Approximate Voronoi Diagrams

Presentation by Maks Ovsjanikov

S. Har-Peled's notes, Chapters 6 and 7

Outline

- Preliminaries
- Problem Statement
- ANN using PLEB
- Bounds and Improvements
 - Near Linear Space
 - Linear Space
- ANN in \mathbb{R}^d using compressed quad-trees

(Previous Lecture)

 $\overset{\bullet}{u}$

• v

$$\begin{cases} d(q,u) \geq \frac{d(u,v)}{\epsilon} \\ d(q,v) \geq \frac{d(u,v)}{\epsilon} \end{cases} \Longrightarrow \boxed{\frac{d(q,v)}{d(q,u)} \leq 1+\epsilon}$$

$$\begin{cases} d(q,u) \geq \frac{d(u,v)}{\epsilon} \\ d(q,v) \geq \frac{d(u,v)}{\epsilon} \end{cases} \Longrightarrow \frac{d(q,v)}{d(q,u)} \leq 1+\epsilon \end{cases}$$

Holds in any metric space:

$$\begin{cases} d(q,u) \geq \frac{d(u,v)}{\epsilon} \\ d(q,v) \geq \frac{d(u,v)}{\epsilon} \end{cases} \Longrightarrow \boxed{\frac{d(q,v)}{d(q,u)} \leq 1 + \epsilon}$$

Holds in any metric space:

$$\begin{split} & d(q,u) = \alpha d(u,v) \\ & d(q,v) \leq d(q,u) + d(u,v) = (1+\frac{1}{\alpha})d(q,u) \\ & \Longrightarrow \frac{d(q,v)}{d(q,u)} \leq (1+\frac{1}{\alpha}) \leq (1+\epsilon) \text{ if } \alpha \geq \frac{1}{\epsilon} \end{split}$$

$$\begin{cases} d(q,u) \geq \frac{d(u,v)}{\epsilon} \\ d(q,v) \geq \frac{d(u,v)}{\epsilon} \end{cases} \Longrightarrow \frac{d(q,v)}{d(q,u)} \leq 1+\epsilon \end{cases}$$

Holds in any metric space:

$$\begin{split} & d(q,u) = \alpha d(u,v) \\ & d(q,v) \leq d(q,u) + d(u,v) = (1+\frac{1}{\alpha})d(q,u) \\ & \Longrightarrow \frac{d(q,v)}{d(q,u)} \leq (1+\frac{1}{\alpha}) \leq (1+\epsilon) \text{ if } \alpha \geq \frac{1}{\epsilon} \end{split}$$

Similarly:

$$\begin{split} & d(q,v) = \alpha d(u,v) \\ & \Longrightarrow \frac{d(q,u)}{d(q,v)} \leq (1+\frac{1}{\alpha}) \leq (1+\epsilon) \text{ if } \alpha \geq \frac{1}{\epsilon} \end{split}$$

$$\begin{cases} d(q,u) \geq \frac{d(u,v)}{\epsilon} \\ d(q,v) \geq \frac{d(u,v)}{\epsilon} \end{cases} \Longrightarrow \frac{d(q,v)}{d(q,u)} \leq 1+\epsilon \end{cases}$$

Moral:

Any of the far away points is a $(1+\epsilon)$ closest neighbor

Problem Statement:

For a given ϵ , find a $(1 + \epsilon)$ Aproximate Voronoi Diagram:

Partition of space into regions with one representative r_i per region, such that for any point q in region i, r_i is a $(1 + \epsilon)$ nearest neighbor of q

Problem Statement:

For a given ϵ , find a $(1 + \epsilon)$ Aproximate Voronoi Diagram:

Partition of space into regions with one representative r_i per region, such that for any point q in region i, r_i is a $(1 + \epsilon)$ nearest neighbor of q

Problem Statement:

For a given ϵ , find a $(1 + \epsilon)$ Aproximate Voronoi Diagram:

Partition of space into regions with one representative r_i per region, such that for any point q in region i, r_i is a $(1 + \epsilon)$ nearest neighbor of q

Constraints:

- bounded construction time and space (complexity)
- Cover all space
- sub-linear $(1+\epsilon)$ NN queries

.

