Approximate Voronoi Diagrams

Presentation by Maks Ovsjanikov

Outline

- Preliminaries
- Problem Statement
- ANN using PLEB
- Bounds and Improvements
- Near Linear Space
- Linear Space
- ANN in \mathbb{R}^{d} using compressed quad-trees

Preliminaries

Preliminaries

Preliminaries

Preliminaries

Preliminaries

$$
\left\{\begin{array}{l}
d(q, u) \geq \frac{d(u, v)}{\epsilon} \\
d(q, v) \geq \frac{d(u, v)}{\epsilon}
\end{array} \Longrightarrow \frac{d(q, v)}{d(q, u)} \leq 1+\epsilon\right.
$$

Preliminaries

Preliminaries

$$
\left\{\begin{array}{l}
d(q, u) \geq \frac{d(u, v)}{\epsilon} \\
d(q, v) \geq \frac{d(u, v)}{\epsilon}
\end{array} \Longrightarrow \frac{d(q, v)}{d(q, u)} \leq 1+\epsilon\right.
$$

Holds in any metric space:

Preliminaries

$$
\left\{\begin{array}{l}
d(q, u) \geq \frac{d(u, v)}{\epsilon} \\
d(q, v) \geq \frac{d(u, v)}{\epsilon}
\end{array} \Longrightarrow \frac{d(q, v)}{d(q, u)} \leq 1+\epsilon\right.
$$

Holds in any metric space:

$$
\begin{aligned}
& d(q, u)=\alpha d(u, v) \\
& d(q, v) \leq d(q, u)+d(u, v)=\left(1+\frac{1}{\alpha}\right) d(q, u) \\
& \Longrightarrow \frac{d(q, v)}{d(q, u)} \leq\left(1+\frac{1}{\alpha}\right) \leq(1+\epsilon) \text { if } \alpha \geq \frac{1}{\epsilon}
\end{aligned}
$$

Preliminaries

$$
\left\{\begin{array}{l}
d(q, u) \geq \frac{d(u, v)}{\epsilon} \\
d(q, v) \geq \frac{d(u, v)}{\epsilon}
\end{array} \Longrightarrow \frac{d(q, v)}{d(q, u)} \leq 1+\epsilon\right.
$$

Holds in any metric space:

$$
\begin{aligned}
& d(q, u)=\alpha d(u, v) \\
& d(q, v) \leq d(q, u)+d(u, v)=\left(1+\frac{1}{\alpha}\right) d(q, u) \\
& \Longrightarrow \frac{d(q, v)}{d(q, u)} \leq\left(1+\frac{1}{\alpha}\right) \leq(1+\epsilon) \text { if } \alpha \geq \frac{1}{\epsilon}
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
& d(q, v)=\alpha d(u, v) \\
& \Longrightarrow \frac{d(q, u)}{d(q, v)} \leq\left(1+\frac{1}{\alpha}\right) \leq(1+\epsilon) \text { if } \alpha \geq \frac{1}{\epsilon}
\end{aligned}
$$

Preliminaries

$$
\left\{\begin{array}{l}
d(q, u) \geq \frac{d(u, v)}{\epsilon} \\
d(q, v) \geq \frac{d(u, v)}{\epsilon}
\end{array} \Longrightarrow \frac{d(q, v)}{d(q, u)} \leq 1+\epsilon\right.
$$

Moral:

Any of the far away points is a $(1+\epsilon)$ closest neighbor

Problem Statement:

For a given ϵ, find $\mathrm{a}(1+\epsilon)$ Aproximate Voronoi Diagram:

Partition of space into regions with one representative r_{i} per region, such that for any point q in region i, r_{i} is a $(1+\epsilon)$ nearest neighbor of q

Problem Statement:

For a given ϵ, find $\mathbf{a}(1+\epsilon)$ Aproximate Voronoi Diagram:

Partition of space into regions with one representative r_{i} per region, such that for any point q in region i, r_{i} is a $(1+\epsilon)$ nearest neighbor of q

Problem Statement:

For a given ϵ, find a $(1+\epsilon)$ Aproximate Voronoi Diagram:

Partition of space into regions with one representative r_{i} per region, such that for any point q in region i, r_{i} is a $(1+\epsilon)$ nearest neighbor of q

Constraints:

- bounded construction time and space (complexity)
- Cover all space
- sub-linear ($1+\epsilon$) NN queries

