Approximate Nearest Neighbor Problem: Improving Query Time

CS468, 10/9/2006

Outline

- Reducing the "constant" from $O\left(\epsilon^{-d}\right)$ to $O\left(\epsilon^{-(d-1)/2}\right)$ in query time
- Need to know ϵ ahead of time

– Preprocessing time and storage feature $O(\epsilon^{-d})$, $O(\epsilon^{-(d-1)/2})$ etc.

Outline

- Reducing the "constant" from $O\left(\epsilon^{-d}\right)$ to $O\left(\epsilon^{-(d-1)/2}\right)$ in query time
- Need to know ϵ ahead of time

– Preprocessing time and storage feature $O(\epsilon^{-d})$, $O(\epsilon^{-(d-1)/2})$ etc.

- Timothy M. Chan. *Approximate Nearest Neighbor Queries Revisited*. Discrete and Computational Geometry 1998.
 - Decomposition of space into cones
 - BBD-tree for range searching in \mathbb{R}^{d-k} + point location in \mathbb{R}^k
- Kenneth Clarkson. *An Algorithm for Approximate Closest-point Queries*. SoCG 1994.
 - Additional $\log(\rho/\epsilon)$ in space complexity
 - Polytope approximation in \mathbb{R}^{d+1}

Chen's Algorithm: Motivation

 $(1 + \epsilon)$ -ANN among (sorted) points in a narrow cone

• • • $O(\log n)$ by binary search

Need a data structure that returns a sorted points given q and a cone direction

Chen's Algorithm: Motivation

 $(1 + \epsilon)$ -ANN among (sorted) points in a narrow cone

 $O(\log n)$ by binary search

Need a data structure that returns a sorted points given q and a cone direction

Uses the BBD-tree data structure

Given a query point $q \in \mathbb{R}^d$ and a radius rone can find $O(\log n)$ cells of the BBD-tree which contain B(q, r)and are contained in B(q, 2r). This takes $O(\log n)$ time

Use for approximate range searching in \mathbb{R}^{d-1}

Conic ANN (with a Hint)

Input: Query point q and a 2-approximation r to the NN distance **Output:** A points s such that

$$||q - s|| \le (1 + \epsilon)||q - p||$$

where p is the NN inside a cone with apex q and angle $\delta = \sqrt{\epsilon/16}$

Note: *s* need not be in the cone!

Note: The cone is fixed (not a part of input, mod. translation to q)

Uses the "conic-ANN with a hint" as a subrotine **Query** (given only q)

- Obtain r by [Arya and Mount 1998]
- $\bullet\,$ Get one point per data structure, return the one closest to q

Uses the "conic-ANN with a hint" as a subrotine **Query** (given only q)

• Obtain r by [Arya and Mount 1998]

• Get one point per data structure, return the one closest to q **Preprocessing** "floating"

• "Tile"
$$\mathbb{R}^d$$
 with $O(\epsilon^{-(d-1)/2})$ cones of angle $\delta = \Theta(\sqrt{\epsilon})$

• Build a "conic-ANN" data structure for each cone

Uses the "conic-ANN with a hint" as a subrotine **Query** (given only q)

- Obtain r by [Arya and Mount 1998]
- Get one point per data structure, return the one closest to q **Preprocessing**

• "Tile"
$$\mathbb{R}^d$$
 with $O(\epsilon^{-(d-1)/2})$ cones of angle $\delta = \Theta(\sqrt{\epsilon})$

• Build a "conic-ANN" data structure for each cone

Uses the "conic-ANN with a hint" as a subrotine **Query** (given only q)

- Obtain r by [Arya and Mount 1998]
- Get one point per data structure, return the one closest to q **Preprocessing**

• "Tile"
$$\mathbb{R}^d$$
 with $O(\epsilon^{-(d-1)/2})$ cones of angle $\delta = \Theta(\sqrt{\epsilon})$

• Build a "conic-ANN" data structure for each cone

For preprocessing given only direction of the cone (wlog: d-axis) and angle δ

For preprocessing given only direction of the cone (wlog: d-axis) and angle δ Query Algorithm (given q and r)

