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Abstract

Many scientific fields generate data in three-dimensional space. These fields

include fluid dynamics, medical imaging, and X-ray crystallography.

In all contexts, a common difficulty exists: how best to represent the

data visually and analytically. One approach involves generating level sets:

two-dimensional surfaces consisting of all points with a given value in the

space. With large datasets common, efficient generation of these level sets is

critical. Several methods exist: one such is the contour tree approach used by

van Kreveld et al. [26].

This thesis extends the results of van Kreveld et al. [26] and Tarasov &

Vyalyi [23]. An efficient algorithm for generating contour trees in any number

of dimensions is presented, followed by details of an implementation in three

dimensions.
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Chapter 1

Introduction

1.1 Overview

Applications in several disciplines require sampling of some physical quantity

in three dimensions, followed by visualization of the data thus acquired. These

disciplines include medical imaging [15, 18, 17], fluid dynamics [17], and X-ray

crystallography [13, 6].

The sampling process produces a finite number of data points with asso-

ciated values. Most, if not all, visualization techniques assume an underlying

real-valued function, and approximate it by means of some interpolation func-

tion f (x) over the volume of space under consideration. I defer definition of

this interpolation function to Def. 2.4, p.10.

Many techniques for visualizing such data exist, the technique used in

this thesis is that of level sets1: surfaces defined by {x ∈ IR3 : f(x) = h} for

1Often called isosurfaces: see discussion under Def. 2.6, p.11
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some fixed value h.

Using X-ray crystallography as a driving problem, I discuss existing

techniques for generating level sets, in particular techniques based on a data

structure called the contour tree. I then propose an efficient and practical

algorithm for constructing contour trees in arbitrary dimensions. After an-

alyzing the performance of this algorithm, I consider implementation issues,

and present some experimental results.

1.2 X-ray Crystallography

One of the major problems in biochemistry is the analysis of protein structure

and conformation. It is known that the function of a protein is intimately

connected to it’s conformation [21], which is determined by the spatial loca-

tions of the atoms in the protein, and the interaction of the electron clouds

surrounding each atom.

Techniques exist to determine the sequence of amino-acid residues in a

protein [21]. This sequence defines the number and connectivity of the atoms

in the protein, but not the spatial location of the atoms.

X-ray crystallography is concerned with determining the locations of

the atoms in the protein. Although minor variations exist, the following is an

overview of the experimental procedure [9].

A quantity of the protein in question is crystallised: it is assumed that

this lines up many copies of the protein in similar orientations. The resultant

crystal is then bombarded with X-rays. The X-rays interact with the electrons

2



associated with each atom, and are sometimes refracted. These refractions

are measured by a planar array of detectors. The process is repeated with

the detectors at varying distances from the crystal: this produces a three-

dimensional dataset, consisting of scalar values (the measured intensities at

the array).

These measurements, however, do not correspond directly to the elec-

tron distribution in the crystal, but are related to the Fourier transform of

the electron distribution. If the electron distribution in a typical molecule is

known, the Fourier transform of the distribution can be computed: this is

defined over complex numbers. Since the experimental data is scalar-valued

rather than complex-valued, the Fourier transform is underdetermined. It is,

however, known that the data corresponds to the amplitude of the Fourier

transform: only the phase information is lost [21].

The locations of the atoms are then found by an iterative procedure.

The researcher hypothesizes the missing phase information, and performs the

inverse Fourier transform to recover spatial data, in the form of an electron

density map. The researcher then visualizes the electron density map, and

forms further hypotheses about the locations of the atoms, and about the

missing phase information. This process is repeated, refining the locations

of the atoms at each iteration, until the researcher is reasonably certain that

the locations of the atoms have been determined. It is possible, however, to

make mistakes in this procedure, and recover incorrect data. In particular,

the hypothesized phase information can lead to an entirely incorrect map.

3



(a) A duck (b) A cat

(c) Cat Phase, Duck Amplitude
in Reciprocal Space

(d) Cat Phase, Duck Amplitude
in Real Space

Figure 1.1: Errors in Hypothesizing Phase Information
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As an example, consider Fig. 1.1(c), from [7], which combines the magnitude

information from the duck, and the phase information from the cat. The result

of this is the image (Fig. 1.1(d)), in which the the cat (phase) information

dominates visually.

It is a common and useful assumption that the nuclei of atoms are

local maxima (at the centre of an electron cloud), and that molecular bonds

are saddle points : bridges between two electron clouds [9]. For this reason,

visualization techniques which aid in the location of local maxima and saddle

points are preferable. In particular, note that local maxima can be located

in principle by choosing a high isovalue (Def. 2.5, p.11) to generate contours

(Def. 2.6, p.11). If the isovalue is chosen appropriately, this creates a small

contour around each local maximum. As the isovalue decreases, these level

sets will gradually merge at saddle points, allowing us to detect the saddle

points.

However, a major problem exists: not all local maxima are equally high-

valued, and some are lower-valued than the saddle points between the higher

maxima. When this happens, it is impossible to select a suitable isovalue so

that one can correctly identify all maxima. Either the lower-valued maxima

will fail to appear, or the isovalue chosen to show the lower-valued maxima

will be lower than the high-valued saddle points, causing the higher-valued

maxima to blur into each other.

Two possible causes of this problem exist: thermal noise, and type of

atom. Each protein is composed of a backbone or main chain of carbon atoms:
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the locations of these atoms are generally highly constrained, producing high-

valued maxima. Atoms off the main chain are somewhat more flexible, and

have freedom to rotate about one or more of the bonds in the side chain. As

a result of thermal noise, the maxima for these atoms will be diffused, and

will be lower and flatter than for atoms on the backbone. Similarly, there is

some variation between the heights of the maxima corresponding to atoms of

different elements.

One solution to this problem is local contouring: generating contours

for different isovalues in different regions of the data. See Sec. 9.5, p.98 for

further details.

1.3 Desiderata

From the description above, we extract a number of desiderata for visualizing

crystallographic data:

1. Local maxima and saddle points should be easily located. As noted

above, level set techniques can be used to do this.

2. Level sets should be able to be generated efficiently, even for large

datasets, to facilitate changing the isovalue at interactive rates.

3. It should be possible to compute and display contours at different iso-

values in different portions of the image.

6



1.4 Assumptions about Data

I make certain assumptions about the data: most of these are necessary for

the contour tree approach (Assns. 1.4, 1.3, 1.5). The remaining assumption

simplifies the implementation (Assn. 1.2).

Definition 1.1 The input data is defined to be a set of real-valued measure-

ments in a bounded volume V in IRd:

P = {(xi, hi)} : xi ∈ V ⊆ IRd, hi ∈ IR

Assumption 1.2 Regular Rectilinear Data

I assume that electron density maps are datasets sampled at regular

intervals on a three-dimensional rectilinear grid.

Assumption 1.3 Simplicial Mesh

I assume that the mesh on which the interpolation function is based is a

simplicial mesh (Def. 2.3, p.10) . This assumption is necessary for the contour

tree approach, but not necessary for other level set generation techniques.

Methods for ensuring that the mesh is simplicial are discussed in Sec. 9.1,

p.91.

Assumption 1.4 . Piecewise-Linear Interpolation Function

I assume that the interpolation function (Def. 2.4, p.10) is piecewise-

linear. Although this assumption is not strictly necessary, it greatly simplifies

some preliminaries (for example, Lemma 5.21, p.69). It is also is the most

7



common interpolation function (see Def. 2.4, p.10). When combined with

Assn. 1.3, this assumption means that the interpolation function inside a given

simplex will be the linear interpolation between the vertices of the simplex.

Assumption 1.5 Uniqueness of Data Values

I assume that no two values in the data are identical. Without this

assumption, it is not guaranteed that there will be a unique contour tree for

a given set. The solution adopted, “simulation of simplicity” [11], is discussed

in Sec. 9.3, p.97.

This assumption is also required to guarantee that the critical points

occur only at vertices of the mesh (Sec. 4.1.1, p.26), and applies to all contour

tree-based methods.
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Chapter 2

Definitions

In order to simplify discussion, some relevant terms are defined. Since this

thesis is printed on two-dimensional paper, illustrations of two-dimensional

datasets will sometimes be used for clarity.

Definition 2.1 A mesh in IR3 is a collection of polyhedral volumes or cells

that completely fill the volume V . The vertices, edges, and faces are shared be-

tween adjacent polyhedra, and the vertex set is the set of data points {xi}. Note

that definitions of mesh used elsewhere may differ slightly from this definition.

In practice, meshes are frequently rectilinear meshes (Def. 2.2), hexa-

hedral meshes (which are similar to rectilinear meshes) or simplicial meshes

(Def. 2.3).

Definition 2.2 A rectilinear mesh is a mesh (Def. 2.1) in which each cell is

a rectangular prism, or voxel, as in Fig. 2.1(a).

9



(a) Rectilinear Mesh (b) Simplicial Mesh

Figure 2.1: Sample Meshes

The rectilinear mesh is generally the most natural mesh when data is

sampled on a regular rectilinear grid (Assn. 1.2, p.7). However, there can be

ambiguity in interpolation, notably when the Marching Cubes algorithm is

used (Def. 3.1.2).

Definition 2.3 A simplicial mesh is a mesh (Def. 2.1) in which each cell is

a simplex, as in Fig. 2.1(b).

In IR3, a simplex is a tetrahedron (not necessarily regular).

As noted in Sec. 1.1, visualization techniques usually assume that the

data is sampled from a continuous function defined over V . An interpolation

function is then chosen to approximate the continuous function in V . This

interpolation function is normally based on a mesh M that fills the volume V :

Definition 2.4 An interpolation function is a function f(x) defined over the

volume V , with the following properties:

10



Figure 2.2: A Level Set consisting of 3 Contours

1. Mesh-based: a mesh M (Def. 2.1, p.9) is chosen to fill the spatial volume

V .

2. Local Interpolation: the function in any cell of the mesh is based solely

on the values at the vertices of the cell.

The most commonly used interpolation function for simplicial meshes

is the piecewise-linear function over the cells of the mesh: see Assn. 1.4, p.7.

For rectilinear meshes, the most commonly used interpolation function is a

tri-linear interpolation over the cells of the mesh.

Definition 2.5 A level set of a function f at an isovalue h is the set L(h) =

{x ∈ Dom(f) : f(x) = h}.

Note that a level set may be empty, or may consist of one or more

connected components, or contours (Def. 2.6), as shown in Fig. 2.2.

Definition 2.6 A contour is a connected component of a level set (Def. 2.5).

11



In the literature, isosurface is sometimes used to refer to a level set,

and sometimes to a contour. In order to avoid confusion, I avoid the use of

“isosurface”, and use only “level set” and “contour”.

2.1 Parameters for analysis

In analyzing algorithms for generating level sets, I use a number of parameters:

Definition 2.7 n is the number of vertices in the mesh(Def. 2.1) being used.

Definition 2.8 N is the number of cells in the mesh.

All algorithms considered use either simplices or voxels as cells in IR3.

Both of these cell shapes have a fixed number of faces. Thus, the number of

faces is O(N). In fact, since each face can belong to only 2 cells, the number

of faces is Θ(N ).

Since an edge can belong to an arbitrary number of simplices, but each

simplex has a fixed number of edges, it follows that the number of edges is

O(N ). In a rectilinear mesh, which must have a fixed maximum number of

cells containing an edge, the number of edges is Θ(N ).