ANN using PLEB

Reduce $(1+\epsilon)$-ANN queries to target ball queries

ANN using PLEB

Reduce $(1+\epsilon)$-ANN queries to target ball queries

1) Construct balls of radius $(1+\epsilon)^{i}$ around each point, for $i=1 . . \infty$

ANN using PLEB

Reduce $(1+\epsilon)$-ANN queries to target ball queries

1) Construct balls of radius $(1+\epsilon)^{i}$ around each point, for $i=1 . . \infty$
\odot

-

ANN using PLEB

Reduce $(1+\epsilon)$-ANN queries to target ball queries

1) Construct balls of radius $(1+\epsilon)^{i}$ around each point, for $i=1 . . \infty$
©
©
(0)
©

ANN using PLEB

Reduce $(1+\epsilon)$-ANN queries to target ball queries

1) Construct balls of radius $(1+\epsilon)^{i}$ around each point, for $i=1 . . \infty$

ANN using PLEB

Reduce $(1+\epsilon)$-ANN queries to target ball queries

1) Construct balls of radius $(1+\epsilon)^{i}$ around each point, for $i=1 . . \infty$

ANN using PLEB

Reduce $(1+\epsilon)$-ANN queries to target ball queries

1) Construct balls of radius $(1+\epsilon)^{i}$ around each point, for $i=1 . . \infty$

ANN using PLEB

Reduce $(1+\epsilon)$-ANN queries to target ball queries

1) Construct balls of radius $(1+\epsilon)^{\text {' }}$ around each point, for $=1 . . \infty$

ANN using PLEB

Reduce $(1+\epsilon)$-ANN queries to farget ball queries

1) Construct balls of radius $(1+\epsilon)^{i}$ around each point, for $=1 . . \infty$

ANN using PLEB

Reduce $(1+\epsilon)$-ANN queries to target ball queries

For any query point q, return the center p of the smallest ball that contains it:
$d(q, n)>(1+\epsilon)^{i-1}$, and $d(q, p) \leq(1+\epsilon)^{i}<(1+\epsilon) \cdot d(q, n)$
\Longrightarrow always get a $(1+\epsilon)$-Nearest Neighbor

ANN using PLEB

Reduce $(1+\epsilon)$-ANN queries to target ball queries

Problems:

- Unbounded Number of Balls
- Not clear how to preform target ball queries efficiently
- Partition the space into regions of influence

Bounding the number of balls

Intuition:

* \quad For a given pair u and v, we only care if $\min d(q,\{u, v\}) \in\left[\frac{d(u, v)}{\epsilon+2}, \frac{d(u, v)}{\epsilon}\right]$

Bounding the number of balls

Intuition:

* \quad For a given pair u and v, we only care if $\min d(q,\{u, v\}) \in\left[\frac{d(u, v)}{\epsilon+2}, \frac{d(u, v)}{\epsilon}\right]$
- if $\min d(q,\{u, v\})>\frac{d(u, v)}{\epsilon} \Longrightarrow$ either u or v are $(1+\epsilon)$ NN

Bounding the number of balls

Intuition:

* For a given pair u and v, we only care if $\min d(q,\{u, v\}) \in\left[\frac{d(u, v)}{\epsilon+2}, \frac{d(u, v)}{\epsilon}\right]$
- if $\min d(q,\{u, v\})>\frac{d(u, v)}{\epsilon} \Longrightarrow$ either u or v are $(1+\epsilon) \mathrm{NN}$
- if $\min d(q,\{u, v\})<\frac{d(u, v)}{\epsilon+2} \Longrightarrow q$ has a unique $(1+\epsilon) \mathrm{NN}$

* Do not need to grow balls of radius smaller than $\frac{d(u, v)}{4}$ or larger than $\frac{2 d(u, v)}{\epsilon}$

Bounding the number of balls

Intuition:

* \quad For a given pair u and v, we only care if $\min d(q,\{u, v\}) \in\left[\frac{d(u, v)}{\epsilon+2}, \frac{d(u, v)}{\epsilon}\right]$
- if $\min d(q,\{u, v\})>\frac{d(u, v)}{\epsilon} \Longrightarrow$ either u or v are $(1+\epsilon)$ NN
- if $\min d(q,\{u, v\})<\frac{d(u, v)}{\epsilon+2} \Longrightarrow q$ has a unique $(1+\epsilon) \mathrm{NN}$

