Approximate Nearest Neighbors via Point Location Among Balls

Method of Har-Peled

(improved version from notes)

- Reduce $(1+\epsilon)$ -ANN query on n points to point location in equal balls (PLEB) queries
 - Preprocessing space O

$$O(\frac{n}{\varepsilon}\log\frac{t\,n}{\varepsilon})$$

- Preprocessing time $O(\log \frac{n}{\epsilon})$
- Query time $O(\log \frac{n}{s})$

Notation

- $d_{P}(q)$ Distance from point q to nearest neighbor point in set P
- $U_{halls}(P, r)$ Union of balls of radius r about points in P
- $\begin{array}{ll} NNbr(P,r) & \text{``Nearest Neighbor'' data structure} \\ \text{Returns TRUE and a witness point if query point q is in } U_{\textit{balls}}(P,r) \\ \text{and FALSE otherwise} \end{array}$
- $\hat{I}(P, r, R, \varepsilon) \quad \text{``Interval Nearest Neighbor'' data structure for points in set P,} \\ \text{over range [r, R], with approximation error } \varepsilon \\ \text{Indicates if } d_p(q) \text{ is outside range [r, R] or returns the ball centered} \\ \text{at the point } (1+\varepsilon)\text{-ANN to q}$

Reduction from ANN to PLEBs

- Build a tree D
 - Each node v has an interval NNbr data structure \hat{I}_{v}
 - Use \widehat{I}_{v} to decide how to traverse the tree when search reaches node v

• Given set P of n points in metric space M

• Find the ball radius r such that $U_{balls}(P,r)$ has [n/2] connected components

r = 0 Connected Components: 8

• Find the value of r such that $U_{balls}(P,r)$ has $\lceil n/2 \rceil$ connected components

r = 0.25 Connected Components: 8

• Find the value of r such that $U_{balls}(P,r)$ has $\lceil n/2 \rceil$ connected components

r = 0.5 Connected Components: 6

• Find the value of r such that $U_{balls}(P,r)$ has $\lceil n/2 \rceil$ connected components

r = 0.65 Connected Components: 4

• Recursively build a sub tree for each connected component and add as child of root node v

Outer Child

• Choose one representative from each connected component to be in set Q

Outer Child

- Recursively build a tree over points in Q and hang it on on node v
- This child of v is the b uter child"

• Build the interval NNbr data structure for node v

Let $R = 2\overline{c} \mu n r / \varepsilon$

Where $\mu \& \overline{c}$ are parameters that will be defined later...

• Given query point q, use \hat{I}_{v} to decide between three cases

- Case 1:
 - \hat{I}_{v} returns $(1+\epsilon)ANN$ and search terminates

- **Case 2:** $d_{p}(q) \leq r_{v}$
 - Recurse into child corresponding to connected component containing q

- Case 3: $d_P(q) > R_v$
 - Recurse into outer child

algorithm terminates

- If at step i we consider a set of size n_i then at step i+1 we consider a set of size $n_{i+1} \le n_i/2 + 1$
- Thus search halts after number of steps $steps \le \log_{3/2}(n)$

Algorithm is correct

- Same result as target ball query on all constructed balls
- Approximation error
 - From node v to a connected component child
 - No approximation error
 - From node v to the "outer child": $1+\epsilon/(\overline{c}\mu)$
 - From the interval NNbr search: $1+\varepsilon/4$

Approximation error

$$t \leq (1 + \frac{\varepsilon}{4}) \prod_{i=1}^{\log_{3/2}(n)} (1 + \frac{\varepsilon}{\overline{c} \mu})$$

$$\leq \exp(\frac{\varepsilon}{4}) \prod_{i=1}^{\log_{3/2}(n)} (\frac{c\varepsilon}{\overline{c} \mu}) \qquad \text{set } \mu = \lceil \log_{3/2} n \rceil \text{ and } \overline{c} \text{ large enough so that...}$$

$$\leq \exp(\frac{\varepsilon}{4} + \sum_{i=1}^{\log_{3/2}(n)} \frac{\varepsilon}{\overline{c} \mu})$$

$$\leq \exp(\frac{\varepsilon}{2})$$

$$\leq 1 + \varepsilon$$

Thus result of a query on d is $(1+\epsilon)$ -ANN to query point q

Query time

- As search proceeds down tree D
 - at most two NNbr queries are performed at a node and we traverse O(log n) nodes
 - at last node the \hat{I}_{ν} data structure performs $O(\log(\log(\frac{n}{\epsilon})/\epsilon)) = O(\log\frac{n}{\epsilon})$ NNbr queries
 - Query time is $O(\log \frac{n}{\epsilon})$

Efficient Construction

- Construction space/time is currently $O(n^2)$
- Use HST of P to t-approximate metric M
- Use correspondence between subtrees in HST and connected components to find the ball radius r that gives [n/2] connected components
- Results in construction space/time $O(\frac{n}{\epsilon}\log\frac{t n}{\epsilon})$

• What have we done?

- Reduced an ANN query to multiple NNbr queries
- But NNbr queries seem hard to solve efficiently
 - Solution: Use deformed "approximate balls"
 - Same bounds hold for the extension to "approximate balls"

Questions