.

٠

٠

Reduce $(1 + \epsilon)$ -ANN queries to target ball queries

٠

٠

٠

Reduce $(1 + \epsilon)$ -ANN queries to target ball queries

1) Construct balls of radius $(1 + \epsilon)^i$ around each point, for $i = 1..\infty$

٠

•

Reduce $(1 + \epsilon)$ -ANN queries to target ball queries

1) Construct balls of radius $(1 + \epsilon)^i$ around each point, for $i = 1..\infty$

ullet

Reduce $(1 + \epsilon)$ -ANN queries to target ball queries

Reduce $(1 + \epsilon)$ -ANN queries to target ball queries

Reduce $(1 + \epsilon)$ -ANN queries to target ball queries

Reduce $(1 + \epsilon)$ -ANN queries to target ball queries

Reduce $(1 + \epsilon)$ -ANN queries to target ball queries 1) Construct balls of radius $(1 \neq \epsilon)^i$ around each point, for $i = 1..\infty$ \odot (\bullet) 0 \bigcirc $\textcircled{\textcircled{0}}$

Reduce $(1 + \epsilon)$ -ANN queries to target ball queries

For any query point q, return the center p of the smallest ball that contains it: $d(q, n) > (1 + \epsilon)^{i-1}$, and $d(q, p) \le (1 + \epsilon)^i < (1 + \epsilon) \cdot d(q, n)$ \implies always get a $(1 + \epsilon)$ -Nearest Neighbor

Reduce $(1 + \epsilon)$ -ANN queries to target ball queries

Problems:

- Unbounded Number of Balls
- Not clear how to preform target ball queries efficiently
 - Partition the space into regions of influence

Intuition:

* For a given pair u and v, we only care if $\min d(q, \{u, v\}) \in [\frac{d(u,v)}{\epsilon+2}, \frac{d(u,v)}{\epsilon}]$

Intuition:

- * For a given pair u and v, we only care if $\min d(q, \{u, v\}) \in [\frac{d(u,v)}{\epsilon+2}, \frac{d(u,v)}{\epsilon}]$
 - if $\min d(q, \{u, v\}) > \frac{d(u, v)}{\epsilon} \Longrightarrow$ either u or v are $(1 + \epsilon)$ NN

Intuition:

- * For a given pair u and v, we only care if $\min d(q, \{u, v\}) \in [\frac{d(u,v)}{\epsilon+2}, \frac{d(u,v)}{\epsilon}]$
 - if $\min d(q, \{u, v\}) > \frac{d(u, v)}{\epsilon} \Longrightarrow$ either u or v are $(1 + \epsilon)$ NN
 - if $\min d(q, \{u, v\}) < \frac{d(u, v)}{\epsilon + 2} \Longrightarrow q$ has a unique $(1 + \epsilon)$ NN

* Do not need to grow balls of radius smaller than $\frac{d(u,v)}{4}$ or larger than $\frac{2d(u,v)}{\epsilon}$

Intuition:

- * For a given pair u and v, we only care if $\min d(q, \{u, v\}) \in [\frac{d(u,v)}{\epsilon+2}, \frac{d(u,v)}{\epsilon}]$
 - if $\min d(q, \{u, v\}) > \frac{d(u, v)}{\epsilon} \Longrightarrow$ either u or v are $(1 + \epsilon)$ NN
 - if $\min d(q, \{u, v\}) < \frac{d(u, v)}{\epsilon + 2} \Longrightarrow q$ has a unique $(1 + \epsilon)$ NN

* Do not need to grow balls of radius smaller than $\frac{d(u,v)}{4}$ or larger than $\frac{2d(u,v)}{\epsilon}$

Method 1:

for every pair of points $\{u, v\}$, construct enough balls to cover $[\frac{d(u,v)}{4}, \frac{2d(u,v)}{\epsilon}]$ on u, v

