Approximate Nearest Neighbor via PointLocation among Balls

Outline

- Problem and Motivation
- RelatedWork
- Background Techniques
- Method of Har-Peled (in notes)

Problem

- P is a set of points in a metric space.
- Build a data structure to efficiently search ANN

Motivation

- Nearest Neighbor Search has lots of applications.
- Curse of dimensionality
- Voronoi diagram method exponential in dimension.
- Settle for approximate answers.

Related Work

- Indyk and Motwani
- Approximate Nearest Neighbors:Towards Removing the Curse of Dimensionality
- Reduced ANN to Approximate
 Point-Location among Equal Balls.
- Polynomial construction time.
- Sublinear query time.

Related Work

- Har-Peled
- A Replacement for Voronoi Diagrams of Near Linear Size
- Simplified and improved IndykMotwani reduction.
- Better construction and query time.

Related Work

- Sabharwal, Sharma and Sen
- Nearest Neighbors Search using Point Location in Balls
 with applications to approximate Voronoi Decompositions.
- Improved number of balls by a logarithmic factor.
- Also a complex construction which only requires $\mathrm{O}(\mathrm{n})$ balls.

Metric Spaces

- Pair (X,d)
- $\mathbf{d}: X \times X \rightarrow[0, \infty)$
- $\mathbf{d}(x, y)=0$ iff $x=y$
- $\mathbf{d}(x, y)=\mathbf{d}(y, x)$
- $\mathbf{d}(x, y)+d(y, z) \geq d(x, z)$

Hierarchically well-

 Separated Tree (HST)- Each vertex u has a label $\Delta_{u} \geq 0$.
- $\Delta_{u}=0$ iff u is a leaf.
- If a vertex u is a child of a vertex v , then $\Delta_{\mathrm{u}} \leq \Delta_{\mathrm{v}}$.
- Distance between two leaves u, v is defined as $\Delta_{\text {laa }(u, v)}$ where Ica is the least common ancestor.

Hierarchically well-

 Separated Tree (HST)- Each vertex u has a representative descendant leaf repu.
- $\operatorname{rep}_{u} \in\left\{\operatorname{rep}_{\mathrm{v}} \mid \mathrm{v}\right.$ is a child of u.
- If u is a leaf, then rep $_{u}=u$.

Metric t-approximation

- A metric Nt tapproximates a metric M, if they are on the same set of points, and $\mathbf{d}_{\mathrm{M}}(\mathrm{x}, \mathrm{y})$ $\leq \mathbf{d}_{\mathrm{N}}(\mathrm{x}, \mathrm{y}) \leq \mathrm{td}_{\mathrm{M}}(\mathrm{x}, \mathrm{y})$ for any points x, y.

Any n-point metric is 2 (n-I)-approximated by some HST

First Step: Compute a 2-

 spanner- Given a metric space M, a 2-spanner is a weighted graph G whose vertices are the point of M and whose shortest path metric 2-approximates M.
- $\mathbf{d}_{\mathrm{M}}(\mathrm{x}, \mathrm{y}) \leq \mathbf{d}_{\mathrm{G}}(\mathrm{x}, \mathrm{y}) \leq 2 \mathbf{d}_{\mathrm{M}}$ (x, y) for all x, y.
- Can be computed in O (nlogn) time - Details in Chapter 4.

Construct a HST which (n - I)-approximates the 2-spanner

- Compute the minimum spanning tree of G, the 2spanner

Construct a HST which (n -I)-approximates the 2-spanner

- Construct the HST using a variation of Kruskal's algorithm
- Order the edges in nondecreasing order.

Construct a HST which

 (n - I)-approximates the 2-spanner- Start with n I-element HSTs.

000000

Construct a HST which

(n -I)-approximates the

 2-spanner- Add the edges one by one, and merge corresponding HSTs by

adding a parent node with
Δ label equal to ($\mathrm{n}-\mathrm{I}$) times the edge's weight.

Construct a HST which

(n -I)-approximates the

 2-spanner- Add the edges one by one, and merge corresponding HSTs by

adding a parent node with
Δ label equal to ($\mathrm{n}-\mathrm{I}$) times the edge's weight.

Construct a HST which

(n -I)-approximates the

 2-spanner.- Add the edges one by one, and merge corresponding HSTs by adding a parent node with Δ label equal to ($\mathrm{n}-\mathrm{I}$) times the edge's weight.

Construct a HST which

(n -I)-approximates the

 2-spanner.- Add the edges one by one, and merge corresponding HSTs by adding a parent node with Δ label equal to ($\mathrm{n}-\mathrm{I}$) times the edge's weight.

Construct a HST which

(n -I)-approximates the

 2-spanner.- Add the edges one by one, and merge corresponding HSTs by adding a parent node with Δ label equal to ($\mathrm{n}-\mathrm{I}$) times the edge's weight.

The HST (n-I)-

 approximates the 2spanner

- Consider vertices x and y in the graph and the first edge e that connects their respective connected components.

