Approximate Nearest Neighbor Problem: Improving Query Time

CS468, 10/9/2006

Outline

- Reducing the "constant" from $O\left(\epsilon^{-d}\right)$ to $O\left(\epsilon^{-(d-1) / 2}\right)$ in query time
- Need to know ϵ ahead of time
- Preprocessing time and storage feature $O\left(\epsilon^{-d}\right), O\left(\epsilon^{-(d-1) / 2}\right)$ etc.

Outline

- Reducing the "constant" from $O\left(\epsilon^{-d}\right)$ to $O\left(\epsilon^{-(d-1) / 2}\right)$ in query time
- Need to know ϵ ahead of time
- Preprocessing time and storage feature $O\left(\epsilon^{-d}\right), O\left(\epsilon^{-(d-1) / 2}\right)$ etc.
- Timothy M. Chan. Approximate Nearest Neighbor Queries Revisited. Discrete and Computational Geometry 1998.
- Decomposition of space into cones
- BBD-tree for range searching in $\mathbb{R}^{d-k}+$ point location in \mathbb{R}^{k}
- Kenneth Clarkson. An Algorithm for Approximate Closest-point Queries. SoCG 1994.
- Additional $\log (\rho / \epsilon)$ in space complexity
- Polytope approximation in \mathbb{R}^{d+1}

Chen's Algorithm: Motivation

$(1+\epsilon)$-ANN among (sorted) points in a narrow cone

$O(\log n)$ by binary search
Need a data structure that returns a sorted points given q and a cone direction

Chen's Algorithm: Motivation

$(1+\epsilon)$-ANN among (sorted) points in a narrow cone

$O(\log n)$ by binary search
Need a data structure that returns a sorted points given q and a cone direction

Uses the BBD-tree data structure
Given a query point $q \in \mathbb{R}^{d}$ and a radius r one can find $O(\log n)$ cells of the BBD-tree which contain $B(q, r)$ and are contained in $B(q, 2 r)$.

This takes $O(\log n)$ time
Use for approximate range searching in \mathbb{R}^{d-1}

Conic ANN (with a Hint)

Input: Query point q and a 2 -approximation r to the NN distance Output: A points s such that

$$
\|q-s\| \leq(1+\epsilon)\|q-p\|
$$

where p is the NN inside a cone with apex q and angle $\delta=\sqrt{\epsilon / 16}$

Note: s need not be in the cone!
Note: The cone is fixed (not a part of input, mod. translation to q)

Main $(1+\epsilon)$-ANN Algorithm

Uses the "conic-ANN with a hint" as a subrotine Query (given only q)

- Obtain r by [Arya and Mount 1998]
- Get one point per data structure, return the one closest to q

Main $(1+\epsilon)$-ANN Algorithm

Uses the "conic-ANN with a hint" as a subrotine Query (given only q)

- Obtain r by [Arya and Mount 1998]
- Get one point per data structure, return the one closest to q Preprocessing
- "Tile" \mathbb{R}^{d} with $O\left(\epsilon^{-(d-1) / 2}\right)$ cones of angle $\delta=\Theta(\sqrt{\epsilon})$
- Build a "conic-ANN" data structure for each cone

Main $(1+\epsilon)$-ANN Algorithm

Uses the "conic-ANN with a hint" as a subrotine Query (given only q)

- Obtain r by [Arya and Mount 1998]
- Get one point per data structure, return the one closest to q Preprocessing "floating"
- "Tile" \mathbb{R}^{d} with $O\left(\epsilon^{-(d-1) / 2}\right)$ cones of angle $\delta=\Theta(\sqrt{\epsilon})$
- Build a "conic-ANN" data structure for each cone

Main $(1+\epsilon)$-ANN Algorithm

Uses the "conic-ANN with a hint" as a subrotine Query (given only q)

- Obtain r by [Arya and Mount 1998]
- Get one point per data structure, return the one closest to q Preprocessing "floating"
- "Tile" \mathbb{R}^{d} with $O\left(\epsilon^{-(d-1) / 2}\right)$ cones of angle $\delta=\Theta(\sqrt{\epsilon})$
- Build a "conic-ANN" data structure for each cone

> Query time
> $O(\epsilon^{-(d-1) / 2} \underbrace{\log n})$
> [\# of cones] [conic query]