Approximate range query on the set of projections $\{p' = [p_1 \ p_2 \ \cdots p_{d-1}]^T, \ p \in P\}$ with $B(q, \delta r)$

• returns $O(\log n)$ BBD-nodes (cells) in $O(\log n)$ time

 $O(\log n)$ binary searches Return the point s such that $|s_d - q_d|$ is min

For preprocessing given only direction of the cone (wlog: d-axis) and angle δ Query Algorithm (given q and r)

Approximate range query on the set of projections $\{p' = [p_1 \ p_2 \ \cdots p_{d-1}]^T, \ p \in P\}$ with $B(q, \delta r)$

• returns $O(\log n)$ BBD-nodes (cells) in $O(\log n)$ time

 $\begin{array}{l} O(\log n) \text{ binary searches} \\ \text{Return the point } s \text{ such that } |s_d - q_d| \text{ is min} \\ \textbf{Correctness (proof for } ||q - s|| \leq (1 + \epsilon)||q - p||) \\ |s_d - q_d| \leq |p_d - q_d| \leq ||p - q|| \\ |s' - q'| \leq 2\delta r \leq 4\delta ||p - q|| \\ ||s - q|| \leq \sqrt{1 + 16\delta^2} ||p - q|| = (1 + \epsilon)||p - q|| \end{array}$

For preprocessing given only direction of the cone (wlog: d-axis) and angle δ Query Algorithm (given q and r)

Approximate range query on the set of projections $\{p' = [p_1 \ p_2 \ \cdots p_{d-1}]^T, \ p \in P\}$ with $B(q, \delta r)$

• returns $O(\log n)$ BBD-nodes (cells) in $O(\log n)$ time

 $O(\log n)$ binary searches Return the point s such that $|s_d - q_d|$ is min

Correctness (proof for $||q - s|| \le (1 + \epsilon)||q - p||$)

$$|s_d - q_d| \le |p_d - q_d| \le ||p - q|| |s' - q'| \le 2\delta r \le 4\delta ||p - q||$$

$$||s - q|| \le \sqrt{1 + 16\delta^2} ||p - q|| = (1 + \epsilon)||p - q||$$

Data structure

BBD-tree on the projection set

For every tree node v the associated list of points is sorted in the d coordinate

Conic-ANN Analysis

Construction (preprocessing)

 $\mathsf{BBD-tree}\ O(n\log n) + \mathsf{sorting}\ O(n\log n) = O(n\log n)$

Query

Approximate range query $O(\log n) + \text{bin. searches } O(\log^2 n) = O(\log^2 n)$

Improving query time by exploiting correlation [Lueker and Willard]

Summary and Remarks

Variant with projecting to d-2 dimensions

• BBD tree + planar point location

Rough ($\approx d^{3/2}$) approximation algorithms

• Polynomial dependence on d

Clarkson's Algorithm: Iterative Improvement

Exact nearest neighbor problem

Data structure For each site s, a (small) list L_s of other sites such that

for any query point \boldsymbol{q}

if s is not the nearest neighbor of q, then L_s contains a site closer to q

Clarkson's Algorithm: Iterative Improvement

Exact nearest neighbor problem

Data structure For each site s, a (small) list L_s of other sites such that

for any query point \boldsymbol{q}

if s is not the nearest neighbor of q, then L_s contains a site closer to q

Algorithm

 $s \leftarrow \text{arbitrary site}$ while $\exists t \in L_s$: $||t - q|| < ||s - q|| \text{ do } s \leftarrow t$ return s

Clarkson's Algorithm: Iterative Improvement

Exact nearest neighbor problem

Data structure For each site s, a (small) list L_s of other sites such that

for any query point \boldsymbol{q}

if s is not the nearest neighbor of q, then L_s contains a site closer to q

Algorithm

 $s \leftarrow$ arbitrary site while $\exists t \in L_s: \ ||t-q|| < ||s-q|| \ \mathrm{do} \ s \leftarrow t$ return s

Note The same L_s valid for all q!