* Do not need to grow balls of radius smaller than $\frac{d(u, v)}{4}$ or larger than $\frac{2 d(u, v)}{\epsilon}$

Method 1:
for every pair of points $\{u, v\}$, construct enough balls to cover $\left[\frac{d(u, v)}{4}, \frac{2 d(u, v)}{\epsilon}\right]$ on u, v

Bounding the number of balls

Intuition:

* \quad For a given pair u and v, we only care if $\min d(q,\{u, v\}) \in\left[\frac{d(u, v)}{\epsilon+2}, \frac{d(u, v)}{\epsilon}\right]$
- if $\min d(q,\{u, v\})>\frac{d(u, v)}{\epsilon} \Longrightarrow$ either u or v are $(1+\epsilon)$ NN
- if $\min d(q,\{u, v\})<\frac{d(u, v)}{\epsilon+2} \Longrightarrow q$ has a unique $(1+\epsilon) \mathrm{NN}$

* Do not need to grow balls of radius smaller than $\frac{d(u, v)}{4}$ or larger than $\frac{2 d(u, v)}{\epsilon}$

Method 1:
for every pair of points $\{u, v\}$, construct enough balls to cover $\left[\frac{d(u, v)}{4}, \frac{2 d(u, v)}{\epsilon}\right]$ on u, v
Overall: $O\left(n^{2} \log _{\epsilon+1}\left(\frac{2 C}{\epsilon}-\frac{C}{4}\right)\right)=O\left(n^{2} \frac{\log \left(\frac{7 C}{\epsilon}\right)}{\log (\epsilon+1)}\right)=O\left(n^{2} \frac{1}{\epsilon} \log \left(\frac{1}{\epsilon}\right)\right)$ balls
Note: $\log (1+\epsilon)=\epsilon-\epsilon^{2} / 2+\epsilon^{3} / 3-\ldots .=O(\epsilon)$ in most cases

Bounding the number of balls

Interval Near-Neighbor data structure
given a range of distances $[a, b]$, and a set of points P, answers:

1. $d_{P}(q)>b$
2. $d_{P}(q)<a$ with a witness
3. otherwise, finds a point $p \in P$, s.t. $d_{P}(q) \leq d(p, q) \leq(1+\epsilon) d_{P}(q)$

Bounding the number of balls

Interval Near-Neighbor data structure
given a range of distances $[a, b]$, and a set of points P, answers:

1. $d_{P}(q)>b$
2. $d_{P}(q)<a$ with a witness
3. otherwise, finds a point $p \in P$, s.t. $d_{P}(q) \leq d(p, q) \leq(1+\epsilon) d_{P}(q)$

Can be realized by a set of balls of radius $a(1+\epsilon)^{i}$ for $i=0 \ldots M-1$, where $M=\left\lceil\log _{1+\epsilon}(b / a)\right\rceil$ and a ball of radius b around every point in P

Bounding the number of balls

Interval Near-Neighbor data structure
given a range of distances $[a, b]$, and a set of points P, answers:

1. $d_{P}(q)>b$
2. $d_{P}(q)<a$ with a witness
3. otherwise, finds a point $p \in P$, s.t. $d_{P}(q) \leq d(p, q) \leq(1+\epsilon) d_{P}(q)$

Can be realized by a set of balls of radius $a(1+\epsilon)^{i}$ for $i=0 \ldots M-1$, where $M=\left\lceil\log _{1+\epsilon}(b / a)\right\rceil$ and a ball of radius b around every point in P

Contains $O\left(n \frac{1}{\epsilon} \log (b / a)\right)$ balls. Takes at most 2 target ball queries if 1 or 2 hold, and

* $\quad O(\log (M))=O\left(\log \frac{\log (b / a)}{\epsilon}\right)$ otherwise

Bounding the number of balls

A data structure to answer $(1+\epsilon)$-ANN queries on general points
Build a tree, with an Interval Near Neighbor structure associated with each node

Bounding the number of balls

A data structure to answer $(1+\epsilon)$-ANN queries on general points
Build a tree, with an Interval Near Neighbor structure associated with each node

Bounding the number of balls

A data structure to answer $(1+\epsilon)$-ANN queries on general points
Build a tree, with an Interval Near Neighbor structure associated with each node

Recursively find $\min r$ such that there are $\lceil n / 2\rceil$ connected components

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)

Bounding the number of balls

A data structure to answer $(1+\epsilon)$-ANN queries on general points
Build a tree, with an Interval Near Neighbor structure associated with each node