Conic-ANN Data Structure

For preprocessing given only direction of the cone (wlog: d-axis) and angle δ

Conic-ANN Data Structure

For preprocessing given only direction of the cone (wlog: d-axis) and angle δ Query Algorithm (given q and r)
Approximate range query on the set of projections
$\left\{p^{\prime}=\left[p_{1} p_{2} \cdots p_{d-1}\right]^{T}, p \in P\right\}$ with $B(q, \delta r)$

- returns $O(\log n)$ BBD-nodes (cells) in $O(\log n)$ time
$O(\log n)$ binary searches
Return the point s such that $\left|s_{d}-q_{d}\right|$ is min

Conic-ANN Data Structure

For preprocessing given only direction of the cone (wlog: d-axis) and angle δ
Query Algorithm (given q and r)
Approximate range query on the set of projections
$\left\{p^{\prime}=\left[p_{1} p_{2} \cdots p_{d-1}\right]^{T}, p \in P\right\}$ with $B(q, \delta r)$

- returns $O(\log n)$ BBD-nodes (cells) in $O(\log n)$ time
$O(\log n)$ binary searches
Return the point s such that $\left|s_{d}-q_{d}\right|$ is min
Correctness (proof for $\|q-s\| \leq(1+\epsilon)\|q-p\|$)

$$
\begin{aligned}
& \left|s_{d}-q_{d}\right| \leq\left|p_{d}-q_{d}\right| \leq\|p-q\| \\
& \left|s^{\prime}-q^{\prime}\right| \leq 2 \delta r \leq 4 \delta| | p-q \| \\
& \left|\mid s-q\left\|\leq \sqrt{1+16 \delta^{2}}\right\| p-q\|=(1+\epsilon)\| p-q \|\right.
\end{aligned}
$$

Conic-ANN Data Structure

For preprocessing given only direction of the cone (wlog: d-axis) and angle δ
Query Algorithm (given q and r)
Approximate range query on the set of projections
$\left\{p^{\prime}=\left[p_{1} p_{2} \cdots p_{d-1}\right]^{T}, p \in P\right\}$ with $B(q, \delta r)$

- returns $O(\log n)$ BBD-nodes (cells) in $O(\log n)$ time
$O(\log n)$ binary searches
Return the point s such that $\left|s_{d}-q_{d}\right|$ is min
Correctness (proof for $\|q-s\| \leq(1+\epsilon)\|q-p\|$)

$$
\begin{aligned}
& \left|s_{d}-q_{d}\right| \leq\left|p_{d}-q_{d}\right| \leq\|p-q\| \\
& \left|s^{\prime}-q^{\prime}\right| \leq 2 \delta r \leq 4 \delta| | p-q \| \\
& \left|\left|s-q\left\|\leq \sqrt{1+16 \delta^{2}}| | p-q\right\|=(1+\epsilon)\|p-q\|\right.\right.
\end{aligned}
$$

Data structure

BBD-tree on the projection set
For every tree node v the associated list of points is sorted in the d coordinate

Conic-ANN Analysis

Construction (preprocessing)

BBD-tree $O(n \log n)+$ sorting $O(n \log n)=O(n \log n)$

Query

Approximate range query $O(\log n)+$ bin. searches $O\left(\log ^{2} n\right)=O\left(\log ^{2} n\right)$ Improving query time by exploiting correlation [Lueker and Willard]

Summary and Remarks

Variant with projecting to $d-2$ dimensions

- BBD tree + planar point location

Rough ($\approx d^{3 / 2}$) approximation algorithms

- Polynomial dependence on d

Clarkson's Algorithm: Iterative Improvement

Exact nearest neighbor problem
Data structure For each site s, a (small) list L_{s} of other sites such that for any query point q
if s is not the nearest neighbor of q, then L_{s} contains a site closer to q

Clarkson's Algorithm: Iterative Improvement

Exact nearest neighbor problem
Data structure For each site s, a (small) list L_{s} of other sites such that for any query point q
if s is not the nearest neighbor of q, then L_{s} contains a site closer to q
Algorithm
$s \leftarrow$ arbitrary site
while $\exists t \in L_{s}:\|t-q\|<\|s-q\|$ do $s \leftarrow t$
return s

Clarkson's Algorithm: Iterative Improvement

Exact nearest neighbor problem
Data structure For each site s, a (small) list L_{s} of other sites such that for any query point q
if s is not the nearest neighbor of q, then L_{s} contains a site closer to q
Algorithm
$s \leftarrow$ arbitrary site
while $\exists t \in L_{s}:\|t-q\|<\|s-q\|$ do $s \leftarrow t$
return s

\square

Note
The same L_{s} valid for all q !