Intuition:

- * For a given pair u and v, we only care if $\min d(q, \{u, v\}) \in [\frac{d(u,v)}{\epsilon+2}, \frac{d(u,v)}{\epsilon}]$
 - if $\min d(q, \{u, v\}) > \frac{d(u, v)}{\epsilon} \Longrightarrow$ either u or v are $(1 + \epsilon) \text{ NN}$
 - if $\min d(q, \{u, v\}) < \frac{d(u, v)}{\epsilon + 2} \Longrightarrow q$ has a unique $(1 + \epsilon)$ NN

* Do not need to grow balls of radius smaller than $\frac{d(u,v)}{4}$ or larger than $\frac{2d(u,v)}{\epsilon}$

Method 1:

for every pair of points $\{u, v\}$, construct enough balls to cover $\left[\frac{d(u,v)}{4}, \frac{2d(u,v)}{\epsilon}\right]$ on u, vOverall: $O(n^2 \log_{\epsilon+1}(\frac{2C}{\epsilon} - \frac{C}{4})) = O(n^2 \frac{\log(\frac{7C}{\epsilon})}{\log(\epsilon+1)}) = O(n^2 \frac{1}{\epsilon} \log(\frac{1}{\epsilon}))$ balls Note: $\log(1+\epsilon) = \epsilon - \epsilon^2/2 + \epsilon^3/3 - \dots = O(\epsilon)$ in most cases

Interval Near-Neighbor data structure

given a range of distances [a, b], and a set of points P, answers:

1. $d_P(q) > b$

2. $d_P(q) < a$ with a witness

3. otherwise, finds a point $p \in P$, s.t. $d_P(q) \leq d(p,q) \leq (1+\epsilon)d_P(q)$

Interval Near-Neighbor data structure

given a range of distances [a, b], and a set of points P, answers:

1. $d_P(q) > b$

2. $d_P(q) < a$ with a witness

3. otherwise, finds a point $p \in P$, s.t. $d_P(q) \le d(p,q) \le (1+\epsilon)d_P(q)$

Can be realized by a set of balls of radius $a(1+\epsilon)^i$ for i = 0...M - 1, where $M = \lceil \log_{1+\epsilon}(b/a) \rceil$ and a ball of radius *b* around every point in *P*

Interval Near-Neighbor data structure

given a range of distances [a, b], and a set of points P, answers:

1. $d_P(q) > b$

2. $d_P(q) < a$ with a witness

3. otherwise, finds a point $p \in P$, s.t. $d_P(q) \le d(p,q) \le (1+\epsilon)d_P(q)$

Can be realized by a set of balls of radius $a(1 + \epsilon)^i$ for i = 0...M - 1, where $M = \lceil \log_{1+\epsilon}(b/a) \rceil$ and a ball of radius *b* around every point in *P*

Contains $O(n_{\epsilon}^{1} \log(b/a))$ balls. Takes at most 2 target ball queries if 1 or 2 hold, and * $O(\log(M)) = O(\log \frac{\log(b/a)}{\epsilon})$ otherwise

•

A data structure to answer $(1 + \epsilon)$ -ANN queries on general points

•

Build a tree, with an Interval Near Neighbor structure associated with each node

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)

A data structure to answer $(1 + \epsilon)$ -ANN queries on general points

Build a tree, with an Interval Near Neighbor structure associated with each node

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)

A data structure to answer $(1 + \epsilon)$ -ANN queries on general points

Build a tree, with an Interval Near Neighbor structure associated with each node

A data structure to answer $(1 + \epsilon)$ -ANN queries on general points

Build a tree, with an Interval Near Neighbor structure associated with each node

A data structure to answer $(1 + \epsilon)$ -ANN queries on general points

Given a query point *q*:

A data structure to answer $(1 + \epsilon)$ -ANN queries on general points

Given a query point q:

A data structure to answer $(1 + \epsilon)$ -ANN queries on general points

Given a query point *q*:

A data structure to answer $(1 + \epsilon)$ -ANN queries on general points

Given a query point *q*:

Because of rounding up, after each step, continue on set containing $\leq n/2 + 1$ points \implies number of steps $\leq \log_{3/2} n$

q is outside *R* descend into the outer tree
 if *q* is inside *r* descend into the cluster

3) otherwise *I* will return a $(1 + \frac{\epsilon}{4})$ -NN

Note that:

- last step is always 3)
- no error is incurred in 2)
- diameter of a cluster $\leq 2nr \Longrightarrow$ error in 1) is at most $(1 + \frac{\epsilon}{\bar{c}\mu})$

Thus, overall error is bounded by:

$$(1+\frac{\epsilon}{4})\prod_{i=1}^{\log_{3/2}n}(1+\frac{\epsilon}{\bar{c}\mu}) \le \exp(\frac{\epsilon}{4})\prod_{i=1}^{\log_{3/2}n}\exp(\frac{\epsilon}{\bar{c}\mu}) \le \exp\left(\frac{\epsilon}{4} + \sum_{i=1}^{\log_{3/2}n}\frac{\epsilon}{\bar{c}\mu}\right) \le \exp\left(\epsilon/2\right) \le (1+\epsilon)$$
if $\mu = \lceil \log_{3/2}n \rceil$, $\bar{c} = 4$ and $\epsilon < 1$

Overall Number of Balls:

Since

- \bullet the depth of the tree is at most $\log_{3/2} n$
- each node ν has $I(P_{\nu}, r, 2\bar{c}\mu nr/\epsilon, \epsilon/4)$ with $M = n \log n$ balls

we get an immediate bound of $O(M \log M) = O(n \log(n) \log(n \log n)) = O(n \log^2 n)$

 $I(P, r, 2\bar{c}\mu nr/\epsilon, \epsilon/4), r = 10, n = 6$

 $I(P, r, 2\bar{c}\mu nr/\epsilon, \epsilon/4), r = 12, n = 3$

 $I(P, r, 2\bar{\epsilon}\mu nr/\epsilon, \epsilon/4), r = 7, n = 3$

Overall Number of Balls:

Since

- ullet the depth of the tree is at most $\log_{3/2} n$
- each node ν has $I(P_{\nu}, r, 2\bar{c}\mu nr/\epsilon, \epsilon/4)$ with $M = n \log n$ balls

we get an immediate bound of $O(M \log M) = O(n \log(n) \log(n \log n)) = O(n \log^2 n)$

S. Sen, N. Sharma, Y. Sabharwal: *Nearest Neighbors Search using Point Location in Balls with applications to approximate Voronoi Decompositions* Journal of Computer and System Sciences, Volume 72(6), September 2006, Pages 955-977.

 $I(P, r, 2\bar{c}\mu nr/\epsilon, \epsilon/4), r = 10, n = 6$

 $I(P, r, 2\bar{\epsilon}\mu nr/\epsilon, \epsilon/4), r = 7, n = 3$

Overall Number of Balls:

Since

- ullet the depth of the tree is at most $\log_{3/2} n$
- each node ν has $I(P_{\nu}, r, 2\bar{c}\mu nr/\epsilon, \epsilon/4)$ with $M = n \log n$ balls

we get an immediate bound of $O(M \log M) = O(n \log(n) \log(n \log n)) = O(n \log^2 n)$

S. Sen, N. Sharma, Y. Sabharwal: *Nearest Neighbors Search using Point Location in Balls with applications to approximate Voronoi Decompositions* Journal of Computer and System Sciences, Volume 72(6), September 2006, Pages 955-977.