Recursively find $\min r$ such that there are $\lceil n / 2\rceil$ connected components

For each component find a representative and recursively build the outer tree

Bounding the number of balls

A data structure to answer $(1+\epsilon)$-ANN queries on general points
Given a query point q :

1) q is outside R descend into the outer tree

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)

Bounding the number of balls

A data structure to answer $(1+\epsilon)$-ANN queries on general points
Given a query point q :
2) if q is inside r descend into the cluster

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)

Bounding the number of balls

A data structure to answer $(1+\epsilon)$-ANN queries on general points
Given a query point q :
3) otherwise I will return a

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)

Bounding the number of balls

A data structure to answer $(1+\epsilon)$-ANN queries on general points
Given a query point q :

Because of rounding up, after each step, continue on set containing $\leq n / 2+1$ points
\Longrightarrow number of steps $\leq \log _{3 / 2} n$

Bounding the number of balls

1) q is outside R descend into the outer tree
2) if q is inside r descend into the cluster
3) otherwise I will return a
$\left(1+\frac{\epsilon}{4}\right)$-NN

Note that:

- last step is always 3)
- no error is incurred in 2)
- diameter of a cluster $\leq 2 n r \Longrightarrow$ error in 1) is at most $\left(1+\frac{\epsilon}{\bar{c} \mu}\right)$

Thus, overall error is bounded by:

$\left(1+\frac{\epsilon}{4}\right)_{i=1}^{\log _{3 / 2} n}\left(1+\frac{\epsilon}{\bar{c} \mu}\right) \leq \exp \left(\frac{\epsilon}{4}\right) \prod_{i=1}^{\log _{3 / 2} n} \exp \left(\frac{\epsilon}{\bar{c} \mu}\right) \leq \exp \left(\frac{\epsilon}{4}+\sum_{i=1}^{\log _{3 / 2} n} \frac{\epsilon}{\bar{c} \mu}\right) \leq \exp (\epsilon / 2) \leq(1+\epsilon)$
if $\mu=\left\lceil\log _{3 / 2} n\right\rceil, \bar{c}=4$ and $\epsilon<1$

Bounding the number of balls

Overall Number of Balls:

Since

- the depth of the tree is at most $\log _{3 / 2} n$
- each node ν has $I\left(P_{\nu}, r, 2 \bar{c} \mu n r / \epsilon, \epsilon / 4\right)$ with $M=n \log n$ balls we get an immediate bound of $O(M \log M)=O(n \log (n) \log (n \log n))=O\left(n \log ^{2} n\right)$

Bounding the number of balls

Overall Number of Balls:

Since

- the depth of the tree is at most $\log _{3 / 2} n$
- each node ν has $I\left(P_{\nu}, r, 2 \bar{c} \mu n r / \epsilon, \epsilon / 4\right)$ with $M=n \log n$ balls we get an immediate bound of
$O(M \log M)=O(n \log (n) \log (n \log n))=O\left(n \log ^{2} n\right)$

However, can achieve $O(n \log n)$ by considering the connection with the Cluster Tree

S. Sen, N. Sharma, Y. Sabharwal: Nearest Neighbors Search using Point Location in Balls with applications to approximate Voronoi Decompositions Journal of Computer and System Sciences, Volume 72(6) , September 2006, Pages 955-977.

Bounding the number of balls

Overall Number of Balls:

Since

- the depth of the tree is at most $\log _{3 / 2} n$
- each node ν has $I\left(P_{\nu}, r, 2 \bar{c} \mu n r / \epsilon, \epsilon / 4\right)$ with $M=n \log n$ balls we get an immediate bound of
$O(M \log M)=O(n \log (n) \log (n \log n))=O\left(n \log ^{2} n\right)$

However, can achieve $O(n \log n)$ by considering the connection with the Cluster Tree

S. Sen, N. Sharma, Y. Sabharwal: Nearest Neighbors Search using Point Location in Balls with applications to approximate Voronoi Decompositions Journal of Computer and System Sciences, Volume 72(6), September 2006, Pages 955-977.