Similarly, cells have a fixed number of vertices, but vertices may belong

to an arbitrary number of cells in a simplicial mesh, so n = O(N ). For a

rectilinear mesh, or for a regular simplicial mesh, such as those discussed in

Sec. 9.1, p.91, n = Θ(N).

Definition 2.9 k is the size of the output.
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For maximum generality, k refers to the number of cells intersected by

a given level set. In some situations, it is more convenient to think of k as the

number of triangles generated for rendering. Since all algorithms considered

in IR3 generate at most 4 triangles per cell (see Fig. 3.1, p.15 and Fig. 3.5,

p.22), these two measures are within a constant factor of each other.

Although k = Ω(N ) in extreme cases, it is claimed that, for typical data

in IR3, k = O(N2/3) [16, 15].

Definition 2.10 t is the number of local extrema in the mesh M .

A local extremum in the mesh M is a vertex xi, all of whose neighbours either

have smaller values than hi (a local minimum - Def. 4.9, p.33), or larger values

(a local maximum - Def. 4.9, p.33).

I will show in Sec. 4.5, p.35 that the size of the contour tree is Θ(t):

thus, t can be used as a rough measure of the complexity of the dataset. In

extreme cases, t = Ω(n): a turbulent fluid dataset from fluid dynamics might

be one such case [17]. For X-ray crystallographic data, however, I expect that

t ¿ n.
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Chapter 3

Prior Work

3.1 Marching Cubes

The simplest algorithm for generating level sets is the “Marching Cubes” al-

gorithm of Lorenson and Cline [18]. This algorithm “marches” through all the

cubes (i.e. voxels) in a rectilinear mesh, computing the intersection with the

level set for each such voxel. For any voxel, each vertex is classified as “above”

or “below” the level set, producing an 8-bit index into a lookup table. This

lookup table, loosely based on a tri-linear interpolation function, defines how

to compute the intersection (see Fig. 3.1).

Marching Cubes is simple and relatively easy to code. However, it has

several disadvantages: running time, ambiguity, local coherence, and connec-

tivity.

14



Figure 3.1: Marching Cube cases (after symmetry)

3.1.1 Analysis

Since Marching Cubes steps through all cells, it is trivial to analyze: the

running time is Θ(N), and no preprocessing or additional space is required.

Subsequent work has focussed on output-sensitive algorithms, which take ad-

vantage of the fact that k = O(N2/3) (Def. 2.9) in typical cases. These al-

gorithms normally require O(N log N) preprocessing time, although no lower

bound has been proven.

Thus, Marching Cubes is preferred for generating single static level sets:

alternate algorithms are preferred only when the preprocessing step can be

amortized over multiple level sets, or when they provide additional information

about the dataset.

15



Figure 3.2: Ambiguous Marching Cube cases

3.1.2 Ambiguity

For trilinear interpolation, it is possible to construct voxels with identical

Marching Cube cases, but topologically different surfaces (Fig. 3.2). Marching

Cubes resolves this by assuming all such cases to be of one type, leading to

topologically incorrect level sets and visual artefacts, although solutions for

these problems were later identified by Nielson & Hamann [19].

This disadvantage does not exist with linear interpolation in simplices,

for which no ambiguous cases exist (see Sec. 3.5.1 and Fig. 3.5).

3.1.3 Local Coherence

As Howie & Blake [14] point out, most graphics hardware can process strips

of triangles more efficiently than individual triangles, since 2/3 of the vertices

in a triangle are implicitly carried forward from the previous triangle. This

can reduce the geometric calculations in the graphics hardware by a factor

16



Figure 3.3: Two Contours in the Same Cell

of 3. Since there is frequently a bottleneck in transferring triangles to the

graphics hardware, this consideration is of major importance, and algorithms

that permit the generation of triangle strips are preferred. To achieve this, as

many adjacent cells as possible should be processed sequentially.

Marching Cubes follows the grid axes: two voxels which are adjacent

in the direction of travel will be processed sequentially. Thus, if the level

set intersects the face between the two voxels, some vertices may be reused.

However, for surfaces that do not follow the grid, this is not possible. Runs of

cells from which triangle strips can be generated will tend to be short.

3.1.4 Connectivity

Marching Cubes cannot distinguish between separate contours in the level set,

as no topological information is generated. In some cases, Marching Cubes

17



will actually render facets of two or more contours in the same voxel at the

same time (as in Fig. 3.3). Where it may be desirable to distinguish between

contours, as in X-ray crystallography, Marching Cubes is therefore at a disad-

vantage.

3.2 Octrees

Wilhelms & van Gelder [27] proposed using octrees to accelerate Marching

Cubes. Under this scheme, each node in an octree is labelled with the minimum

and maximum values of all voxels contained in the node’s subtree. Level sets

are then constructed by commencing at the root of the octree, and propagating

downwards through all children spanning the desired isovalue.

Construction of the octree takes O(N log N )time, and worst-case time

to construct a level set is O(k + log n/k) [17].

Most disadvantages of Marching Cubes are retained (Sec. 3.1.2, 3.1.3,

3.1.4). In addition, Shen & Johnson [22] note that octree-based methods are

vulnerable to noise in the data.

A variation on this has also been used by Bajaj and Pascucci [1] for

progressive rendering of isosurfaces.

3.3 Span Space

Livnat, Shen & Johnson [17] consolidated much of the work on level sets, and

proposed a new method based on Bentley’s kd-trees [4]. They represent each

18



cell as the interval defined by the minimum and maximum values of the cell.

The cell then intersects any level set whose isovalue falls into the interval.

This reduces the problem to that of finding all intervals containing a desired

isovalue. The intervals are recorded as (min, max) pairs, and the resulting

two dimensional space (the span space) is searched using a kd-tree [17].

Construction of the kd-tree takes O(N log N) time and O(N) space.

Construction of a level set based on the kd-tree takes O(
√

n + k) time, by

retrieving all cells intersecting the desired interval.

This method has advantages other than just speed: it works for recti-

linear and simplicial meshes, and on both regular and irregular grids. Local

coherence (Sec. 3.1.3) is not achieved, however, since the kd-tree generates a

list in which the cells are not necessarily related to each other. In this respect,

span space may in fact be worse than Marching Cubes, since there is no guar-

antee that adjacent cells are ever processed sequentially. Similarly, the ability

to identify different contours in a level set (Sec. 1.3, 3.1.4) is also lost.

3.4 Interval Trees

Cignoni et al. [5] follow Livnat, Shen & Johnson (Sec. 3.3) in treating each

cell as an interval. These intervals are then stored in Edelsbrunner’s interval

tree [10], instead of the kd-tree. The interval tree is then used to search for

cells intersecting the level set: otherwise the technique is identical to the Span

Space approach.

Construction of the interval tree takes O(N log N) time and O(N log(N))
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Figure 3.4: Contour Following

space: construction of a level set takes O(k + log n) time.

All other advantages and disadvantages of the span space approach are

preserved.

3.5 Contour Following

All of the algorithms referred to so far lack local coherence (Sec. 3.1.3) and

connectivity (Sec. 3.1.4). As a result, these methods generate a list of unrelated

cells intersecting the level set. A class of algorithms exists which preserve both

coherence and connectivity: I refer to these algorithms as contour-following1,

since they follow a contour from cell to cell.

In simple terms, the contour-following algorithm generates contours as

follows:

1Other names include continuation [20], and mesh propagation [14]
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1. Choose a cell that intersects with the level set.

2. Construct the surface of intersection of the cell and the level set.

3. Note that for each face of the cell that intersects with this surface, the

adjacent cell must also intersect with the surface (see Fig. 3.4).

4. “Follow” the surface into each adjacent cell, by repeating steps 2 - 4 for

that cell.

The surface constructed remains topologically connected at all times,

since a cell is only visited if the surface under construction reaches into it

from an adjacent cell. Thus, the algorithm constructs, not a level set, but

a single component of the level set: a contour (Sec. 2.6). Hence the term

“contour-following.”

This was first implemented by Wyvill, McPheeters & Wyvill [28], using

an explicit queue to visit the cells in a regular mesh, and was extended from

regular to irregular meshes by Howie & Blake [14]. Both papers omit details

on how to select an initial cell: in both cases, it appears that the initial cell

was selected manually, or on the basis of domain-specific knowledge of the

data set.

3.5.1 Seeds and Seed Sets

The contour-following algorithm stated above traces a single contour (i.e. con-

nected component) of a level set. If the level set has more than one contour,
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Figure 3.5: Possible Intersections of a Simplex and a Level Set

multiple starting points are needed to trace the entire level set. Such start-

ing points are called seeds, and can be edges, faces, or cells. A set of seeds

sufficient to generate an entire level set is called a seed set.

In a simplicial mesh, there are only 4 possible intersections of the cell

and a level set not passing through a vertex: see Fig. 3.5. In each case, no

more than one contour can intersect the simplex. Thus, each cell can be a seed

for at most one contour at a given isovalue, and a seed set for a given level set

must contain at least as many seeds as the level set contains contours.

If, the mesh is rectilinear, more than one contour can intersect a given

voxel (e.g. Fig. 3.3). In this case, a cell may be a seed for more than one

contour, and the seed set need not have as many seeds as there are contours in

the level set. This complicates following the contours, but does not preclude

it.

3.5.2 Analysis

Using contour-following to generate level sets requires Θ(k) time to generate all

contours from seeds, plus the time to find the seeds. Since contour-following
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itself requires no preprocessing, the preprocessing cost is simply the cost of

generating any structures necessary to obtain seed sets for any desired isovalue.

Since contour-following expressly moves from one cell to the next across

a shared boundary, it will usually produce connected triangles, thus preserving

local coherence (see Sec. 3.1.3). In addition, since contour-following generates

each contour separately, it can be used to distinguish contours in the level

set, unlike Marching Cubes (see Sec. 3.1.4). Ambiguity (Sec. 3.1.2) is still a

problem in non-simplicial meshes.

3.5.3 Extrema Graphs

Itoh & Koyamada [16, 15] use extrema graphs to generate seeds for contour-

following. They preprocess the data to extract all local extrema, then connect

pairs of extrema with arcs to form the extrema graph. Each edge of the

extrema graph has an associated list of cells, in sorted order from a maximum

to a minimum: one of these is chosen as a seed for any given isovalue.

No exact analysis is provided, but the authors admit that it is not

always efficient, and is not guaranteed to succeed. Livnat, Shen & Johnson [17]

observe that the worst case behaviour for generating a level set is Ω(n), as

Itoh & Koyamada test all edges in the extrema graph for intersection with the

isovalue.
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3.5.4 Thinning

Bajaj et al. [2] have described a technique in which a set of cells is chosen as

a seed set, then stored in a segment tree: generation of contours is then done

by contour-following. To choose the seed set, the entire set of cells is initially

chosen, then redundant cells are removed by a heuristic, thus reducing, or

thinning the seed set, until an almost-optimal set is achieved.

In the same paper, Bajaj et al. also describe a greedy “climbing” algo-

rithm which approximates the contour tree, and a sweep algorithm for con-

structing seed sets offline.
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Chapter 4

Contour Trees

The algorithms discussed in the previous chapter were designed for 3-Ddatasets.