Overall Number of Balls:

Since

- ullet the depth of the tree is at most $\log_{3/2} n$
- each node ν has $I(P_{\nu}, r, 2\bar{c}\mu nr/\epsilon, \epsilon/4)$ with $M = n \log n$ balls

we get an immediate bound of $O(M \log M) = O(n \log(n) \log(n \log n)) = O(n \log^2 n)$

However, can achieve $O(n\log n)$ by considering the connection with the Cluster Tree

 $I(P, r, 2\bar{c}\mu nr/\epsilon, \epsilon/4), r = 10, n = 6$

 $I(P, r, 2\bar{c}\mu nr/\epsilon, \epsilon/4), r = 12, n = 3$

 $I(P, r, 2\bar{\epsilon}\mu nr/\epsilon, \epsilon/4), r = 7, n = 3$

Overall Number of Balls:

Since

- ullet the depth of the tree is at most $\log_{3/2} n$
- each node ν has $I(P_{\nu}, r, 2\bar{c}\mu nr/\epsilon, \epsilon/4)$ with $M = n \log n$ balls

we get an immediate bound of $O(M \log M) = O(n \log(n) \log(n \log n)) = O(n \log^2 n)$

However, can achieve $O(n \log n)$ by considering the connection with the *Cluster Tree*

5

3

2

Apart from the outer trees, going down the $(1 + \epsilon)$ ANN tree is equivalent to disconnecting edges of the MST tree

The subtrees of a node are disjoint in edges \implies can charge at least 1 edge to each child. Namely: if n_{ν} is the number of children of ν $|P_{\nu}| = O(n_{\nu})$ and $\sum_{\nu \in D} n_{\nu} = O(n)$ Thus, total number of balls:

Thus, total number of balls:

$$\sum_{\nu \in D} O\left(\frac{n_{\nu}}{\epsilon} \log \frac{\mu n_{\nu}}{\epsilon}\right) = O\left(\frac{n}{\epsilon} \log \frac{n \log n}{\epsilon}\right)$$
$$= O\left(\frac{n}{\epsilon} \log \frac{n}{\epsilon}\right)$$

Construction time will be dominated by constructing the tree D

Can be constructed directly from the cluster tree but this takes time $O(n^2)$ time

Construction time will be dominated by constructing the tree *D* Can be constructed directly from the cluster tree but this takes time $O(n^2)$ time

In \mathbb{R}^d the cluster tree can be (2n-2)-approximated by a HST in $O(n \log n)$ time:

- 1. construct a 2-spanner of P of size O(n) in $O(n \log n)$ time
- 2. construct an HST that (n-1) approximates the spanner in $O(n \log n)$ time

Construction time will be dominated by constructing the tree *D* Can be constructed directly from the cluster tree but this takes time $O(n^2)$ time

In \mathbb{R}^d the cluster tree can be (2n-2)-approximated by a HST in $O(n \log n)$ time:

- 1. construct a 2-spanner of P of size O(n) in $O(n \log n)$ time
- 2. construct an HST that (n-1) approximates the spanner in $O(n \log n)$ time

Only possible in \mathbb{R}^d , in general **no** HST can be computed in subquadratic time

Construction time will be dominated by constructing the tree *D* Can be constructed directly from the cluster tree but this takes time $O(n^2)$ time

In \mathbb{R}^d the cluster tree can be (2n-2)-approximated by a HST in $O(n \log n)$ time:

- 1. construct a 2-spanner of *P* of size O(n) in $O(n \log n)$ time
- 2. construct an HST that (n-1) approximates the spanner in $O(n \log n)$ time

Only possible in \mathbb{R}^d , in general **no** HST can be computed in subquadratic time

In \mathbb{R}^d the cluster tree can be (2n-2)-approximated by a HST in $O(n \log n)$ time:

- 1. construct a 2-spanner of P of size O(n) in $O(n\log n)$ time
- 2. construct an HST that (n-1) approximates the spanner in $O(n \log n)$ time

To compensate for the approximation factor, grow more balls: Instead of $I(P, r, 2\bar{c}\mu nr/\epsilon, \epsilon/4)$ construct $I(P, r/(2n), 2\bar{c}\mu nr/\epsilon, \epsilon/4)$

In \mathbb{R}^d the cluster tree can be (2n-2)-approximated by a HST in $O(n \log n)$ time:

- 1. construct a 2-spanner of P of size O(n) in $O(n\log n)$ time
- 2. construct an HST that (n-1) approximates the spanner in $O(n \log n)$ time

To compensate for the approximation factor, grow more balls: Instead of $I(P, r, 2\bar{c}\mu nr/\epsilon, \epsilon/4)$ construct $I(P, r/(2n), 2\bar{c}\mu nr/\epsilon, \epsilon/4)$

Instead of $O(\frac{n}{\epsilon} \log \frac{b}{a}) = O(\frac{n}{\epsilon} \log n)$ will have: $O(\frac{n}{\epsilon} \log \frac{nr}{\frac{r}{n}}) = O(\frac{n}{\epsilon} \log n^2) = O(\frac{n}{\epsilon} \log n)$ balls at every node

In \mathbb{R}^d the cluster tree can be (2n-2)-approximated by a HST in $O(n \log n)$ time:

- 1. construct a 2-spanner of P of size O(n) in $O(n\log n)$ time
- 2. construct an HST that (n-1) approximates the spanner in $O(n \log n)$ time

To compensate for the approximation factor, grow more balls: Instead of $I(P, r, 2\bar{c}\mu nr/\epsilon, \epsilon/4)$ construct $I(P, r/(2n), 2\bar{c}\mu nr/\epsilon, \epsilon/4)$

Instead of $O(\frac{n}{\epsilon} \log \frac{b}{a}) = O(\frac{n}{\epsilon} \log n)$ will have: $O(\frac{n}{\epsilon} \log \frac{nr}{\frac{r}{n}}) = O(\frac{n}{\epsilon} \log n^2) = O(\frac{n}{\epsilon} \log n)$ balls at every node

Same asymptotic space and time complexity

Haven't made our life easier, since answering target ball queries is a difficult problem

Haven't made our life easier, since answering target ball queries is a difficult problem Don't need exact balls

 $(1+\epsilon)$ ball

 \mathbf{b}_{\approx} is $(1 + \epsilon)$ approximation of $\mathbf{b} = \mathbf{b}(p, r)$, if $\mathbf{b} \subseteq \mathbf{b}_{\approx} \subseteq \mathbf{b}(p, r(1 + \epsilon))$

Haven't made our life easier, since answering target ball queries is a difficult problem Don't need exact balls

 $(1+\epsilon)$ ball

 \mathbf{b}_{\approx} is $(1 + \epsilon)$ approximation of $\mathbf{b} = \mathbf{b}(p, r)$, if $\mathbf{b} \subseteq \mathbf{b}_{\approx} \subseteq \mathbf{b}(p, r(1 + \epsilon))$

Haven't made our life easier, since answering target ball queries is a difficult problem Don't need exact balls

 $(1+\epsilon)$ ball

 \mathbf{b}_{\approx} is $(1 + \epsilon)$ approximation of $\mathbf{b} = \mathbf{b}(p, r)$, if $\mathbf{b} \subseteq \mathbf{b}_{\approx} \subseteq \mathbf{b}(p, r(1 + \epsilon))$

Haven't made our life easier, since answering target ball queries is a difficult problem Don't need exact balls

 \mathbf{b}_{\approx} is $(1 + \epsilon)$ approximation of $\mathbf{b} = \mathbf{b}(p, r)$, if $\mathbf{b} \subseteq \mathbf{b}_{\approx} \subseteq \mathbf{b}(p, r(1 + \epsilon))$

Consider Interval Near Neighbor structure on approximate balls:

If $I_{\approx}(P, r, R, \epsilon/16)$ is a $(1 + \epsilon/16)$ approximation to $I(P, r, R, \epsilon/16)$

If for point q, $I_{\approx}(P, r, R, \epsilon/16)$ returns a ball $(p, \alpha), \alpha \in [r, R] \Longrightarrow p$ is $(1 + \epsilon/4)$ -ANN to q:

 $r(1 + \epsilon/16)^{i} \le d_P(q) \le d(p, q) \le r(1 + \epsilon/16)^{i+1}(1 + \epsilon/16) \le (1 + \epsilon/4)r$

The distance between 2 points in a *d*-dimensional cell of size α is at most $\sqrt{\sum_{i=1}^{d} \alpha^2} = \sqrt{d\alpha}$

For a given ball, $\mathbf{b}(p, r)$, construct a grid centered at p, with cell-size 2^i , s.t. $\sqrt{d}2^i \leq \frac{(\epsilon r)}{16}$ Call, \mathbf{b}_{\approx} the set of cells that intersect $\mathbf{b}(p, r)$

 \mathbf{b}_{\approx} is a $(1 + \epsilon/16)$ approximate ball, and contains $O\left(\frac{r^d}{(\epsilon r)^d}\right) = O\left(\frac{1}{\epsilon}^d\right)$ cells

The distance between 2 points in a *d*-dimensional cell of size α is at most $\sqrt{\sum_{i=1}^{d} \alpha^2} = \sqrt{d\alpha}$

For a given ball, $\mathbf{b}(p, r)$, construct a grid centered at p, with cell-size 2^i , s.t. $\sqrt{d}2^i \leq \frac{(\epsilon r)}{16}$ Call, \mathbf{b}_{\approx} the set of cells that intersect $\mathbf{b}(p, r)$

 \mathbf{b}_{\approx} is a $(1 + \epsilon/16)$ approximate ball, and contains $O\left(\frac{r^d}{(\epsilon r)^d}\right) = O\left(\frac{1}{\epsilon}^d\right)$ cells

- Fix the origin, and construct grid-cells from there
- If there are 2 cells with the same size, pick the one, corresponding to the smallest ball
- Thus construct an approximate $I\text{-}(1+\epsilon/16)$ data structure C

- Fix the origin, and construct grid-cells from there
- If there are 2 cells with the same size, pick the one, corresponding to the smallest ball
- \bullet Thus construct an approximate $I\mathchar`-(1+\epsilon/16)$ data structure C

Finding the smallest ball containing $q \iff$ finding the smallest grid-cell containing q

- Fix the origin, and construct grid-cells from there
- If there are 2 cells with the same size, pick the one, corresponding to the smallest ball
- \bullet Thus construct an approximate $I\text{-}(1+\epsilon/16)$ data structure C

Finding the smallest ball containing $q \iff$ finding the smallest grid-cell containing q

Encode all the cells of C into a compressed quad-tree, such that each cell appears as a node

- \bullet Construction takes $O(|C|\log|C|)$ time
- Finding the appropriate node in C takes $O(\log |C|)$ time
- If information about smallest ball is propagated down the tree, answering a query takes $O(\log |C|)$

- Fix the origin, and construct grid-cells from there
- If there are 2 cells with the same size, pick the one, corresponding to the smallest ball
- Thus construct an approximate I- $(1 + \epsilon/16)$ data structure C

Finding the smallest ball containing $q \iff$ finding the smallest grid-cell containing q

Encode all the cells of C into a compressed quad-tree, such that each cell appears as a node

- Construction takes $O(|C| \log |C|)$ time
- \bullet Finding the appropriate node in C takes $O(\log |C|)$ time
- If information about smallest ball is propagated down the tree, answering a query takes $O(\log |C|)$

Recall that we had a data structure with $O(\frac{n}{\epsilon} \log \frac{n}{\epsilon})$ balls. Each ball is approximated by $O(\frac{1}{\epsilon^d})$ cells \Rightarrow The overall complexity of the quad-tree is O(N), where $N = O(\frac{n}{\epsilon^{d+1}} \log \frac{n}{\epsilon})$. By noticing that there are many balls of similar sizes, we reduce the complexity to:

- Construction: $O(n\epsilon^{-d}\log^2(n/\epsilon)$ time
- \bullet Storage: $O(n\epsilon^{-d}\log(n/\epsilon)$ space
- Point location query: $O(\log(n/\epsilon))$