The HST (n-I)-

approximates the 2-

spanner

- Let C be the connected component containing x and y after e is added.
- $\mathrm{w}(\mathrm{e}) \leq \mathbf{d}_{\mathrm{G}}(\mathrm{x}, \mathrm{y}) \leq(|\mathrm{C}|-\mathrm{I}) \mathrm{w}$ $(e) \leq(n-I) w(e)=\mathbf{d}_{H}(x, y)$
- $\mathbf{d}_{\mathrm{G}}(\mathrm{x}, \mathrm{y}) \leq \mathbf{d}_{\mathrm{H}}(\mathrm{x}, \mathrm{y}) \leq(\mathrm{n}-\mathrm{I})$ $\mathbf{d}_{\mathrm{G}}(\mathrm{x}, \mathrm{y})$

Any n-point metric is 2

$$
\begin{gathered}
\text { (n-I)-approximated by } \\
\text { some HST }
\end{gathered}
$$

Target Balls

- Let B be a set of balls such that the union of the balls in B contains the metric space M.
- For a point q in M, the target ball of q in B, denoted $\odot_{\mathrm{B}}(\mathrm{q})$, is the smallest ball in B that contains q.
- We want to reduce ANN
 to target ball queries.

A Trivial Result - Using Balls to Find ANN

- Let $B(P, r)$ be the set of balls of radius r around each point p in P.
- Let B be the union of $B(P$, $\left.(I+\epsilon)^{i}\right)$ where i ranges from $-\infty$ to ∞.
- For a point q, let p be the center of $\mathbf{b}=\odot_{B}(q)$. Then p is $(I+\epsilon)-\mathrm{ANN}$ to
 q.

A Trivial Result - Using Balls to Find ANN

- Let s be the nearest neighbor to q in P.
- Let $\mathrm{r}=\mathbf{d}(\mathrm{s}, \mathrm{q})$.
- Fix i such that $(I+\epsilon)^{i}<r$ $\leq(1+\epsilon)^{i+1}$
- Radius of $\mathbf{b}>(I+\epsilon)^{i}$
- $\mathbf{d}(\mathrm{s}, \mathrm{q}) \leq \mathbf{d}(\mathrm{p}, \mathrm{q}) \leq(1+\epsilon)^{i+1}$ $\leq(I+\epsilon) \mathbf{d}(\mathrm{s}, \mathrm{q})$

What We Need to Fix

- This works, but has unbounded complexity.
- We want the number of balls we need to check to be linear.
- We first try limiting the range of the radii of the balls.
- First, we need to figure out how to handle a range of distances.

Near-Neighbor Data Structure (NNbr)

- Let $\mathbf{d}(q, P)$ be the infinum of $\mathbf{d}(q, p)$ for $p \in P$.
- $\mathrm{NNbr}(\mathrm{P}, \mathrm{r})$ is a data structure, such that when given a query point q, it can decide if $\mathbf{d}(q, P) \leq r$.
- If $\mathbf{d}(q, P) \leq r, N N b r(P, r)$ also returns a witness point p such that $\mathbf{d}(\mathrm{q}, \mathrm{p}) \leq r$.

Near-Neighbor Data Structure (NNbr)

- Can be realized by n balls of radius r around the points of P.
- Perform target ball queries on this set of balls.

Interval Near-Neighbor

Data Structure

- NNbr data structure with exponential jumps in range.
- $\mathrm{N}_{\mathrm{i}}=\mathrm{NNbr}\left(\mathrm{P},(\mathrm{I}+\epsilon)^{\mathrm{i}} \mathrm{a}\right)$
- $M=\log _{1+\epsilon}(b / a)$
- $I(P, a, b, \epsilon)=\left\{N_{0}, \ldots, N_{M}\right\}$

Interval Near-Neighbor Data Structure

- $\log _{1+\epsilon}(\mathrm{b} / \mathrm{a})=\mathrm{O}(\log (\mathrm{b} / \mathrm{a}) /$ $\log (I+\epsilon))=O\left(\epsilon^{-1} \log (b /\right.$
a)) NNbr data structures.
- $\mathrm{O}\left(\epsilon^{-1} \log (\mathrm{~b} / \mathrm{a})\right)$ balls.

Using Interval NNbr to find ANN

- First check boundaries: O (I) NNbr queries, $\mathrm{O}(\mathrm{n})$ target ball queries.
- Then, do binary search on the M NNbr's. This is O $\left(\log \left(\epsilon^{-1} \log (\mathrm{~b} / \mathrm{a})\right)\right) \mathrm{NNbr}$ queries, or $\mathrm{O}\left(\mathrm{nlog}\left(\epsilon^{-1} \log \right.\right.$ (b/a))) target ball queries.
- Fast if b/a small.

Faraway Clusters of Points

- Let Q be a set of m points.
- Let U be the union of the balls of radius r around the points of Q
- Suppose U is connected.

Faraway Clusters of Points

- Any two points p, q in Q are in distance $\leq 2 r(m-I)$ from each other.
- If $\mathbf{d}(q, Q)>2 m r / \delta$, any point of Q is a $(I+\delta)$ ANN of q in Q.

Faraway Clusters of Points

- Let s be the closest point in Q to q .
- Let p be any member of Q
- $2 \mathrm{mr} / \delta<\mathbf{d}(\mathrm{q}, \mathrm{s}) \leq \mathbf{d}(\mathrm{q}, \mathrm{p})$
$\leq \mathbf{d}(\mathrm{q}, \mathrm{s})+\mathbf{d}(\mathrm{s}, \mathrm{p}) \leq \mathbf{d}(\mathrm{q}, \mathrm{s})$
$+2 m r \leq(I+\delta) \mathbf{d}(q, s)$