Similar algorithms exist for 2-D datasets. For example, van Kreveld used in-

terval trees (Sec. 3.4, p.19) to generate contour lines in 2-D [25]. In 1993, de

Berg and van Kreveld [8] applied a structure called the contour tree in 2-D,

and demonstrated that it could be constructed in O(N log N ) time. In 1997,

van Kreveld et al. [26] improved the algorithm for constructing the contour

tree, and observed that it could be applied to higher dimensions, albeit with a

construction time of O(N 2). Their algorithm is discussed in detail in Sec. 4.8,

as is a later result by Tarasov & Vyalyi, which extends the O(N log N ) time

bound to three dimensions [23].
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4.1 Morse Theory

Contour trees are based, in part, on work in the field of Morse theory [3, 12].

Morse theory studies the changes in topology of level sets of f as the parameter

x changes. Points at which the topology of the level sets change are called

critical points. Morse theory requires that the critical points be isolated – i.e.

that they occur at distinct points and values. A function that satisfies this

condition is called a Morse function. All points other than critical points are

called regular points and do not affect the number or genus of the components

of the level sets.

4.1.1 A Guarantee that Critical Points are Vertices

Morse theory provides some useful theoretical results. In the case of simplicial

meshes, the definition of f – as a linear interpolant over a simplicial mesh with

unique data values at vertices (Sec. 1.4) – ensures that f is a Morse function,

and that the critical points occur at vertices of the mesh [3].

A direct proof of this result is given in the following sections. This

proof does not rely on Morse theory, but is based solely on properties of the

interpolation function.

4.2 Description of Contour Tree

If we think of the parameter x as time and watch the evolution of the level

sets of f over time, then we see contours appear, split, change genus, join,
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Development of Level Sets in 3-D
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Figure 4.2: Contour Tree corresponding to Fig. 4.1

and disappear. In the example shown in Fig. 4.1, the level set evolves from

four sticks, to two rings, to two cushions, to a hollow ball, to a solid, as the

parameter decreases.

The contour tree is a graph that tracks contours of the level set as they

split, join, appear, and disappear. Fig. 4.2 shows the contour tree for the

dataset illustrated in Fig. 4.1. Starting at the global maximum, four small

contours appear in sequence (10, 9, 8, 7): these correspond to the four leaves

at the top of the contour tree. The surfaces join (6, 5) in pairs, forming

larger contours, which quickly become rings. These rings then flatten out

into cushions, which join (4) to form a single contour. This contour gradually

wraps around a hollow core, and pinches off at (3), splitting into two contours:

one faces inwards, the other outwards. The inward contour contracts until

it disappears at (2): the outward contour expands until it reaches the global

minimum (1).
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Figure 4.3: Development of Level Sets in 2-D

Note that changes in genus from disk to torus to disk are not reflected

in the contour tree — even though the contours change topology, each can

still be traced from a single seed point. All changes to the contours occur

at critical points, but not all critical points cause changes to the contour

tree. Formal definitions to support this intuitive description are found in the

following sections.

Each “contour” referred to as appearing, joining, splitting and disap-

pearing is actually a class of contours for different isovalues, and I define

contour trees in terms of equivalence classes of contours.

The contour tree is independent of the dimension of the space - for
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example, Fig. 4.3 shows a dataset in 2-D which has Fig. 4.2 as its contour

tree. In some of the examples that follow, I shall use this contour tree instead

of Fig. 4.1, where the desired property is clearer in 2-D than in 3-D.

4.3 Contour Properties

In order to define contour trees, I start by showing that contours are essentially

unchanged between isovalues of vertices of the mesh. From Assn. 1.5, the

vertices x1, x2, . . . , xn must have unique values: it is convenient for contour

tree computation if they are in sorted order. To simplify some definitions, add

h0 = −∞ and hn+1 = ∞:

Assumption 4.1 h0 < h1 < h2 < . . . < hn < hn+1

Definition 4.2 The contour containing a point p, denoted γp, is the contour

γ to which p belongs.

Definition 4.3 For a contour κ at isovalue h, define the set of simplices

intersected by κ, to be Simp(κ) = {σ is a simplex in the mesh : σ ∩ κ 6= ∅}

(see Fig. 4.4).

The goal is to construct a contour tree over the entire spatial volume V ,

based on the values hi at the vertices of the mesh: the first step towards this

goal is to show that changes in the connectivity of the level set can only happen

at vertices of the mesh. I start by showing that changes in the connectivity

cannot happen between successive values hi, hi+1:
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Figure 4.4: Simplices Intersecting a Contour

Figure 4.5: Possible Contours in a Simplex (from Fig. 3.5, p.22)
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Lemma 4.1 Let κ, λ be contours at distinct isovalues h, h′ ∈ (hi−1, hi), and

Simp(κ) ∩ Simp(λ) 6= ∅. Then Simp(κ) = Simp(λ).

Proof: Since κ is connected, all the simplices in Simp(κ) must be

connected. Assume that Simp(κ) 6= Simp(λ). Then there must be at least one

simplex σ1 in Simp(κ) ∩ Simp(λ) from which κ continues through a face of

σ1 into some other simplex σ2 which is in Simp(κ) but not Simp(λ) (or vice

versa). Without loss of generality, assume the former.

There must then be a edge τ , common to σ1 and σ2, that intersects

κ. Let xj and xk be the two vertices which τ connects, with j < k. Then

hj < h < hk, by the assumption that the interpolation function is piecewise

linear (Assn. 1.4, p.7). Also, hi−1 < h < hi, and the vertices are in sorted

order, so hj ≤ hi−1 < h < hi ≤ hk. Then hj < h′ < hk, since hi−1 < h′ < hi.

By the Mean Value Theorem, since f is continuous over each simplex, there

exists some point x on the edge τ such that f(x) = h′. Since only one contour

can intersect a given simplex (Sec. 3.5.1, p.22), this means that λ ∩ τ 6= ∅.

But τ is contained in σ2, so λ ∩ σ2 6= ∅, i.e. σ2 ∈ Simp(λ), which contradicts

our assumption that σ2 was in Simp(κ) but not Simp(λ).2

Note that this result will not hold in a rectilinear mesh, where two

topologically separate contours can intersect the same cell (Sec. 3.1.2, p.16).

A consequence of this lemma is that we can continuously transform a

contour at height h to a new contour at some nearby height h′:

Corollary 4.2 Let κ be a contour at isovalue h ∈ (hi−1, hi), and let h′ ∈ (hi−1, hi).

Then there is exactly one contour λ at isovalue h′ such that Simp(κ) = Simp(λ).2
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Proof: Let σ be any simplex in Simp(κ). Then there is some x in σ

such that f(x) = h. By the same argument as used in Theorem 4.1, there must

also be some x′ in σ such that f (x) = h′. Call the contour to which x belongs

λ. Then, by Theorem 4.1, Simp(κ) = Simp(λ). Since only one contour for a

given isovalue can intersect σ, λ must be unique.2

Clearly, little of interest occurs between isovalues of the vertices: see

Fig. 4.5. We classify each vertex xi by the behaviour of the contours that are

just above and just below xi, for some small ε > 0 such that hi−1 < hi − ε <

hi < hi + ε < hi+1.

Definition 4.4 The star of a vertex xi, denoted Star(xi), is the set of sim-

plices that have xi as one of their vertices.

Definition 4.5 The set of contours just above xi:

C+
i = {γ ∈ L(hi + ε) : γ ∩ Star (xi) 6= ∅}.

Definition 4.6 The set of contours just below xi:

C−
i = {γ ∈ L(hi − ε) : γ ∩ Star(xi) 6= ∅}.

Now classify the vertices of the mesh as follows:

Definition 4.7 An ordinary point is a vertex xi for which ‖C+
i ‖ = 1 and

‖C−
i ‖ = 1.

Definition 4.8 A local maximum is a vertex xi for which ‖C+
i ‖ = 0.

Definition 4.9 A local minimum is a vertex xi for which ‖C−
i ‖ = 0.
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Note that this definition of local extrema is different from the usual

definition of local extrema in a graph: vertices larger [smaller] than all their

neighbours. However, the two definitions are equivalent: this definition was

chosen to provide a consistent test for extrema and other critical points.

Definition 4.10 A join is a vertex xi for which ‖C+
i ‖ > 1.

Definition 4.11 A split is a vertex xi for which ‖C−
i ‖ > 1.

Definition 4.12 A critical point is a vertex xi which is a local maximum,

local minimum, join, or split.

Note that a vertex may be both a join and a split, a join and a local

minimum, or a split and a local maximum. These cases normally occur only

on the boundary of the volume, and not in the interior. All other possibilities

are mutually exclusive.

Note that this definition of critical point is not quite the same as the

definition of critical point in Morse theory: I treat a vertex where only the

topological genus changes as an ordinary point.

4.4 Contour Equivalence

In this section, I define an equivalence relation that captures the intuitive

description of the contour tree. The contour tree will then be defined in terms

of the equivalence classes of this relation.
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Definition 4.13 Let γ, γ′ be contours at h, h′, respectively, with h < h′. Then

γ, γ′ are contour equivalent (γ ≡ γ′) if all of the following are true:

1. neither γ nor γ′ passes through a critical point,

2. γ, γ′ are in the same connected component Γ of {x : f(x) ≥ h}, and there

is no join xi ∈ Γ such that h < hi < h′, and

3. γ, γ′ are in the same connected component ∆ of {x : f(x) ≤ h′}, and

there is no split xi ∈ ∆ such that h < hi < h′.

Definition 4.14 The equivalence classes of this relation will be called contour

classes.

Definition 4.15 The contour class containing a point p, denoted [γp], is the

contour class to which the contour γp belongs (recall that γp is the contour to

which p belongs.

4.5 Definition of the Contour Tree

The definition of contour classes encapsulates the intuitive “sweep” described

in Sec. 4.2. Contours not passing through critical points will belong to contour

classes that map 1-1 with open intervals (hi, hj), where xi, xj are critical points,

and i < j. I will sometimes refer to a contour class as being created at j, hj , or

xj, and being destroyed at i, hi, or xi, thus preserving the intuitive description

of a sweep from high to low values.

35



Contours that pass through critical points will be the sole members of

the contour classes to which they belong (i.e. finite contour classes).

This correspondence between critical points and finite contour classes,

and between open intervals and infinite contour classes, leads to the definition

of the contour tree for a simplicial mesh:

Definition 4.16 The contour tree is a graph composed of:

1. vertices, or supernodes, which represent finite contour classes (i.e. crit-

ical points):

(a) Leaf vertices, corresponding to:

(i). local maxima, at which an infinite contour class is created

(ii). local minima, at which an infinite contour class is destroyed

(b) Interior vertices, at which

(i). at least one infinite contour class is created, and

(ii). at least one infinite contour class is destroyed

2. edges, or superarcs, which represent infinite contour classes, and con-

nect:

(a) the supernode corresponding to the critical point at which the con-

tour class is created, and

(b) the supernode corresponding to the critical point at which the con-

tour class is destroyed.
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Figure 4.6: Critical Points and Boundaries Between Regions
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Label each superarc Cj
i , where xj is the vertex at which the superarc

is created, and xi is the vertex at which it is destroyed. Fig. 4.6 shows the

correspondence between the contour tree in Fig. 4.2 and regions of Fig. 4.3:

the correspondence to Fig. 4.1 is similar, but harder to show on paper.

