apart, so the same ε can be used in all approximations



Clarkson’s Algorithm: Summary

• Improved query time at the expense of specifying ε in advance

• O(ε−(d−1)/2) instead of O(ε−d)

• Express the condition on Ls in the form of P (S, ε) ⊇ Q(Ls, ε/2)

• Preprocessing by iterative random sampling from S and checking the
containment condition

• Query procedure using

– top-down search on a skip list

– iterative improvement algorithm within one level