Not Useful for Exact NN

Reason 1: space complexity $\Omega\left(n^{2}\right)$
For all s, L_{s} has to include all Delaunay neighbors of s
For $d>2$, Delaunay triangulation may have
$\Omega\left(n^{2}\right)$ edges

Not Useful for Exact NN

Reason 1: space complexity $\Omega\left(n^{2}\right)$
For all s, L_{s} has to include all Delaunay neighbors of s

For $d>2$, Delaunay triangulation may have $\Omega\left(n^{2}\right)$ edges

Proof:
t Delaunay neighbor of s, but $t \notin L_{s}$
t is the only site closer to q than s

Not Useful for Exact NN

Reason 1: space complexity $\Omega\left(n^{2}\right)$
For all s, L_{s} has to include all Delaunay neighbors of s

For $d>2$, Delaunay triangulation may have $\Omega\left(n^{2}\right)$ edges

Proof:
t Delaunay neighbor of s, but $t \notin L_{s}$
t is the only site closer to q than s

Reason 2: query time $\Omega(n)$
No "sufficient progress" guarantee, may have to visit all sites

Not Useful for Exact NN

Reason 1: space complexity $\Omega\left(n^{2}\right)$
For all s, L_{s} has to include all Delaunay neighbors of s

For $d>2$, Delaunay triangulation may have $\Omega\left(n^{2}\right)$ edges

Proof:
t Delaunay neighbor of s, but $t \notin L_{s}$
t is the only site closer to q than s

Conclusion

No improvement over the trivial algorithm!
Reason 2: query time $\Omega(n)$
No " sufficient progress" guarantee, may have to visit all sites

Modification for ANN

Data structure For each site s, a (small) list L_{s} of other sites such that for any query point q
if s is not a $(1+\epsilon)$-ANN of q, then L_{s} contains a site ($1+\epsilon / 2$)-closer to q

Modification for ANN

Data structure For each site s, a (small) list L_{s} of other sites such that for any query point q
if s is not a $(1+\epsilon)$-ANN of q, then L_{s} contains a site ($1+\epsilon / 2$)-closer to q

Algorithm (simple version)
$s \leftarrow$ arbitrary site while $\exists t \in L_{s}:\|q-t\| \leq \frac{\|q-s\|}{1+\epsilon / 2}$ do $s \leftarrow t$ return s

Query Algorithm

Skip list approach [Arya and Mount 1993]

Query Algorithm

Skip list approach [Arya and Mount 1993]

Query Algorithm

Skip list approach [Arya and Mount 1993]

Query Algorithm

Skip list approach [Arya and Mount 1993]

Query Algorithm

Skip list approach [Arya and Mount 1993]

Query Algorithm

Skip list approach [Arya and Mount 1993]

Algorithm

- start with any $t_{K-1} \in R_{K-1}$
- for $j=K-2, K-3, \ldots, 0$
[using naive algorithm]
- find $t_{j}=(1+\epsilon)$-ANN of q in R_{j} starting from t_{j+1}
- return t_{0}

Query Time Analysis

Suppose that any node's list size is at most c
Observation: Query time $=c$. number of visited nodes
Compare with a regular path

- Visit nodes in the order of proximity to q, then go to the lower level

Query Time Analysis

Suppose that any node's list size is at most c
Observation: Query time $=c$. number of visited nodes
Compare with a regular path

- Visit nodes in the order of proximity to q, then go to the lower level

Claim: Our path visits at most $2 K$ nodes more

Query Time Analysis

Suppose that any node's list size is at most c
Observation: Query time $=c$. number of visited nodes
Compare with a regular path

- Visit nodes in the order of proximity to q, then go to the lower level

Claim: Our path visits at most $2 K$ nodes more

$\operatorname{Pr}[$ regular path length $\geq C \log n] \leq O\left(n^{-C}\right)$
[distribution of points across levels] [starting search point]

Query Time Analysis

What about any q ?