4.6 Properties of the Contour Tree

The first useful property of the contour tree is that it is in fact a tree. The proof

of this is taken from de Berg and van Kreveld [8], with minor modifications,

and is included for completeness:

Lemma 4.3 The contour tree C for a connected spatial volume is a tree.

Proof: Proof is by showing that the contour tree is acyclic, and is

connected if the volume V is connected.

Connectedness: Let x and y be points in V that are connected by

some path P . Each point p on P belongs to some contour γp, which in turn

belongs to some contour class [γp], which may be either finite or infinite.

Let P ′ = {γp : p ∈ P}, i.e. P ′ is the set of contours containing points on

P . Then, since each γp contains the corresponding p, P ′ contains P . Therefore

P ′ connects x and y. Note that if p and q are points on P with the same isovalue

f(p) = f(q), then γp and γq may in fact be the same contour. If this happens,

I reduce P ′ by omitting all contours for points between p and q on P . Thus,

I assume that P ′, viewed as a set of contours, contains no repeats.
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Let P ′′ = {[γp] : p ∈ P}, i.e. P ′′ is the set of contour classes contain-

ing points on P . Since each [γp] contains the corresponding γp, and each γp

contains the corresponding p, the set P ′′ must also contain P . Therefore P ′′

connects x and y. As with P ′, I assume that there are no duplicates: once P

exits a contour class, it never re-enters that contour class.

Consider the set Q consisting of all supernodes and superarcs that cor-

respond to contour classes in P ′′. Clearly, Q contains both [γx] and [γy]. I

claim that Q connects [γx] and [γy] in the contour tree.

Let Cj
i be a superarc in the contour tree, corresponding to some infinite

contour class in P ′′, and let xi and xj be the vertices at which Cj
i is created

and destroyed, respectively.

Note that the connectivity of the level set can only change at critical

points (Sec. 4.1.1), and an infinite contour class contains no critical points.

This implies that the infinite contour class Cj
i consists of exactly one contour

for each isovalue in the open interval (hi, hj). Also note that each of these

contours is a connected component of the level set for that isovalue. Therefore,

any path from a point in Cj
i to a point not in Cj

i must include at least one point

x on either γxi or γxj . If we consider what this means in the contour tree, we

see that if the path P leaves Cj
i in P ′′, then either xi or xj belongs to Q.

Assume that it is xi, and note that Cj
i is connected to xi in the contour tree.

Similarly, when the path P leaves γxi , it must enter some new infinite contour

class, Ck
i or Ci

k, to which xi is connected in the contour tree. Continuing in this

way, we see that the sequence of contour classes along the path P corresponds
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exactly to a set of connected supernodes and superarcs in the contour tree:

i.e. Q is connected.2

It follows from this that, if the volume is connected, so is the contour

tree.

Acyclicity: Suppose a cycle K exists in the contour tree. Without

loss of generality, assume that K has no repeated supernodes, and pick the

smallest-valued supernode xi on the cycle: two distinct superarcs Cj
i and Ck

i are

incident to xi. Since Cj
i represents contours for all isovalues in the open interval

(hi, hj), I choose a point x on contour γ at isovalue h such that [γ] = Cj
i , and

hi < h < hi+1. Similarly, I choose a point y on contour γ′ at isovalue h′ such

that [γ′] = Ci
j, and h < h′ < hi+1.

Note that neither γ nor γ′ passes through a critical point. Thus, γ and

γ′ satisfy the first condition for contour-equivalence (Def. 4.13).

Let Q be the open-ended path obtained by removing xi from K without

deleting Cj
i and Ck

i . By an argument similar to that used for connectivity above,

this path Q must correspond to a connected set in V consisting solely of points

with isovalues > hi, and including x and y. I truncate this connected set by

removing all points with isovalues < h. Since hi < h < hi+1, and changes to

connectivity can only occur at vertices (Sec. 4.1.1), this does not disconnect

the set.

Since x and y sit on contours γ and γ′ respectively, it then follows that

γ and γ′ belong to the same connected component Γ of {x : f (x) ≥ h}. And

since hi < h < h′ < hi+1, there is no join xj ∈ Γ such that h < hj < h′,
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satisfying the second condition of Def. 4.13.

Finally, let R be the open-ended path in K obtained by taking xi, Ci
j

and Ci
k. A similar argument to that just used then shows that γ and γ′ are

in the same connected component ∆ of {x : f(x) ≤ h′, and there is no split

xj ∈ ∆ such that h < hj < h′, satisfying the third condition of Def. 4.13.

Thus, γ ≡ γ′, and it follows that Cj
i = Ck

i , so by contradiction, no cycle

K exists in the contour tree.2

Corollary 4.4 The contour tree C for the volume V is of size Θ(t).

Proof: From Def. 4.8 and Def. 4.9, it is clear that the leaves of the

contour tree must be local extrema. By Def. 2.10, p.13, there are t local

extrema. Since at least half of the nodes of a tree must be leaves, the size of

the contour tree is at least t + 1 and at most 2t− 1.2

4.7 Augmented Contour Tree

For some purposes, we may wish to know more information than that provided

by the contour tree. In particular, we may wish to know which non-critical

points in the mesh belong to which superarc. One method of doing this is to

augment the superarcs with all of the corresponding vertices, as follows:

Definition 4.17 The augmented contour tree, ACM of the mesh M is the

tree on the vertices of M such that xi and xj are adjacent in ACM if

1. xi and xj are both supernodes of the contour tree, Cj
i is a superarc of the

contour tree, and there is no vertex xk such that [γxk
] = Cj

i ,
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Figure 4.7: The Augmented Contour Tree corresponding to Fig. 4.3

2. xi is a supernode of the contour tree, xj is not a supernode of the contour

tree, [γxj ] = Ci
k and there is no vertex xm such that [γxm] = Ci

k, and

hj < hm < hi,

3. xi is a supernode of the contour tree, xj is not a supernode of the contour

tree, [γxj ] = Ck
i and there is no vertex xm such that [γxm ] = Ck

i , and

hi < hm < hj, or

4. xi and xj are not supernodes of the contour tree, [γxi] = [γxj ] = Ck
m, and

there is no vertex xp such that [γxp] = Ck
m, and hm is strictly between xi

and xj
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This definition strings the vertices belonging to a superarc out along

that superarc in sorted order (see Fig. 4.7). Each superarc has become a

path in the augmented contour tree. This path starts at the vertex where

the superarc is created, passes through all of the vertices belonging to the

superarc, and ends at the vertex where the superarc is deleted.

Lemma 4.5 If xi is an ordinary point in the mesh M , then xi has exactly two

neighbours xj and xk in ACM , and hj < hi < hk.

Proof: Proof is by exhaustion of the cases in Def. 4.17. By Def. 4.7,

‖C+
i ‖ = 1 and ‖C−

i ‖ = 1. Thus xi cannot be an endpoint of the superarc Cp
q of

the contour tree to which xi belongs. Consider xp, the supernode at the top of

Cp
q , and suppose that there is no vertex xk belonging to Cp

q such that hk > hi.

Then by Def. 4.17(2), xixp is an edge of ACM . Since xi belongs to exactly one

superarc, Cp
q , there can be no other supernode that satisfies Def. 4.17(2). And

since there is no xk belonging to Cp
q that is higher than xi, Def. 4.17(4) cannot

connect xi to any higher-valued vertex. This leaves two cases, both of which

require a supernode for the lower-valued vertex. Thus the only higher-valued

vertex connected to xi is xp.

If there is at least one vertex on Cp
q that is higher than xi, let xk be the

smallest-valued such vertex: a similar argument to the foregoing shows that

xk is the only higher-valued vertex connected to xi.

The same arguments then apply symmetrically to show that xi has

exactly one smaller-valued neighbour in ACM .2
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4.8 Contour Tree Algorithms

van Kreveld et al. [26] construct a contour tree on a simplicial mesh. Their

construction assumes that saddle points are simple (i.e. involve no more than

two contours splitting or joining). Multiple saddle points are split into multiple

simple saddle points.

The algorithm proceeds by sweeping through the values of the param-

eter, maintaining the level set at all times as a set of contours, each contour

being represented as a polygon. As the sweep passes through each vertex in

the mesh, the level set is updated locally. If the vertex is a (simple) saddle

point, either two contours join or two contours separate. In either case, a new

supernode is generated, and the superarcs corresponding to each contour are

set to terminate at the supernode. If two contours join at the saddle point, the

level set is updated in time proportional to the smaller of the two contours.

Similarly, a split is achieved in time proportional to the smaller of the two

resulting contours. This allowed van Kreveld et al.to prove an upper bound of

O(N log N ) time in two dimensions. The same algorithm in higher dimensions

resulted in a lower bound of O(N2) time, primarily due to the increased cost

of maintaining the level set in dimensions above two.

Tarasov & Vyalyi [23] extend the result of van Kreveld et al. [26] to

achieve a time of O(N log N ) in three dimensions. Again, the mesh is assumed

to be simplicial, and saddle points are assumed to be simple. The single sweep

in [26] is replaced by three sweeps. Two sweeps are performed to identify local

minima and maxima respectively: the third sweep then identifies and resolves
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saddle points in a way similar to [26]. Boundary cases are handled by special

cases within the algorithm.

Tarasov & Vyalyi’s assumption that saddle points are simple is justified

by a preprocessing step. This step involves a barycentric subdivision of each

simplex into 24 smaller simplices, and may also involve further subdivisions.

As a result, the size of the input data is magnified by a factor of 24 in all

cases, and 360 in the worst case. When combined with the cost of simplicial

subdivision (Sec. 9.1, p.91), this leads to a total magnification between 120

and 8640 for rectilinear data: this is prohibitive in practice.

I propose a new algorithm (Algorithm 7.2, p.84) for computing contour

trees over simplicial meshes with:

1. Time requirements of O(n log n + N + tα(t)) for constructing contour

trees, in any number of dimensions (Corollary 7.5, p.85),

2. Space requirements of O(n) working storage (Theorem 7.4, p.84),

3. Simple treatment of boundary effects, and

4. Simple treatment of multi-saddle points.

Before giving details of the algorithm, some preliminary results are nec-

essary. Ch. 5 deals with reconstructing trees from partial information. Ch. 6

then describes how to extract sufficient information from the data set to per-

form the reconstruction. Finally, Ch. 7 puts all the pieces together to produce

an algorithm.
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Chapter 5

Join Trees and Split Trees

This chapter presents some graph-theoretic results which form the basis of the

contour-tree construction algorithm in Ch. 7.

Recall that Def. 4.13, p.35, defined contour equivalence in terms of

components of the sets {x : f(x) ≥ h} and {x : f (x) ≤ h}. Def. 4.16, p.36

then defined the contour tree in terms of classes of equivalent contours over

the volume V . These contour classes reflect the underlying continuity of the

volume V .

In a graph, such as the mesh M underlying the interpolation function,

equivalence classes are rather less meaningful. However, connectivity still ex-

ists, and it is possible to define structures similar to the contour tree using only

the sets {x : x is a vertex and f (x) ≥ h} and {x : x is a vertex and f(x) ≤ h}.

The information represented by these sets is collected separately in two struc-

tures called the join tree and the split tree.

This chapter contains two results: the reconstruction of an unknown
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tree from its known join and split trees, and a demonstration that the join

tree and split tree for the mesh M are identical to the join and split trees for

the augmented contour tree ACM .

