Approximate Nearest Neighbors

Sariel Har Peled: Notes

Arya, Mount, Netenyahu, Silverman, Wu An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions

Approximate Nearest Neighbors

- What we want
- O(n log n) preprocess
- $\mathrm{O}(\mathrm{n})$ space
- O(log n) time query
- Possible in 1 and 2D
- Not really in 3D

Lets Approximate

- Return a point within distance $(1+\varepsilon) r$
- Can achieve the bounds several ways
- First
- compute rough approximation
- use it to set scale for final solution
- Second

- build a tree which solves the problem

Ring Separator Tree

Ring Separator Tree

- Answer ($1+4 / \mathrm{t}$)-ANN queries in O (height)
- Check if rep is closest, if so update closest
- Recurse on correct side of halfway ball

Error Bounds

- Closest: rt/2
- Returned: $2 \mathrm{r}+\mathrm{rt} / 2$

Construction

- Find circle contair n/c points

Construction

- Grid of side $L=\frac{r}{16 \sqrt{d}}$
- Number of points

$$
\frac{(4 L)^{d} n}{c}
$$

- Set $c=2(4 \mathrm{~L})^{d}$
- Ring has $\mathrm{n} / 2$ points

Construction

- Put ring in largest gap
- Size 2r/n

The Upshot

- Can preprocess in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time
- Query time is $\mathrm{O}(\log n)$
- $(4 n+1)$ approximation!
- Amazingly, this is good enough

Bounded Distance

- Normal quadtree gives $O\left(\frac{1}{\epsilon^{d}}+\log \delta\right)$
- Why?
- Approximation and reliminates small cells $(\varepsilon / 4) \mathrm{r}$
- Bound number of cells visited by last level
- Do some algebra to get bound...

A Complete Algorithm

- Build
- a compressed quadtree/finger tree
- a ring separator tree
- Compute approximate value, R
- Start from
- nodes of size approximately R
- and closer than R to query point

Arya and Mount

- $\mathrm{O}(\mathrm{dn} \log \mathrm{n})$ time
- O(dn) space
- $\mathrm{O}\left(\mathrm{C}_{\mathrm{d}, \varepsilon} \log \mathrm{n}\right)$ time ANN
- where $\mathrm{c}_{\mathrm{d}, \varepsilon} \leq \mathrm{d}(1+6 \mathrm{~d} / \varepsilon)^{\mathrm{d}}$
- Can find k NN
- Any Minkowski metric
- Preprocessing does not depend on ε or metric

Overview

- Build BBD tree
- Locate leaf containing q
- Try nearby nodes in order of distance
- Stop when no node is close enough

Tree types

- KD reduce number of points each level
- Quadtree reduces size
- BBD does both
- either KD-like split
- or shrink

Properties

- Bounded aspect ratio
- bound number of cells intersecting a volume
- Stickiness
- control number of nearby cells
- Inner boxes not cut by children

- so everything packs

An Important Trick

- Maintain 3 sorted lists of points (x, y, z)
- Have links between lists
- Allows
- removal of first k points in time k
- O(d) time determination of min bounding box

Computing Shrinks

- Compute a set of splits
- until have n / c in a rectangle
- trivially sticky
- Problems
- doesn't respect nesting
- may have to split many times

Computing Shrinks II

- Alway cut min enclosing box
- constant time
- always remove points
- make sure it respects stickyness

- Include parent inner rectangle
- go until it is cut out

Computing Shrinks 2

- More flexible
- Shrink roughly as before

Tweaks

- Collapse trivial splits/shrinks
- now no sequence of trivial splits
- Assign one point to each leaf
- even to empty shrink cells

Properties

- Bounded occupancy
- Point near each leaf
- Can do point location in $\mathrm{O}(\mathrm{d} \log \mathrm{n})$ time
- Packing constraint
- Distance enumeration

Proof of Packing

- Ball of radius r
- intersects $(1+6 r / s)^{d}$ leaves of size s
- Trivial packing argument except for shrinks
- use stickiness to replace outer boxes

ANN using BBD

- Number of leaves visited is $\mathrm{O}\left((1+6 \mathrm{~d} / \varepsilon)^{\mathrm{d}}\right)$
- r is distance to last non-terminating leaf
- $r(1+\varepsilon) \leq \operatorname{dist}(q, p)$
- Can't have visited cell smaller than re/d
- this cell must have a point closer than $r(1+\varepsilon)$
- Use packing argument from before

Experimental Results

- Choices
- shrink only when necessary
- leaves held 5-8 points
- Results

- Slightly slower than Kd trees for even data
- Much faster for clustered data (10x or so)
- Slightly slower than Kd trees for surfaces (20\%)