Bounding the number of balls

Overall Number of Balls:

Since

- the depth of the tree is at most $\log _{3 / 2} n$
- each node ν has $I\left(P_{\nu}, r, 2 \bar{c} \mu n r / \epsilon, \epsilon / 4\right)$ with $M=n \log n$ balls we get an immediate bound of
$O(M \log M)=O(n \log (n) \log (n \log n))=O\left(n \log ^{2} n\right)$

However, can achieve $O(n \log n)$ by considering the connection with the Cluster Tree

Bounding the number of balls

Overall Number of Balls:

Since

- the depth of the tree is at most $\log _{3 / 2} n$
- each node ν has $I\left(P_{\nu}, r, 2 \bar{c} \mu n r / \epsilon, \epsilon / 4\right)$ with $M=n \log n$ balls we get an immediate bound of
$O(M \log M)=O(n \log (n) \log (n \log n))=O\left(n \log ^{2} n\right)$

However, can achieve $O(n \log n)$ by considering the connection with the Cluster Tree

$r_{\text {loss }}(p)=$ radius of the ball around p, when p ceases to be a root

Bounding the number of balls

Apart from the outer trees, going down the $(1+\epsilon)$ ANN tree is equivalent to disconnecting edges of the MST tree

The subtrees of a node are disjoint in edges \Longrightarrow can charge at least 1 edge to each child. Namely: if n_{ν} is the number of children of ν

$$
\left|P_{\nu}\right|=O\left(n_{\nu}\right) \text { and } \sum_{\nu \in D} n_{\nu}=O(n)
$$

Thus, total number of balls:

$$
\begin{aligned}
\sum_{\nu \in D} O\left(\frac{n_{\nu}}{\epsilon} \log \frac{\mu n_{\nu}}{\epsilon}\right) & =O\left(\frac{n}{\epsilon} \log \frac{n \log n}{\epsilon}\right) \\
& =O\left(\frac{n}{\epsilon} \log \frac{n}{\epsilon}\right)
\end{aligned}
$$

Construction Time

Construction time will be dominated by constructing the tree D
Can be constructed directly from the cluster tree but this takes time $O\left(n^{2}\right)$ time

Construction Time

Construction time will be dominated by constructing the tree D
Can be constructed directly from the cluster tree but this takes time $O\left(n^{2}\right)$ time

In \mathbb{R}^{d} the cluster tree can be $(2 n-2)$-approximated by a HST in $O(n \log n)$ time:

1. construct a 2-spanner of P of size $O(n)$ in $O(n \log n)$ time
2. construct an HST that $(n-1)$ approximates the spanner in $O(n \log n)$ time

Construction Time

Construction time will be dominated by constructing the tree D
Can be constructed directly from the cluster tree but this takes time $O\left(n^{2}\right)$ time

In \mathbb{R}^{d} the cluster tree can be $(2 n-2)$-approximated by a HST in $O(n \log n)$ time:

1. construct a 2-spanner of P of size $O(n)$ in $O(n \log n)$ time
2. construct an HST that $(n-1)$ approximates the spanner in $O(n \log n)$ time

Only possible in \mathbb{R}^{d}, in general no HST can be computed in subquadratic time

Construction Time

Construction time will be dominated by constructing the tree D
Can be constructed directly from the cluster tree but this takes time $O\left(n^{2}\right)$ time

In \mathbb{R}^{d} the cluster tree can be $(2 n-2)$-approximated by a HST in $O(n \log n)$ time:

1. construct a 2-spanner of P of size $O(n)$ in $O(n \log n)$ time
2. construct an HST that $(n-1)$ approximates the spanner in $O(n \log n)$ time

Only possible in \mathbb{R}^{d}, in general no HST can be computed in subquadratic time

Construction Time

In \mathbb{R}^{d} the cluster tree can be $(2 n-2)$-approximated by a HST in $O(n \log n)$ time:

1. construct a 2-spanner of P of size $O(n)$ in $O(n \log n)$ time
2. construct an HST that $(n-1)$ approximates the spanner in $O(n \log n)$ time

To compensate for the approximation factor, grow more balls: Instead of $I(P, r, 2 \bar{c} \mu n r / \epsilon, \epsilon / 4)$ construct $I(P, r /(2 n), 2 \bar{c} \mu n r / \epsilon, \epsilon / 4)$

Construction Time

In \mathbb{R}^{d} the cluster tree can be $(2 n-2)$-approximated by a HST in $O(n \log n)$ time:

1. construct a 2-spanner of P of size $O(n)$ in $O(n \log n)$ time
2. construct an HST that $(n-1)$ approximates the spanner in $O(n \log n)$ time