The following chapter (Ch. 6) gives an efficient algorithm to compute

the join and split trees of the mesh. Ch. 7 then unites the results in this

chapter and Ch. 6 to obtain the algorithm to construct the contour tree.

5.1 Definitions of Join and Split Trees

The join and split trees ignore the physical origin of the data: they are defined

over an abstract class of graphs, called height graphs. For any given height

graph, the join tree and split tree are then defined.

Definition 5.1 A height graph is a graph G, each of whose n vertices xi has

a unique height hi. As in Assn. 4.1, p.30, it is assumed that the vertices are

in sorted order, i.e. h1 < h2 < . . . < hn.

Definition 5.2 A C-tree is a height graph C that is also a tree.

Having defined height graphs, it is useful to consider what a height

graph looks like “above” a given vertex (see Fig. 5.1), i.e. to consider the

connectivity of the subgraph of all higher-valued vertices. This concept recurs

so frequently that a formal definition is in order:

Definition 5.3 The subgraph of a height graph G above hi, denoted Γ+
i (G),

is the subgraph of G induced by the vertices with height > hi.
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(a) The C-Tree (b) The subgraph above x8

Figure 5.1: A sample C-Tree and subgraph above x8

Definition 5.4 The subgraph of a height graph G below hi, denoted Γ−i (G),

is the subgraph of G induced by the vertices with height < hi.

I now define the join and split trees corresponding to a given height

graph. Although the join and split trees are notionally on the same set of

vertices as the height graph, the proofs become more intelligible if I adopt

the convention that xi is a vertex in a height graph (or C-tree), yi is the

corresponding vertex in the join tree, and zi the vertex in the split tree (see

Fig. 5.2 for the join and split tree corresponding to Fig. 5.1).

Definition 5.5 The join tree JG of a height graph G is a graph on the vertices

y1, . . . , y‖G‖ in which two vertices yi and yj, with hi < hj, are connected when:

1. xj is the smallest-valued vertex of some connected component γ of Γ+
i (G),
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(a) The Join Tree (b) The Split Tree

Figure 5.2: Join and Split Trees corresponding to Fig. 5.1

2. xi is adjacent in G to a vertex of γ, and

Definition 5.6 The split tree SG of a height graph G is a graph on the vertices

z1, . . . , z‖G‖ in which two vertices zi and zj, with hi > hj, are connected when:

1. xj is the largest-valued vertex of some connected component γ of Γ−i (G),

2. xi is adjacent in G to a vertex of γ, and

I now abandon height graphs temporarily, and work only with C-trees.

In order to simplify proofs, I rely on the observation that the join and split

trees are essentially the same, but for the direction of comparisons, so that:

Dual 5.1 Any property that holds for join trees holds for split trees, with

suitable modifications of up and down, higher and lower, < and >, &c.
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All such properties will be noted as “Duals” to the relevant theorems

and lemmas, without proof.

5.2 Vertex Degrees in Join and Split Trees

An important property of the join and split trees of a C-tree C is that the

degree of a vertex in C can be deduced from its degree in JC and SC. This

allows me to locate leaves of C without knowing C explicitly. Because the

vertex heights are of critical importance, I differentiate between arcs leading

“up” from a vertex, and those leading “down”. Similarly, I distinguish between

the “up-degree” and “down-degree.”

Definition 5.7 An up [down] arc is an arc from a vertex xi to a higher-

[lower-] valued vertex xj.

Definition 5.8 The up degree of a vertex xi, δ+(xi) is the number of up arcs

at xi.

Definition 5.9 The down degree of a vertex xi, δ−(xi) is the number of down

arcs at xi.

Once we have defined up and down arcs, it becomes meaningful to talk

of local and global extrema:

Definition 5.10 A local maximum [minimum] xi in a height graph is a vertex

with up [down] degree of 0.
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Definition 5.11 The global maximum [minimum] of a height graph is the

unique highest- [lowest-] valued vertex.

Since leaves have only one arc, it is easy to see that a leaf must be an

extremum. Either the arc is up, in which case the leaf is a local minimum,

or the arc is down, in which case the leaf is a local maximum. But not all

local extrema are leaves (for example, vertex 2 in Fig. 5.1): a vertex with up-

degree 2 and down-degree 0 is obviously not a leaf. It turns out to be critical

to differentiate between a leaf at the “top” of the C-tree, and a leaf at the

“bottom”, so I define:

Definition 5.12 An upper [lower] leaf of a C-tree is a vertex with up- [down-]

degree of 1, and down- [up-] degree of 0.

Having defined my terms, I now prove some results about the degrees

of vertices in the join and split trees. Recall that each vertex xi in C has

corresponding vertices yi in JC and zi in SC.

Theorem 5.2 Given a C-tree C and its corresponding join tree JC, δ+(xi) =

δ+(yi) for every vertex xi in C and corresponding yi in JC .

Proof: To prove this, I show that each up-arc xixj in C corresponds

1-1 with an up-arc yiyk in JC .

(⇒): Let xixj be an up-arc at xi in C (see Fig. 5.3). Then xj must

belong to some connected component γ in Γ+
i (C). I claim that no other vertex

xl adjacent to xi belongs to γ. Suppose there were another vertex xl in γ
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Figure 5.3: Components and Up-Arcs in the C-Tree

adjacent to xi. Since γ is a connected component, a path P from xj to xl

would have to exist in γ. Then P + xlxixj would be a cycle in C. But C is a

tree, and has no cycles, which contradicts the assumption that xi is adjacent

to more than one vertex in γ. Therefore, each up-arc at xi corresponds to a

component γ in Γ+
i (C).

Let xk be the unique smallest-valued vertex in γ. By Def. 5.5, yi is

connected to yk. Note that neither xj nor xk can belong to more than one

connected component γ in Γ+
i (C). It follows that, for each up-arc at xi, there

exists at least one up-arc at yi. 2

(⇐): Let yiyk be an up-arc at yi. By Def. 5.5, xk belongs to some

component γ in Γ+
i (C), and xi is connected to some vertex xj in γ. As with

(⇒), this xj must be unique, because C is a tree. Since hj > hi, we have

shown that there is an up-arc at xi in C corresponding to yiyk in JC.2

Dual 5.3 Given a C-tree C and its corresponding split tree SC, δ−(xi) =

δ−(zi) for every vertex xi in C and corresponding zi in SC .2
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From this result, it is trivial to use properties of JC and SC to identify

leaves of C:

Corollary 5.4 If δ+(yi) = 0 and δ−(zi) = 1, then xi is an upper leaf in C.

From Theorem 5.2 and Corollary 5.3, δ+(xi) = 0, and δ−(xi) = 1. From

Def. 5.12, it then follows that xi is an upper leaf in C.2

Dual 5.5 If δ−(zi) = 1 and δ+(yi) = 0, then xi is a lower leaf in C. 2

If the up-degrees in the join tree and C-tree are identical, what can be

said about the down-degree? Conveniently, the down-degree of a vertex in the

join tree will always be 1, except at the global minimum, where it will be 0.

Lemma 5.6 For each vertex yj in the join tree JC , δ−(yj) = 1 unless j = 1,

in which case δ−(y1) = 0.

Proof: Suppose that δ−(yj) > 1. Then there are two down arcs at yj ,

to yi and yk, with hi < hk < hj. From Def. 5.5, xj must be the smallest-valued

vertex of some component γ of Γ+
k (C), and xk is adjacent to some xl in γ.

Again applying Def. 5.5, xj belongs to some component ρ of Γ+
i (C). If

xm is a vertex of γ, it must be connected to xj by a path whose vertices all

have height > hj (else xj would not be the smallest-valued vertex of γ). Since

hi < hj, it follows that xm belongs to ρ, and that γ ⊆ ρ. Because xl ∈ γ, it

is also true that xl ∈ ρ, and since xkxl is an arc between two vertices that are

higher-valued than xi, it follows that xk ∈ ρ.
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From Def. 5.5, xj must be the smallest-valued vertex of ρ (otherwise

yjyi would not be an arc of JC). But hk < hj , and xk also belongs to ρ. By

contradiction, it follows that xj has down-degree ≤ 1.

To show that δ−(xj) = 1, count the arcs in JC and C. Since C is a tree

on n vertices, it must have n− 1 arcs. From Theorem 5.2, there are as many

arcs in JC as in C. Since no vertex may have down-degree > 1 in JC , there

must be n−1 vertices with down-degree 1, and one vertex with down-degree 0.

Trivially, the global minimum, y1, cannot have any down-arcs (since there are

no vertices with smaller value), and δ−(y1) = 0. Thus, if j 6= 1, δ−(yj) 6= 0. 2

Dual 5.7 For each vertex zj in the split tree SC, δ+(zj) = 1 unless j = n, in

which case δ+(zn) = 0.2

Corollary 5.8 The join tree JC of a C-tree C is a tree, and also a C-tree.

It is not difficult to see that JC is connected: each vertex except y1

must be connected to a lower-valued vertex. This vertex in turn connects to

another vertex with smaller value yet: this can only stop when y1 is reached:

thus, each vertex is connected by a path leading downwards to y1.

Suppose that there is a cycle K in JC with unique highest-valued vertex

yi. Because K is a cycle, yi must be adjacent to two other vertices of K, say

yj and yk. Since yi is the highest-valued vertex in K , the arcs yiyj and yiyk

must be down-arcs. But this contradicts Lemma 5.6, which allows yi to have

at most 1 down arc.

Since JC is both connected and acyclic, it must be a tree. And since

each vertex has a unique height associated, JC is also a C-tree.2
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Dual 5.9 The split tree SC of a C-tree C is a tree, and also a C-tree.2

5.3 Preliminaries to Reconstruction

The previous section showed that leaves of a contour tree C can be located

using the up- and down- degrees in JC and SC . This can be extended to

locate the incident arc to the leaf, then reduce JC and SC to smaller join and

split trees. This permits reconstruction of C from JC and SC with a recursive

algorithm.

The first step is to show that the incident arc to an upper [lower] leaf

is present in the join [split] tree:

Lemma 5.10 If xi is an upper leaf, and yiyj is the incident arc to yi in JC ,

then xixj is the incident arc to xi in C.

Proof: Let xi belong to some component γ in Γ+
j (C). I claim that xi

is the only vertex in γ.

Suppose not. Then, since γ is a connected component, there is some

other vertex xk in γ to which xi is connected. By Def. 5.5, xi is the smallest-

valued vertex in γ, so xixk must be an up-arc at xi. But, since xi is an upper

leaf, it has no up-arcs. It follows that xi is the only vertex in γ.

Applying Def. 5.5, we see that, if yiyj is an arc of JC, then xj must be

connected to some vertex in γ. But, since xi is the only vertex in γ, it follows

that xj is connected to xi.2
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Dual 5.11 If xi is a lower leaf, and zizj is the incident arc to zi, then xixj is

the incident arc to xi.2

For the recursive construction of C, we remove a leaf xi from C, and

calculate the new join and split trees directly from the old ones. Although

we aim to remove leaves, an upper leaf in C may not be a leaf in SC . In this

case, removing zi from SC may disconnect the split tree. Similarly, removing

a lower leaf may disconnect JC.

To avoid this, recall that the up-degree in SC is always 1 (Dual 5.7).

If the down-degree of xi in SC is more than 1, then the down-degree in C is

also more than 1 (Dual 5.3), so xi cannot be a leaf. Thus, xi has exactly one

up-arc in SC , and either 0 or 1 down-arcs. Similarly, if xi is a lower leaf, it has

exactly one down-arc in JC , and either 0 or 1 down-arcs.