Skip list

n possible search targets
Probability of failure $n \cdot O\left(n^{-C}\right)=O\left(n^{-(C-1)}\right)$

Query Time Analysis

What about any q ?

Skip list

n possible search targets
Probability of failure $n \cdot O\left(n^{-C}\right)=O\left(n^{-(C-1)}\right)$
Only $n^{O(d)}$ "combinatorially distinct" regular paths

- If q_{1} and q_{2} incude the same distance ordering on the input sites, their regular paths are the same
- Arrangement of $\binom{n}{2}$ bisecting hyperplanes has

$$
\left(\begin{array}{c}
n \\
2 \\
d
\end{array}\right) \leq\left(n^{2}\right)^{d}=n^{2 d}
$$

d-dimensional cells

Query Time Analysis

What about any q ?

Skip list

n possible search targets
Probability of failure $n \cdot O\left(n^{-C}\right)=O\left(n^{-(C-1)}\right)$
Only $n^{O(d)}$ "combinatorially distinct" regular paths

- If q_{1} and q_{2} incude the same distance ordering on the input sites, their regular paths are the same
- Arrangement of $\binom{n}{2}$ bisecting hyperplanes has

$$
\left(\begin{array}{c}
n \\
2 \\
d
\end{array}\right) \leq\left(n^{2}\right)^{d}=n^{2 d}
$$

d-dimensional cells
Setting $C=2 d+C^{\prime}$
$\operatorname{Pr}[$ regular path length $\leq O(d) \log n]=O\left(n^{-C^{\prime}}\right)$

Weighted Voronoi Diagrams

Goal For each site s, compute L_{s} such that
$\forall q \in \mathbb{R}^{d}$

$$
\begin{array}{rrr}
\forall b \in S:\|q-b\| \geq \frac{\|q-s\|}{1+\epsilon} & \Leftarrow & \forall t \in L_{s}:\|q-t\| \geq \frac{\|q-s\|}{1+\epsilon / 2} \\
{[s \text { is an }(1+\epsilon) \text {-ANN of } q]} & \text { [no "improvement" in } \left.L_{s}\right]
\end{array}
$$

Weighted Voronoi Diagrams

Goal For each site s, compute L_{s} such that
$\forall q \in \mathbb{R}^{d}$

$$
\begin{array}{rrr}
\forall b \in S:\|q-b\| \geq \frac{\|q-s\|}{1+\epsilon} & \Leftarrow & \forall t \in L_{s}:\|q-t\| \geq \frac{\|q-s\|}{1+\epsilon / 2} \\
{[s \text { is an }(1+\epsilon) \text {-ANN of } q]} & \text { [no "improvement" in } L_{s}
\end{array}
$$

Weighted Voronoi Diagrams

Goal For each site s, compute L_{s} such that
$\forall q \in \mathbb{R}^{d}$

$$
\begin{aligned}
\forall b \in S:\|q-b\| \geq \frac{\|q-s\|}{1+\epsilon} & \Leftarrow & \forall t \in L_{s}:\|q-t\| \geq \frac{\|q-s\|}{1+\epsilon / 2} \\
{[s \text { is an }(1+\epsilon) \text {-ANN of } q] } & & \text { [no "improvement" in } L_{s} \\
\forall b \in S: q \in Q(b, \epsilon) & \Leftarrow & \forall t \in L_{s}: q \in Q(t, \epsilon / 2)
\end{aligned}
$$

Weighted Voronoi Diagrams

Goal For each site s, compute L_{s} such that $\forall q \in \mathbb{R}^{d}$

Linearization ("Lifting")

A point inside/outside a sphere in \mathbb{R}^{d} ?
I
A point above/below a hyperplane in \mathbb{R}^{d+1} ?
Example for $\mathrm{d}=1$

Linearization ("Lifting")

A point inside/outside a sphere in \mathbb{R}^{d} ?
I
A point above/below a hyperplane in \mathbb{R}^{d+1} ?
Example for $\mathrm{d}=1$

$$
Q(b, \epsilon)=\left\{q \in \mathbb{R}^{d}:\|q-s\| \leq(1+\epsilon)\|q-b\|\right\}
$$

Linearization ("Lifting")