To compensate for the approximation factor, grow more balls: Instead of $I(P, r, 2 \bar{c} \mu n r / \epsilon, \epsilon / 4)$ construct $I(P, r /(2 n), 2 \bar{c} \mu n r / \epsilon, \epsilon / 4)$

Instead of $O\left(\frac{n}{\epsilon} \log \frac{b}{a}\right)=O\left(\frac{n}{\epsilon} \log n\right)$ will have:
$O\left(\frac{n}{\epsilon} \log \frac{n r}{\frac{r}{n}}\right)=O\left(\frac{n}{\epsilon} \log n^{2}\right)=O\left(\frac{n}{\epsilon} \log n\right)$ balls at every node

Construction Time

In \mathbb{R}^{d} the cluster tree can be $(2 n-2)$-approximated by a HST in $O(n \log n)$ time:

1. construct a 2-spanner of P of size $O(n)$ in $O(n \log n)$ time
2. construct an HST that $(n-1)$ approximates the spanner in $O(n \log n)$ time

To compensate for the approximation factor, grow more balls: Instead of $I(P, r, 2 \bar{c} \mu n r / \epsilon, \epsilon / 4)$ construct $I(P, r /(2 n), 2 \bar{c} \mu n r / \epsilon, \epsilon / 4)$

Instead of $O\left(\frac{n}{\epsilon} \log \frac{b}{a}\right)=O\left(\frac{n}{\epsilon} \log n\right)$ will have:
$O\left(\frac{n}{\epsilon} \log \frac{n r}{\frac{r}{n}}\right)=O\left(\frac{n}{\epsilon} \log n^{2}\right)=O\left(\frac{n}{\epsilon} \log n\right)$ balls at every node

Same asymptotic space and time complexity

Answering ANN queries

Haven't made our life easier, since answering target ball queries is a difficult problem

Answering ANN queries

Haven't made our life easier, since answering target ball queries is a difficult problem
Don't need exact balls

\mathbf{b}_{\approx} is $(1+\epsilon)$ approximation of $\mathbf{b}=\mathbf{b}(p, r)$, if
$\mathbf{b} \subseteq \mathbf{b}_{\approx \subseteq \subseteq} \subseteq(p, r(1+\epsilon)$

Answering ANN queries

Haven't made our life easier, since answering target ball queries is a difficult problem
Don't need exact balls

$$
(1+\epsilon) \text { ball }
$$

$$
\begin{aligned}
& \mathbf{b}_{\approx} \text { is }(1+\epsilon) \text { approximation of } \mathbf{b}=\mathbf{b}(p, r) \text {, if } \\
& \mathbf{b} \subseteq \mathbf{b}_{\approx \subseteq \subseteq} \subseteq(p, r(1+\epsilon)
\end{aligned}
$$

Answering ANN queries

Haven't made our life easier, since answering target ball queries is a difficult problem
Don't need exact balls

$$
(1+\epsilon) \text { ball }
$$

$$
\begin{aligned}
& \mathbf{b}_{\approx} \text { is }(1+\epsilon) \text { approximation of } \mathbf{b}=\mathbf{b}(p, r) \text {, if } \\
& \mathbf{b} \subseteq \mathbf{b}_{\approx \subseteq \subseteq} \subseteq(p, r(1+\epsilon)
\end{aligned}
$$

Answering ANN queries

Haven't made our life easier, since answering target ball queries is a difficult problem
Don't need exact balls

$$
(1+\epsilon) \text { ball }
$$

$$
\begin{aligned}
& \mathbf{b}_{\approx \text { is }}(1+\epsilon) \text { approximation of } \mathbf{b}=\mathbf{b}(p, r) \text {, if } \\
& \mathbf{b} \subseteq \mathbf{b}_{\approx \subseteq} \subseteq \mathbf{b}(p, r(1+\epsilon)
\end{aligned}
$$

Consider Interval Near Neighbor structure on approximate balls:
If $I_{\approx}(P, r, R, \epsilon / 16)$ is a $(1+\epsilon / 16)$ approximation to $I(P, r, R, \epsilon / 16)$
If for point $q, I_{\approx}(P, r, R, \epsilon / 16)$ returns a ball $(p, \alpha), \alpha \in[r, R] \Longrightarrow p$ is $(1+\epsilon / 4)$-ANN to q :

$$
r(1+\epsilon / 16)^{i} \leq d_{P}(q) \leq d(p, q) \leq r(1+\epsilon / 16)^{i+1}(1+\epsilon / 16) \leq(1+\epsilon / 4) r
$$