In removing xi, we maintain connectivity by contracting the incident

arcs into a single arc, preserving connectedness. This operation will be called

reduction to distinguish it from the simple removal of a vertex from a graph

(Def. 5.14). Theorem 5.15 will then show that applying the reduction operation

gives the join and split trees of the new, smaller graph.

Definition 5.13 Define T ª xi, the reduction of a C-tree T by a vertex xi

whose up-degree and down-degree are both ≤ 1, to be (see Fig. 5.4):

1. If xi has arcs xixj up and xixk down in T , then: T ª xi = T\xi ∪ xjxk

2. Otherwise, T ª xi = T\xi
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Figure 5.4: Reduction of a C-tree

Lemma 5.12 Reduction does not increase the up- or down- degree of any

vertex.

Proof: This is easily observed, since the reduction deletes vertices and

arcs, and only adds arc xjxk when deleting xixj and xjxk.2

Definition 5.14 The subgraph of a graph G induced by removing a vertex

xi, denoted G\xi, is defined to be the subgraph of G which includes all vertices

of G except xi, and all arcs of G except those incident to xi.

Lemma 5.13 If xi is a leaf of a C-tree C, and yjyk is an arc of the corre-

sponding join tree JC such that hj < hk, and i 6= j, k, then yjyk is also an arc

of JC\xi.

Proof: For convenience, let C ′ refer to C\xi, and assume that paths

have no repeated vertices.

Let P be any path in C. Since xi is a leaf, this means that xi cannot

be on P (any path through xi would have to duplicate an edge, and therefore
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a vertex). Since xi is not on P , the path P also exists in C ′.

By Def. 5.5, xj is adjacent to some vertex xl in the component γ of

Γ+
j (C) to which xk belongs: i.e. there exists some path P from xl to xk in

γ with no repeated vertices. But then P also exists in C ′, and therefore also

exists in Γ+
j (C ′). Since xjxl is also in C ′, xj is adjacent to the component γ′

of Γ+
j (C ′) to which xk belongs.

Note that each path P connecting two vertices of γ will also be in γ′,

except for paths starting or ending at xi: thus the vertices of γ are the same

as those of γ′, with the possible exception of xi. It then follows that xk is the

smallest-valued vertex of γ′, so by Def. 5.5, yj is adjacent to yk in JC ′.2

Corollary 5.14 JC ª yi is contained in JC\xi
.

Proof: This follows from the observation that every arc of JC that is

not incident to yi is also in JC\xi
.2

Theorem 5.15 If xi is a leaf of a C-tree C, then JC\xi = JC ª yi.

Proof: In Corollary 5.14, I showed that JC\xi
contains all of the arcs

of JC that are not incident to yi. I now show that the two are equivalent. For

convenience, I will use C ′ to refer to C\xi. I separate the proof into three

cases: xi is an upper leaf, xi is the global minimum, or xi is a lower leaf (other

than the global minimum):

Case I: xi is an upper leaf:

If xi is an upper leaf, it has a down-arc, and cannot be the global

minimum x1. By Lemma 5.6, yi has one down-arc, say yiyj . Since JC is a
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tree with n − 1 arcs (by Corollary 5.8), this leaves n− 2 arcs of JC that are

not incident to yi. But, by Lemma 5.13, each of these arcs must be in JC′ .

Since JC ′ is a tree on n− 1 vertices, it has n − 2 arcs in total, and it follows

that JC\yi = JC′ . Since xi is an upper leaf, yi has no incident up-arc, and by

Def. 5.13, part 2, JC′ = JC\yi = JC ª yi.

Case II: xi is the global minimum:

By hypothesis, xi is a leaf, so δ+(xi) = 1 and δ−(xi) = 0. By Theo-

rem 5.2, δ+(yi) = 1, and by Lemma 5.6, δ−(yi) = 0. Again, there are n−2 arcs

of JC that are not incident to yi, each of which is also in JC′ , by Lemma 5.13,

and JC\yi = JC′ . Since xi is the global minimum, yi has no down-arc, and by

Def. 5.13, part 2, JC′ = JC\yi = JC ª yi.

Case III: xi is a lower leaf other than the global minimum:

By hypothesis, xi is a lower leaf, so δ+(xi) = 1 and δ−(xi) = 0. By

Theorem 5.2, δ+(yi) = 1, and by Lemma 5.6, δ−(yi) = 1. This leaves n − 3

arcs of JC which are not incident to yi, and by Lemma 5.13, each of them is

also an arc of JC′ . Since JC′ is a tree on n− 1 vertices, it has n− 2 arcs, so

there is only one arc left unaccounted for.

Let the down-arc at yi be yiyj , and the up-arc be yiyk (see Fig. 5.5). I

claim that yjyk is an arc of JC′ . From Def. 5.5, xi belongs to some component

γ of Γ+
j (C), and xj is adjacent to some vertex xl in γ. Note that xlxj must be

a down-arc, and since xi has no down-arcs, xl cannot be xi. Also, since xi is

the smallest-valued vertex in γ, hi < hl.

Consider the component ρ of Γ+
i (C) to which xk belongs. Since each
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Figure 5.5: Reducing a Join Tree at a Lower Leaf

vertex of ρ has value ≥ hk, and hk > hj , ρ ⊆ γ, and xk must be in γ. Since xi

is the smallest-valued vertex of γ, the only arc of γ that is not in ρ must be

the arc incident to xi, so ρ = γ\xi. But this must be a component of Γ+
i (C ′).

Since xl 6= xi, it follows that xl must have been connected to xi in γ, as was

xk. Then xl must be connected to xk by a path whose vertices all have values

> hi. Therefore, xl and xk belong to the same component of ρ, and since xk

is the smallest-valued vertex of δ\xi, yj must be connected to yk in JC′ .

Note that yjyk cannot be an arc in JC , because yiyjyk would then be

a cycle in JC , and JC is known to be a tree by Corollary 5.8. Thus, I have

added an arc to the n− 3 arcs that we had already shown to be in JC′ , for a

total of n− 2. Since JC′ is a tree on n− 1 vertices, there are no more arcs to

be found in JC′ .

From Corollary 5.14, JC\yi ⊂ JC′ , I have just shown that yjyk is the

one remaining arc of JC ′., so JC′ = JC\yi ∪ yiyj. Since yi had an up-arc yiyk

and a down-arc yiyj, it follows by Def. 5.13, part 1, that JC′ = JC ª yi.

Thus, in all three cases, JC ′ = JC ª yi.2
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ReconstructCTree(join tree JC, split tree SC) returns C-tree C:

1. Base Case: If ‖JC‖ ≤ 2, let C = JC.

2. Recursive Case:

(a) Choose an index i such that δ+(yi) = 1 and δ−(zi) = 0 (a lower
leaf), or δ+(yi) = 0 and δ−(zi) = 1 (an upper leaf).

(b) If xi is an upper leaf, find the incident arc yiyj in JC: if xi is a lower
leaf, find the incident arc zizj in SC .

(c) Let J ′ = JC ª yi, and S ′ = SC ª zi)

(d) Let C ′ = ReconstructCTree(J ′, S ′)

(e) Let C = C ′ ∪ xixj

Figure 5.6: Basic Reconstruction Algorithm

Dual 5.16 If xi is a leaf of a C-tree C, then SC\xi = SC ª zi.2

5.4 Basic Reconstruction Algorithm

In the previous sections, I have shown a number of properties of the join and

split trees. I now put these together to obtain a recursive algorithm that

reconstructs C from JC and SC:

Algorithm 5.1 Algorithm to Reconstruct a C-Tree:

In this algorithm (Fig. 5.6), recall the convention that the vertex xi in

the C-tree C corresponds to the vertex yi in the join tree JC and to the vertex

zi in the split tree SC.

Theorem 5.17 Given a join tree JC and the corresponding split tree SC for

a C-tree C, Algorithm 5.1 correctly reconstructs the C-tree C.
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Proof: Proof is by induction on the size of JC . Note that JC, SC, and

C are all the same size.

Base case: ‖JC‖ ≤ 2.

Since C and JC are C-trees, and there is only one possible C-tree on

each of 0, 1, and 2 vertices, C is correctly computed by Step 1.

Inductive case: Assume that the algorithm works correctly for ‖JC‖ <

k, and show that it works correctly for ‖JC‖ = k:

By Corollary 5.4, Step 2a correctly identifies a leaf of C from properties

of JC and SC only.

By Lemma 5.10, Step 2b correctly identifies the arc of C that is incident

to xi.

By Theorem 5.15, Step 2c correctly constructs JC\xi
and SC\xi

.

By the inductive hypothesis, since ‖JC\xi‖ = k−1, ReconstructCTree()

returns C\xi.

We have already observed that xixj is the arc of C that is incident to

xi. Thus, since C is a tree on k vertices, and C ′ = C\xi is a tree on k − 1

vertices, Step 2e correctly computes C. 2

5.5 Improved Reconstruction Algorithm

A straightforward implementation of Algorithm 5.1 is quadratic in the size of

the C-tree, but improvements are possible, based on the following observations:

1. Leaves in C other than the xi chosen will remain leaves in C\xi (from

Lemma 5.12, and the observation that C\xi is a tree).
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2. After constructing J ′ and S′, JC and SC are no longer needed

3. Before adding xixj to C ′, C is not needed.

4. The arcs xixj identified on different recursive levels are disjoint.

These observations allow elimination of tail-recursion, and result in a

much more efficient algorithm, by making the following changes:

1. a queue containing the leaves of C is maintained at all times.

2. J ′ and S ′ are constructed by reducing JC and SC in place, rather than

making copies.

3. C starts off empty, and is constructed in place, adding each xixj as it is

identified

Algorithm 5.2 Improved Algorithm to Reconstruct a C-Tree:

In this algorithm (Fig. 5.7), I assume that the join tree JC and split tree

SC are constructed using adjacency lists using half-arcs: that is, each arc yiyj

in JC is stored as a directed arc α in yi’s adjacency list, linked to a directed

arc α′ in yj ’s adjacency list.

Theorem 5.18 Given a valid join tree JC and the corresponding valid split

tree SC, Algorithm 5.2 correctly reconstructs the C-tree C.

Proof: Since JC and SC are not used after constructing JC\xi and SC\xi ,

reducing JC and SC in Step 3d, does not affect the correctness of the algorithm.
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ImprovedReconstructCTree(join tree JC, split tree SC) returns C-tree C:

1. For each vertex xi, if up-degree in JC + down-degree in SC is 1, queue xi

2. Initialize C to an empty graph on ‖JC‖ vertices

3. While queue size > 1

(a) Dequeue the first vertex on the leaf queue xi

(b) If xi is an upper leaf, find incident arc yiyj in JC . Otherwise, xi is
a lower leaf, so find incident arc zizj in SC .

(c) Add xixj to C.

(d) JC ← JC ª yi, SC ← SC ª zi.

(e) Test whether xj is a leaf, and if so, transfer to leaf queue if it if not
already on leaf queue.

Figure 5.7: Improved Reconstruction Algorithm

Similarly, since the arcs chosen at each iteration are disjoint, building C in

place in Step 3c does not affect the correctness, either.