A point inside/outside a sphere in \mathbb{R}^{d} ?
I
A point above/below a hyperplane in \mathbb{R}^{d+1} ?
Example for d=1

Final Formulation

> Paraboloid
> $\Psi=\left\{(q, y): y=\|q\|^{2}\right\}$

Final Formulation

Paraboloid
$\Psi=\left\{(q, y): y=\|q\|^{2}\right\}$
Halfspaces
$H(b, \epsilon)=\left\{(q, y): \alpha y \geq 2\langle b, q\rangle-\|b\|^{2}\right\}$ for all $b \in S$

Final Formulation

Paraboloid
$\Psi=\left\{(q, y): y=\|q\|^{2}\right\}$
Halfspaces
$H(b, \epsilon)=\left\{(q, y): \alpha y \geq 2\langle b, q\rangle-\|b\|^{2}\right\}$ for all $b \in S$
Halfspaces
$G\left(t, \epsilon^{\prime}=\epsilon / 2\right)=\left\{(q, y): \alpha^{\prime} y \geq 2\langle t, q\rangle-\|t\|^{2}\right\}$ for all $t \in L_{s}$

Goal

It suffices to make sure that

Preprocessing

initialize the weight of all sites to 1
repeat

$$
\begin{aligned}
& \text { pick a (weighted) random sample } R \subseteq S \text { of size } C_{1} c d \log c \\
& \text { if } \bigcap_{t \in R} G(t, \epsilon / 2) \cap \Psi \subseteq \bigcap_{b \in S} H(b, \epsilon) \\
& \text { else } \\
& \qquad v=\text { a violating vertex of } \bigcap_{t \in R} G(t, \epsilon / 2) \cap \Psi \\
& \\
& \qquad \text { double the weight of } V=\{t \in S \backslash R: v \notin G(t, \epsilon / 2)\}
\end{aligned}
$$

The sample size depends on c, the optimal size of L_{s}
Next we bound c using polytope approximation

Size of L_{s}

Exhibit a list of size $O\left(\epsilon^{-(d-1) / 2} \log \frac{\rho}{\epsilon}\right)$, where $\rho=\frac{\max _{s, t \in S}\|s-t\|}{\min _{s, t \in S}\|s-t\|}$ Lemma For any convex and compact set $P \subset \mathbb{R}^{d}$ contained in the unit sphere and any $\epsilon \in(0,1)$, there is a polytope $P^{\prime} \supset P$ with at most $O\left(\epsilon^{(d-1) / 2}\right)$ facets which is in the ϵ-neighborhood of P.

Note Always "outer" approximation

Size of L_{s}

Exhibit a list of size $O\left(\epsilon^{-(d-1) / 2} \log \frac{\rho}{\epsilon}\right)$, where $\rho=\frac{\max _{s, t \in S}\|s-t\|}{\min _{s, t \in S}\|s-t\|}$ Lemma For any convex and compact set $P \subset \mathbb{R}^{d}$ contained in the unit sphere and any $\epsilon \in(0,1)$, there is a polytope $P^{\prime} \supset P$ with at most $O\left(\epsilon^{(d-1) / 2}\right)$ facets which is in the ϵ-neighborhood of P.

Note Always "outer" approximation
Recall We need an "inner" approximation of this

Size of L_{s}

Want an "inner" approximation of this

Size of L_{s}

Want an "inner" approximation of this

using only these hyperplanes as potential facets

Size of L_{s}

Want an "inner" approximation of this

using only these hyperplanes as potential facets

Goal: Subsample (as much as possible) the hyperplanes on the right so that

Size of L_{s}

Straightforward application of Dudley's Theorem does not work!
The value of ϵ dictated by the smallest scale

Size of L_{s}

Solution: height-dependent slicing, per-slice Dudley approximations

- geometrically increasing height
- "constant" gap

Clarkson's Algorithm: Summary

- Improved query time at the expense of specifying ϵ in advance
- $O\left(\epsilon^{-(d-1) / 2}\right)$ instead of $O\left(\epsilon^{-d}\right)$
- Express the condition on L_{s} in the form of $P(S, \epsilon) \supseteq Q\left(L_{s}, \epsilon / 2\right)$
- Preprocessing by iterative random sampling from S and checking the containment condition
- Query procedure using
- top-down search on a skip list
- iterative improvement algorithm within one level