Fast ANN in \mathbb{R}^{d}

The distance between 2 points in a d-dimensional cell of size α is at most $\sqrt{\sum_{i=1}^{d} \alpha^{2}}=\sqrt{d} \alpha$
For a given ball, $\mathbf{b}(p, r)$, construct a grid centered at p, with cell-size 2^{i}, s.t. $\sqrt{d} 2^{i} \leq \frac{(\epsilon r)}{16}$ Call, \mathbf{b}_{\approx} the set of cells that intersect $\mathbf{b}(p, r)$

\mathbf{b}_{\approx} is a $(1+\epsilon / 16)$ approximate ball, and contains $O\left(\frac{r^{d}}{(\epsilon r)^{d}}\right)=O\left(\frac{1}{\epsilon}^{d}\right)$ cells

Fast ANN in \mathbb{R}^{d}

The distance between 2 points in a d-dimensional cell of size α is at most $\sqrt{\sum_{i=1}^{d} \alpha^{2}}=\sqrt{d} \alpha$
For a given ball, $\mathbf{b}(p, r)$, construct a grid centered at p, with cell-size 2^{i}, s.t. $\sqrt{d} 2^{i} \leq \frac{(\epsilon r)}{16}$ Call, \mathbf{b}_{\approx} the set of cells that intersect $\mathbf{b}(p, r)$

\mathbf{b}_{\approx} is a $(1+\epsilon / 16)$ approximate ball, and contains $O\left(\frac{r^{d}}{\left.(\epsilon)^{d}\right)}\right)=O\left(\frac{1^{d}}{\epsilon}\right)$ cells

Fast ANN in \mathbb{R}^{d}

- Fix the origin, and construct grid-cells from there
- If there are 2 cells with the same size, pick the one, corresponding to the smallest ball
- Thus construct an approximate $I-(1+\epsilon / 16)$ data structure C

Fast ANN in \mathbb{R}^{d}

- Fix the origin, and construct grid-cells from there
- If there are 2 cells with the same size, pick the one, corresponding to the smallest ball
- Thus construct an approximate $I-(1+\epsilon / 16)$ data structure C

Finding the smallest ball containing $q \Longleftrightarrow$ finding the smallest grid-cell containing q

Fast ANN in \mathbb{R}^{d}

- Fix the origin, and construct grid-cells from there
- If there are 2 cells with the same size, pick the one, corresponding to the smallest ball
- Thus construct an approximate $I-(1+\epsilon / 16)$ data structure C

Finding the smallest ball containing $q \Longleftrightarrow$ finding the smallest grid-cell containing q
Encode all the cells of C into a compressed quad-tree, such that each cell appears as a node

- Construction takes $O(|C| \log |C|)$ time
- Finding the appropriate node in C takes $O(\log |C|)$ time
- If information about smallest ball is propagated down the tree, answering a query takes $O(\log |C|)$

Fast ANN in \mathbb{R}^{d}

- Fix the origin, and construct grid-cells from there
- If there are 2 cells with the same size, pick the one, corresponding to the smallest ball
- Thus construct an approximate $I-(1+\epsilon / 16)$ data structure C

Finding the smallest ball containing $q \Longleftrightarrow$ finding the smallest grid-cell containing q
Encode all the cells of C into a compressed quad-tree, such that each cell appears as a node

- Construction takes $O(|C| \log |C|)$ time
- Finding the appropriate node in C takes $O(\log |C|)$ time
- If information about smallest ball is propagated down the tree, answering a query takes $O(\log |C|)$

Recall that we had a data structure with $O\left(\frac{n}{\epsilon} \log \frac{n}{\epsilon}\right)$ balls. Each ball is approximated by $O\left(\frac{1}{\epsilon^{d}}\right)$ cells \Rightarrow The overall complexity of the quad-tree is $O(N)$, where $N=O\left(\frac{n}{\epsilon+1} \log \frac{n}{\epsilon}\right)$.
By noticing that there are many balls of similar sizes, we reduce the complexity to:

- Construction: $O\left(n \epsilon^{-d} \log ^{2}(n / \epsilon)\right.$ time
- Storage: $O\left(n \epsilon^{-d} \log (n / \epsilon)\right.$ space
- Point location query: $O(\log (n / \epsilon))$