Correctness then depends upon the invariant that the leaf queue con-

tains all vertices of C ′ at all times, where C ′ is the reduced C-tree that corre-

sponds to the reduced join and split trees. Initially, all vertices are scanned,

and the leaves placed on the queue. From Lemma 5.12, the degree of vertices

in JC and SC never increase as reductions take place. Since the up-degree of

a vertex in C ′ matches the up-degree in JC , and the down-degree matches the

down-degree in SC, it follows that the degrees in C ′ never increase. Also, since

C ′ must remain a tree at all times, the degree of a leaf on the queue cannot

decrease (this would result in a vertex with degree 0, disconnecting the tree).
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From the mechanics of reduction in the join tree, either an upper leaf,

the global minimum, or a lower leaf is reduced.

Case I: xi is an upper leaf:

Theorem 5.15 showed that yi is adjacent to precisely one vertex yj . It

then follows that yj has its degree reduced by 1, and that all other vertices

retain their degree after the reduction. In this case, Step 3e maintains the

property as required.

Case II: xi is a lower leaf other than the global minimum:

If xi was a lower leaf other than the global minimum, Theorem 5.15

shows that yi is between yj and yk: we replace yiyj and yiyk with yjyk: in

this case, neither yj nor yk has its degree reduced, so yj does not become a

leaf, unless it already was, and neither does yk. Again, Step 3e maintains the

property as required.

Case III: xi is the global minimum:

If xi is the global minimum, zi is adjacent to some zj, and by Corol-

lary 5.11, xi is adjacent to xj. Since xi is the global minimum, yi has no

down arcs, and must have at least one up arc. But since xi is a leaf, δ+(xi) =

δ+(yi) = 1. Let the up arc from yi be yiyk. If yk is yj, then deleting yi from

JC makes yj the new global minimum, and does not change the degree of any

other vertex of JC . It then follows that Step 3e maintains the property as

required.

Otherwise, yj is not the same as yk. By Def. 5.5, xk is the smallest-

valued vertex of some component γ in Γ+
i (C). Also, because xi is a leaf,
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Figure 5.8: The Leaf Queue and the Global Minimum

and adjacent to xj, xi cannot be adjacent to xk. Thus, since xi is the global

minimum, xk is not adjacent to any xm in C such that hm < hk, which is to

say that δ−(xk) = 0 and δ−(zk) = 0 before the reduction takes place.

Since hi < hk, deleting the arc yiyk cannot affect δ+(yk), and by The-

orem 5.2, δ+(xk) is also unaffected. I now break into subcases depending on

the up-degree of xk (which is the same as the up-degree of yk):

Subcase IIIa: δ+(yk) = 1:

Since δ−(zk) = 0, xk was a lower leaf before the reduction took place,

by Corollary 5.5. Thus, by the invariant, xk was already on the leaf queue,

and does not need to be tested at this iteration.

Subcase IIIb: δ+(yk) > 1:

If δ+(yk) > 1 before reduction, δ+(yk) > 1 after reduction, and xk does

not need to be tested at this iteration. Step 3e maintains the property as

required.

Subcase IIIc: δ+(yk) = 0:

This case can never happen. To see this, observe that JC is a tree

(Corollary 5.8), and δ−(yk) = 1 before reduction (Lemma 5.6). After deleting
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yiyk from JC , δ+(yk) = δ−(yk) = 0, which is only possible if JC has size 1.

But in this case, there can be no other vertex yj in JC, which contradicts the

assumption that xi was connected to xj in C. Thus it follows that δ+(yk) 6= 0

before reduction.

I have now shown that, in all cases that can occur, Step 3e maintains

the invariant.2

Theorem 5.19 Algorithm 5.2 takes O(t) time and space to reconstruct a C-

tree C with t vertices.

Proof: Again, we consider the time and space requirements for each

step:

1. Step 1 takes O(1) time to test each vertex to see if it is a leaf. Since a

leaf has maximum degree 2 in either the join or split tree, it takes O(1)

time to test each vertex, for a total of O(t) time to check all vertices.

2. Step 2 takes at most O(t) time to initialize C.

3. Step 3 iterates t−1 times, since one arc is added to C on each iteration.

(a) Step 3a dequeues the first vertex on the leaf queue xi in O(1) time

(b) Step 3b takes O(1) time to locate the arc in JC or SC.

(c) Step 3c takes O(1) time to add the arc to C.

(d) Step 3d takes O(1) time to reduce JC and SC. Since xi is a leaf,

yi has maximum degree of 2, and the arcs yiyj and yiyk can be

located in O(1) time each for deletion. Since the arcs are stored
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using half-arcs in adjacency lists have half-arcs at each vertex, yjyk

can be added as follows: Locate the half-arcs α and β from yi to yj

and yk. For each of these arcs, find the corresponding half-arc α′

and β′. Delete α and β, and connect α′ to β′. This takes at most 3

operations to reduce each tree, each of which is performed in O(1)

time.

(e) Step 3e tests whether xj is a leaf in O(1) time, and if so, transfers

it to the leaf queue in O(1) time.

Summing up the time required for the algorithm gives a total of O(t)

time. O(t) space is required to store each of JC, SC, and C, since they are

trees on t vertices. The leaf queue will also require O(t) space, for a total of

O(t) space required.2

5.6 Join Trees of the Mesh & the Contour Tree

The algorithm described in the previous section is useful only if we have a

convenient way of obtaining the join and split trees for the contour tree. For-

tunately, the join and split trees for the augmented contour tree are identical

to those for the mesh. To show this, I start with the trivial observation that

the contour tree is a C-tree: this implies that the join tree is well-defined, and

that the algorithm in the previous section can reconstruct the contour tree

correctly.

Lemma 5.20 The contour tree C of a mesh M is a C-tree.
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Proof: Def. 5.1 defines a height graph to be a graph whose vertices

have heights associated, in sorted order. We know from Def. 4.16, p.36 that

the vertices of the contour tree are finite contour classes, and are thus associ-

ated with the vertices x1, . . . , xn, which are assumed to be in sorted order by

Assn. 4.1, p.30. Thus a contour tree is a height graph.

Def. 5.2 defines a C-tree to be a height graph that is also a tree. By

Lemma 4.3, p.38, we know that the contour tree is a tree when the mesh is

connected. Since this is the case that interests us, it then follows that the

contour tree is a C-tree.2

In Def. 4.16, p.36, I defined the contour tree to be a tree whose vertices

were the critical points of the mesh. In Def. 5.5, I defined the join tree so that

it included all the vertices of the mesh. Clearly, these two vertex sets need not

be the same. However, I also defined the augmented contour tree in Sec. 4.7,

p.41 in such a way that it included all the vertices of the mesh. Thus, if I can

relate the join tree of the mesh to that of the augmented contour tree, it only

remains to reduce the augmented contour tree to the contour tree.

I will show that the components of the subgraphs above [below] any ver-

tex in the augmented contour tree are essentially identical to the corresponding

components of the mesh, but first, I must prove a preliminary result:

Lemma 5.21 xi and xj belong to the same component of Γ+
k (M) precisely

when xi and xj belong to the same component of {x : f(x) > hk}.

Proof:
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Figure 5.9: Constructing a graph path from a path in space

(⇒): It suffices to show that this is true for any xi and xj connected

in the mesh M by the edge xixj . From Assn. 1.4, p.7, the interpolation is

piecewise-linear over the cells of the mesh. Any point x on the edge xixj must

have a value between those of xi and xj: thus x belongs to {x : f(x) > hk}.

Since this is true for all points along the edge, xi and xj must belong to the

same connected component of {x : f(x) > hk}.

(⇐): Let xi and xj be connected in {x : f(x) > hk}. Then there exists

some path P from xi to xj such that f(p) > hk for all points p in P (see

Fig. 5.9). Since the mesh is assumed to be simplicial (Assn. 1.3, p.7), the

path P is completely contained by the sequence of simplices through which it

passes. If a vertex of one of these simplices has value > hk, then the vertex

belongs to the same component of {x : f(x) > hk} as P (by Assn. 1.4, p.7).
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Similarly, any edge between two vertices of a simplex on the path is in the

same component if both ends of the edge have value > hk. P may only enter

and exit a simplex through faces which have at least one vertex higher than

xk. Pick the highest vertices xp and xq on the entry and exit faces. Since these

vertices are in the same simplex, they are adjacent, and the edge xpxq is in

{x : f(x) > hk}. Thus, I can replace the path P with a path Q which travels

only along edges of the mesh: this path Q must also exist in Γ+
k (M ), since it

is composed of edges between vertices with values > hk. It then follows that

xi and xj belong to the same connected component of Γ+
k (M ).2

Dual 5.22 xi and xj belong to the same component of Γ−k (M ) precisely when

xi and xj belong to the same component of {x : f (x) < hk}.2

Lemma 5.23 For each component in Γ+
i (ACM) (where ACM is the augmented

contour tree for the mesh M), there exists a component in Γ+
i (M) containing

exactly the same vertices.

Proof: Proof is by finite induction, starting with the highest vertex xn,

for which the property is trivially true.

Assuming that the hypothesis is true for k ≤ i ≤ n, I now consider

the vertex xk−1: the only difference between the components of Γ+
k (M ) and

Γ+
k−1(M ) is that the up-arcs from xk have been added to the latter. Thus, I

break the proof into three cases: local maxima, joins, and other points:

Case I: xk is a local maximum:

Since xk has no up-arcs, there are no edges added to Γ+
k (M) to obtain

Γ+
k−1(M ). What is the corresponding change in the augmented contour tree?
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Figure 5.10: Region Representing an Edge in Augmented Contour Tree

From Def. 4.16, p.36, a local maximum only has one edge: this descends from

it. Thus, since xk is not adjacent to any components of Γ+
k (M ), no edges are

added to Γ+
k (ACM) to obtain Γ+

k−1(ACM). By the inductive hypothesis, the

components of Γ+
k (M) and Γ+

k (ACM) contain the same vertices. It then follows

that the components of Γ+
k−1(M ) and Γ+

k−1(ACM) contain the same vertices.

Case II: xk is a join:

Suppose that xk is adjacent to xj in ACM , with hk < hj. From Def. 4.17,

p.41, xk and xj both either belong to some superarc, or are endpoints of it.

Since the superarcs and supernodes correspond to connected contour classes,

I take the union of these contour classes, and obtain a connected set in the

original space of points with values between hk and hj. Therefore, there is a

path P from xk to xj in this set (see Fig. 5.10).
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But this set is contained in some component γ of {x : f(x) > hk−1}. So,

by Lemma 5.21, xk and xj must also be connected in Γ+
k−1(M). This is true

for each edge xkxj in ACM (with hk < hj). Also, the components of Γ+
k (M )

and {x : f(x) > hk} have the same vertex sets by the induction hypothesis.

Thus, it follows that xk is connected to the same components of Γ+
k (M ) in M

as in ACM .

As a result, the component of Γ+
k−1(M ) to which xk belongs will corre-

spond directly to the component of {x : f(x) > hk−1} to which xk belongs.

Components to which xk does not connect will be unaffected, so we conclude

that the components of Γ+
k−1(M) and Γ+

k−1(ACM) contain the same vertices,

as required.