Reason 1: space complexity $\Omega(n^2)$

For all s, L_s has to include all Delaunay neighbors of s

For d>2, Delaunay triangulation may have $\Omega(n^2)$ edges

Reason 1: space complexity $\Omega(n^2)$

For all s, L_s has to include all Delaunay neighbors of s

For d>2, Delaunay triangulation may have $\Omega(n^2)$ edges

Proof:

t Delaunay neighbor of s, but $t \notin L_s$ t is the only site closer to q than s

Reason 1: space complexity $\Omega(n^2)$

For all s, L_s has to include all Delaunay neighbors of s

For d>2, Delaunay triangulation may have $\Omega(n^2)$ edges

q

Proof:

t Delaunay neighbor of s, but $t \notin L_s$ t is the only site closer to q than s

Reason 2: query time $\Omega(n)$

No "sufficient progress" guarantee, may have to visit all sites

Reason 1: space complexity $\Omega(n^2)$

For all s, L_s has to include all Delaunay neighbors of s

For d>2, Delaunay triangulation may have $\Omega(n^2)$ edges

Proof:

t Delaunay neighbor of s, but $t \notin L_s$ t is the only site closer to q than s

Conclusion

No improvement over the trivial algorithm!

q

Reason 2: query time $\Omega(n)$

No "sufficient progress" guarantee, may have to visit all sites

Modification for ANN

Data structure For each site s, a (small) list L_s of other sites such that for **any** query point q

if s is not a $(1 + \epsilon)$ -ANN of q, then L_s contains a site $(1 + \epsilon/2)$ -closer to q

Modification for ANN

Data structure For each site s, a (small) list L_s of other sites such that for **any** query point q

if s is not a $(1+\epsilon)\text{-}\mathsf{ANN}$ of q, then L_s contains a site $(1+\epsilon/2)\text{-}\mathsf{closer}$ to q

Algorithm (simple version)

$$s \leftarrow$$
 arbitrary site while $\exists t \in L_s: \ ||q-t|| \leq \frac{||q-s||}{1+\epsilon/2} \ \mathrm{do} \ s \leftarrow t$ return s

• return t_0

Suppose that any node's list size is at most c**Observation:** Query time = c· number of visited nodes

Compare with a regular path

• Visit nodes in the order of proximity to q, then go to the lower level

Suppose that any node's list size is at most c**Observation:** Query time = c· number of visited nodes

Compare with a regular path

• Visit nodes in the order of proximity to q, then go to the lower level

Claim: Our path visits at most 2K nodes more

Suppose that any node's list size is at most c**Observation:** Query time = c· number of visited nodes

Compare with a regular path

• Visit nodes in the order of proximity to q, then go to the lower level

Claim: Our path visits at most 2K nodes more

What about any q?

Skip list

n possible search targets Probability of failure $n \cdot O(n^{-C}) = O(n^{-(C-1)})$

What about any q?

Skip list

n possible search targets Probability of failure $n \cdot O(n^{-C}) = O(n^{-(C-1)})$

Only $n^{O(d)}$ "combinatorially distinct" regular paths

- If q_1 and q_2 incude the same distance ordering on the input sites, their regular paths are the same
- Arrangement of $\binom{n}{2}$ bisecting hyperplanes has

$$\binom{\binom{n}{2}}{d} \le (n^2)^d = n^{2d}$$

d-dimensional cells

Query Time Analysis

What about any q?

Skip list

n possible search targets Probability of failure $n \cdot O(n^{-C}) = O(n^{-(C-1)})$

Only $n^{O(d)}$ "combinatorially distinct" regular paths

- If q_1 and q_2 incude the same distance ordering on the input sites, their regular paths are the same
- Arrangement of $\binom{n}{2}$ bisecting hyperplanes has

$$\binom{\binom{n}{2}}{d} \le (n^2)^d = n^{2d}$$

d-dimensional cells

Setting C = 2d + C'

 $\Pr[\text{regular path length} \le O(d) \log n] = O(n^{-C'})$

Goal For each site s, compute L_s such that $\forall q \in \mathbb{R}^d$

$$\forall b \in S: ||q - b|| \ge \frac{||q - s||}{1 + \epsilon} \qquad \Leftarrow \qquad \forall t \in L_s: ||q - t|| \ge \frac{||q - s||}{1 + \epsilon/2} \\ [s \text{ is an } (1 + \epsilon)\text{-ANN of } q] \qquad \qquad [no "improvement" in L_s]$$

