Approximate Nearest Neighbors via Point Location Among Balls

Method of Har-Peled

(improved version from notes)

- Reduce $(1+\varepsilon)$-ANN query on n points to point location in equal balls (PLEB) queries
- Preprocessing space

$$
O\left(\frac{n}{\varepsilon} \log \frac{t n}{\varepsilon}\right)
$$

- Preprocessing time

$$
O\left(\log \frac{n}{\varepsilon}\right)
$$

- Query time

$$
O\left(\log \frac{n}{\varepsilon}\right)
$$

Notation

$d_{p}(q)$
Distance from point q to nearest neighbor point in set P
$U_{\text {balls }}(P, r) \quad$ Union of balls of radius r about points in P
$\operatorname{NNbr}(P, r) \quad$ "Nearest Neighbor" data structure Returns TRUE and a witness point if query point q is in $U_{\text {balls }}(P, r)$ and FALSE otherwise
$\hat{I}(P, r, R, \varepsilon) \quad$ "Interval Nearest Neighbor" data structure for points in set P, over range $[r, R]$, with approximation error ε Indicates if $d_{p}(q)$ is outside range $[\mathrm{r}, \mathrm{R}$] or returns the ball centered at the point $(1+\varepsilon)$-ANN to q

Reduction from ANN to PLEBs

- Build a tree D
- Each node v has an interval NNbr data structure \hat{I}_{v}
- Use \hat{I}_{v} to decide how to traverse the tree when search reaches node v

Constructing D

- Given set P of n points in metric space M

Constructing D

- Find the ball radius r such that $U_{\text {buas }}(P, r)$ has [n/2] connected components

$$
r=0 \quad \text { Connected Components: } 8
$$

Constructing D

- Find the value of r such that $U_{\text {bals }}(P, r)$ has $[n / 2\rceil$ connected components

$r=0.25$ Connected Components: 8

Constructing D

- Find the value of r such that $U_{\text {bals }}(P, r)$ has $[n / 2\rceil$ connected components

$$
r=0.5 \quad \text { Connected Components: } 6
$$

Constructing D

- Find the value of r such that $U_{\text {bals }}(P, r)$ has $[n / 2 \mid$ connected components

$$
r=0.65 \text { Connected Components: } 4
$$

Constructing D

- Recursively build a sub tree for each connected component and add as child of root node v

Outer Child

- Choose one representative from each connected component to be in set Q

Outer Child

- Recursively build a tree over points in Q and hang it on on node v
- This child of v is the " uter child"

Constructing D

- Build the interval NNbr data structure for node v

Let $R=2 \bar{c} \mu n r / \varepsilon$
Where $\mu \& \bar{c}$ are parameters that will be defined later...

Answering a query using D

- Given query point q , use \hat{I}_{v} to decide between three cases

Answering a query using D

Case 1:

- \hat{I}_{v} returns ($1+\varepsilon$)ANN and search terminates

Answering a query using D

Case 2: $d_{p}(q) \leq r_{v}$

- Recurse into child corresponding to connected component containing q

Answering a query using D

Case 3: $d_{p}(q)>R_{v}$

- Recurse into outer child

米

algorithm terminates

- If at step i we consider a set of size n_{i} then at step $\mathrm{i}+1$ we consider a set of size $n_{i+1} \leq n_{i} / 2+1$
- Thus search halts after number of steps

$$
\text { steps } \leq \log _{3 / 2}(n)
$$

Algorithm is correct

- Same result as target ball query on all constructed balls
- Approximation error
- From node v to a connected component child
- No approximation error
- From node V to the "outer child": $\quad 1+\varepsilon /(\bar{c} \mu)$
- From the interval NNbr search: $\quad 1+\varepsilon / 4$

Approximation error

$$
\begin{aligned}
t & \leq\left(1+\frac{\varepsilon}{4}\right) \prod_{i=1}^{\log _{3 / 2}(n)}\left(1+\frac{\varepsilon}{\bar{c} \mu}\right) \\
& \leq \exp \left(\frac{\varepsilon}{4}\right) \prod_{i=1}^{\log _{3 / 2}(n)}\left(\frac{c \varepsilon}{\bar{c} \mu}\right) \\
& \leq \exp \left(\frac{\varepsilon}{4}+\sum_{i=1}^{\log _{3 / 2}(n)} \frac{\varepsilon}{\bar{c} \mu}\right) \\
& \leq \exp \left(\frac{\varepsilon}{2}\right) \\
& \leq 1+\varepsilon
\end{aligned}
$$

Thus result of a query on d is $(1+\varepsilon)$-ANN to query point q

Query time

- As search proceeds down tree D
- at most two NNbr queries are performed at a node and we traverse $\mathrm{O}(\log n)$ nodes
- at last node the \hat{I}_{v} data structure performs $O\left(\log \left(\log \left(\frac{n}{\varepsilon}\right) / \varepsilon\right)\right)=O\left(\log \frac{n}{\varepsilon}\right) \quad$ NNbr queries
- Query time is $O\left(\log \frac{n}{\varepsilon}\right)$

Efficient Construction

- Construction space/time is currently $O\left(n^{2}\right)$
- Use HST of P to t-approximate metric M
- Use correspondence between subtrees in HST and connected components to find the ball radius r that gives $[n / 2\rceil$ connected components
- Results in construction space/time $O\left(\frac{n}{\varepsilon} \log \frac{t n}{\varepsilon}\right)$

- What have we done?

- Reduced an ANN query to multiple NNbr queries
- But NNbr queries seem hard to solve efficiently
- Solution: Use deformed "approximate balls"
- Same bounds hold for the extension to "approximate balls"

Questions