Goal For each site s, compute L_s such that $\forall q \in \mathbb{R}^d$

$$\begin{aligned} \forall b \in S : \ ||q - b|| &\geq \frac{||q - s||}{1 + \epsilon} &\Leftarrow \\ [s \text{ is an } (1 + \epsilon) \text{-ANN of } q] \\ \forall b \in S : \ q \in Q(b, \epsilon) &\Leftarrow \end{aligned}$$

$$\forall t \in L_s : ||q - t|| \ge \frac{||q - s||}{1 + \epsilon/2}$$

[no "improvement" in L_s]
$$\forall t \in L_s : q \in Q(t, \epsilon/2)$$

Goal For each site s, compute L_s such that $\forall q \in \mathbb{R}^d$

Linearization ("Lifting")

A point inside/outside a sphere in \mathbb{R}^d ? \updownarrow A point above/below a hyperplane in \mathbb{R}^{d+1} ?

Linearization ("Lifting")

A point inside/outside a sphere in \mathbb{R}^d ? \uparrow A point above/below a hyperplane in \mathbb{R}^{d+1} ?

Linearization ("Lifting")

A point inside/outside a sphere in \mathbb{R}^d ? \updownarrow A point above/below a hyperplane in \mathbb{R}^{d+1} ?

Final Formulation

Paraboloid

 $\Psi = \{(q,y): \ y = ||q||^2\}$

Final Formulation

Final Formulation

Preprocessing

initialize the weight of all sites to 1

repeat

pick a (weighted) random sample $R \subseteq S$ of size $C_1 cd \log c$ if $\bigcap_{t \in R} G(t, \epsilon/2) \cap \Psi \subseteq \bigcap_{b \in S} H(b, \epsilon)$ return Relse v = a violating vertex of $\bigcap_{t \in R} G(t, \epsilon/2) \cap \Psi$

double the weight of $V = \{t \in S \setminus R : v \notin G(t, \epsilon/2)\}$

The sample size depends on c, the **optimal** size of L_s Next we bound c using polytope approximation

Exhibit a list of size $O\left(\epsilon^{-(d-1)/2}\log\frac{\rho}{\epsilon}\right)$, where $\rho = \frac{\max_{s,t\in S}||s-t||}{\min_{s,t\in S}||s-t||}$

Lemma For any convex and compact set $P \subset \mathbb{R}^d$ contained in the unit sphere and any $\epsilon \in (0, 1)$, there is a polytope $P' \supset P$ with at most $O(\epsilon^{(d-1)/2})$ facets which is in the ϵ -neighborhood of P.

Note Always "outer" approximation

Exhibit a list of size $O\left(\epsilon^{-(d-1)/2}\log\frac{\rho}{\epsilon}\right)$, where $\rho = \frac{\max_{s,t\in S}||s-t||}{\min_{s,t\in S}||s-t||}$

Lemma For any convex and compact set $P \subset \mathbb{R}^d$ contained in the unit sphere and any $\epsilon \in (0, 1)$, there is a polytope $P' \supset P$ with at most $O(\epsilon^{(d-1)/2})$ facets which is in the ϵ -neighborhood of P.

Note Always "outer" approximation Recall We need an "inner" approximation of this

Want an "inner" approximation of this

Size of L_s

The value of ϵ dictated by the smallest scale

Solution: height-dependent slicing, per-slice Dudley approximations

- geometrically increasing height
- "constant" gap

of $1 + \epsilon$ apart, so the same ϵ can be used in all approximations

Clarkson's Algorithm: Summary

- \bullet Improved query time at the expense of specifying ϵ in advance
- $O(\epsilon^{-(d-1)/2})$ instead of $O(\epsilon^{-d})$
- Express the condition on L_s in the form of $P(S,\epsilon) \supseteq Q(L_s,\epsilon/2)$
- \bullet Preprocessing by iterative random sampling from S and checking the containment condition
- Query procedure using
 - top-down search on a skip list
 - iterative improvement algorithm within one level