Case III: xk is neither a join nor a local maximum:

In this case, xk is adjacent to only one component of Γ+
k (M ), and an

argument similar to that of Case II applies to show that the components of

Γ+
k−1(M ) and Γ+

k−1(ACM) contain the same vertices.2

Dual 5.24 For each component in Γ−i (ACM), there exists a component in

Γ−i (M) containing exactly the same vertices.2

A corollary of this result is that the augmented contour tree has the

same join tree as the mesh does:

Corollary 5.25 The augmented contour tree ACM and the mesh M have the

same join tree (i.e. JACM = JM).

Proof: In Def. 5.5, I defined the join tree of a height graph G in terms of

the components of Γ+
i (G). By Lemma 5.23, these components are identical in
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ACM and M , and we saw in the proof of the theorem that xi will be connected

to the same components of Γ+
i (ACM) and Γ+

i (M). It follows immediately from

Def. 5.5 that JACM
= JM .2

Dual 5.26 The augmented contour tree ACM and the mesh M have the same

split tree (i.e. SACM = SM).2
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Chapter 6

Join & Split Trees of the Mesh

The contour tree is useful because it represents the topology of the level sets

in the data. Taking a cross-section of the contour tree at a given height h gives

us the connectivity of the level set {x : f(x) = h}.

Corresponding to this property, it can be shown that the join tree and

split tree of the mesh give us the connectivity of the sets {x : f(x) ≥ h}

and {x : f(x) ≤ h} respectively: the interior and exterior of the level set.

Describing these sets as “interior” and “exterior” is consistent with sweeping

through the isovalues from high to low: the interior is the set of points enclosed

by the level set as it expands “outwards.”

This property, although illustrative, is not necessary for what follows:

an algorithm for the construction of the join and split trees of a sorted sim-

plicial mesh in O(Nα(N)) time and O(n) space. The following chapter uses

this algorithm, and the algorithms demonstrated in the previous chapter, to

construct the contour tree for the mesh.
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Throughout this chapter, I shall use M to refer to the simplicial mesh

that fills the spatial volume. Since each vertex xi of M has an associated height

hi, in sorted order, M satisfies the definition of a height graph in Def. 5.1, p.47.

6.1 Construction of the Join Tree

From Def. 5.5, p.48, each vertex yi of JM must be connected to the smallest-

valued vertex in each component in Γ+
i (M). At yi, these components will

merge: at lower values of i, there will be one component corresponding to all

of them. This property makes it possible to use Tarjan’s discrete set union

algorithm [24] to compute JM .

Tarjan’s algorithm progressively constructs the connectivity of sub-

graphs of M by adding edges to the union-find structure, in any arbitrary

order. At each step, the union-find structure represents the connectivity of

the subgraph of M induced by the edges already added.

Each edge xjxi in M runs from a “higher” end xj to a “lower” end

xi (i.e. hj > hi, or j > i). Since Tarjan’s algorithm does not require any

particular order, I add the edges of M to the union-find structure in order of

the height of the lower end. This leads to the following algorithm:

Algorithm 6.1 Algorithm To Construct JM :

In the algorithm (Fig. 6.1), the only item added to the usual union-

find representation is LowestVertex, which stores the lowest vertex for each

component: this allows me to add edges to the join tree at each step.
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1. for i := n downto 1 do:

(a) Component[i] := NONE

(b) for each vertex xj adjacent to xi

(i). if (j < i) or (Component[i] = Component[j]) skip xj

(ii). if Component[i] = NONE

(A). Component[i] := Component[j]
else

(B). UFMerge(Component[i], Component[j])

(iii). AddEdgeToJoinTree(yi, LowestVertex[Component[j]])

(iv). LowestVertex[Component[j]] := yi

(c) if Component[i] = NONE

(i). Component[i] := i

(ii). LowestVertex[i] := yi

Figure 6.1: Algorithm to Construct Join Tree

To show that this algorithm correctly computes JM , I shall prove by

induction that the components in the union-find structure correspond directly

with the components of Γ+
i (M) immediately before iteration i. Next I show

that LowestVertex holds the lowest vertex in each component. Finally, I shall

show that Step 1(b)(iii) generates all the edges of JM .

Lemma 6.1 Immediately before step i, the components of the union-find struc-

ture used by Algorithm 6.1 correspond to the components of Γ+
i (M).

Proof: Proof is by finite induction, with base case of i = n. In this

base case, the union-find structure is empty, and Γ+
n (M ) contains no vertices.

Since neither has any components, the correspondence is obvious.

I assume, therefore, that the result is true for k ≤ i ≤ n, and show that
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the result holds for k − 1. The proof now breaks into three cases, depending

on whether xk is adjacent to 0, 1, or ≥ 2 components of Γ+
k (M).

Case I: xk has no components adjacent yet:

Since vertices xn to xk+1 have already been processed, this means that

xk is not adjacent to any higher vertices. Thus xk is a local maximum, and

j < k for every vertex xj adjacent to xk. Accordingly, Step 1(b)(i) causes the

algorithm to skip each of these vertices, and when Step 1b completes, Step 1c

executes, setting xk to represent a new component in the union-find structure.

This corresponds to the component {xk} in Γ+
k−1(M). Any other component

in Γ+
k−1(M) must consist solely of vertices higher than xk. By the inductive

hypothesis, these were correctly represented prior to step k. Since step k does

not merge any of these components, it follows that these components are still

correctly represented in the union-find structure.

Case II: All adjacent vertices higher than xk belong to one

component:

In this case, xk is adjacent to vertices of exactly one component in

Γ+
k (M). When the first of these vertices is encountered, Step 1(b)(ii)(A) adds

xk to the component. Subsequent neighbours higher than xk all belong to this

same component, and are skipped due to Step 1(b)(i). Thus, xk is added to

the component, and all other components are left untouched.

Case III: Adjacent vertices higher than xk belong to more than

one component:

As in Case II, Step 1(b)(ii)(A) adds xk to the first component encoun-
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tered adjacent to xk. When the first vertex from a different component is

encountered, Step 1(b)(ii)(B) merges the two components together: subse-

quent adjacent vertices belonging to either of these components will then be

skipped at Step 1(b)(i). Thus, the first vertex from each adjacent component

causes that component to merge onto xk’s component. As in the previous

cases, components not adjacent to xk are unaffected.

The result then follows by induction.2

Lemma 6.2 For each component γ in Γ+
i (M ), LowestVertex[γ] holds the small-

est vertex in γ before step i of Algorithm 6.1.

Proof: Again, proof is by finite induction on i. The base case is trivial:

no components exist before step n. In Case I of Lemma 6.1, I showed that

Step 1(b)(ii) is never reached: only Step 1c is executed, creating a component

containing only xk. Step 1(c)(ii) then sets it’s lowest vertex correctly to xk.

In Case II of Lemma 6.1, I showed that Step 1(b)(ii)(A) adds xk to an

existing component. Step 1(b)(iv) then sets the lowest vertex of this compo-

nent to xk. Since the only vertices in this component prior to step k were higher

than xk, xk is in fact the lowest vertex: other components are unaffected.

In Case III of Lemma 6.1, I showed that all components adjacent to

xk were merged by Step 1(b)(ii)(B): Step 1(b)(iv) then sets the lowest vertex

correctly to xk.

The result again follows by induction.2

Theorem 6.3 Algorithm 6.1 correctly computes JM .
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Proof: The two preceding lemmas (Lemma 6.1 and Lemma 6.2) have

established that the union-find represents the components of Γ+
i (M) at step

i, and that LowestVertex holds the smallest-valued vertex of each component

at the same time.

From Def. 5.5, p.48, we see that yi is connected to yj in JM precisely

when xj is the smallest-valued vertex of a component γ of Γ+
i (M ), and xi is

adjacent to some vertex in γ. But this is exactly the edge we add to the join

tree in Step 1(b)(iii). It follows that the result is JM .2

Theorem 6.4 Algorithm 6.1 computes JM in O(N + tα(t)) time and O(n)

space.

Proof: The steps of the algorithm each execute the following number

of times:

1. Step 1 executes n times

2. Step 1a executes once per loop, for a total of n times

3. Step 1b executes once for each incident edge at each vertex, or twice

for each edge in the mesh in total. As noted in Def. 2.8, p.12, the total

number of edges in a simplicial mesh is O(N ).

4. Step 1(b)(i) executes once per edge (at the lower end): a total of O(N )

times.

5. Step 1(b)(ii) executes at most once per vertex: a total of O(n) times,

with O(1) work on each execution
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6. Step 1(b)(ii)(B) performs at most t merges, for a total time of O(tα(t))

7. Step 1c executes once for each local maximum, for a total of O(t) times.

Summing these times up, we get a total of O(N + n + tα(t)), which

simplifies to O(N + tα(t)). Space requirements are O(n) for the union-find

structure, O(n) for the lowest vertex, and O(n) for the join tree that is created,

for a total of O(n) space.2

Dual 6.5 By the same duality observed in Dual 5.1, p.49, the split tree SM

may be computed in O(N + tα(t)) time and O(n) space.2
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Chapter 7

Contour Tree Construction

Algorithm

In the previous chapters, I have defined the contour tree (Ch. 4), described

how to reconstruct a C-tree from join and split trees (Ch. 5), and shown how

to compute the join and split trees of the mesh efficiently (Ch. 6). In this

chapter, I put these pieces together to get an efficient algorithm for computing

the contour tree of the entire mesh.

7.1 Constructing the Augmented Contour Tree

In Sec. 5.6, p.68, I showed that the mesh and the augmented contour tree have

identical join and split trees. From this, Algorithm 6.1, p.76 and Algorithm 5.2,

p.63, I can now assemble an algorithm to compute the augmented contour tree:

Algorithm 7.1 Algorithm to construct the Augmented Contour Tree
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Given a mesh M , compute the augmented contour tree ACM as follows:

1. Use Algorithm 6.1, p.76 to compute the join and split trees JM and SM .

2. Use Algorithm 5.2, p.63 to compute ACM from JM and SM .

Theorem 7.1 Algorithm 7.1 correctly constructs the augmented contour tree

for the mesh M .

Proof: By Theorem 6.3, p.79, Step 1 correctly computes JM and SM .

By Corollary 5.25 and Dual 5.26, these are identical to JACM
and SACM

. And

by Theorem 5.18, p.63, Step 2 correctly computes ACM .2

Theorem 7.2 Algorithm 7.1 computes the augmented contour tree for the

mesh M in O(N + tα(t)) time and O(n) working space.

Proof: By Theorem 6.4, p.80, Step 1 takes O(N + tα(t)) time and

O(n) space. By Theorem 5.19, p.67, Step 2 takes O(n) time and space. Since

n = O(N ), the result follows.2

7.2 Constructing the Contour Tree

I have now given an algorithm for computing the augmented contour tree.

But what of the contour tree itself? Fortunately, it is easy to compute the

contour tree from the augmented contour tree by using the reduction operation

defined in Def. 5.13, p.56. This leads to the following algorithm for computing

the contour tree:
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Algorithm 7.2 Algorithm to construct the Contour Tree

Given a mesh M , we compute the contour tree C as follows:

1. Use Algorithm 7.1 to compute the augmented contour tree AC

2. For each vertex xi in AC

(a) If δ+(i) = δ−(i) = 1

(i). Reduce vertex xi

Theorem 7.3 Algorithm 7.2 correctly constructs the contour tree for the mesh

M .

Proof: By Theorem 7.1, p.83, Step 1 correctly computes the augmented

contour tree AC. In Sec. 4.7, p.41, I observed that the ordinary points of the

mesh were inserted into the superarcs to which they belonged, and that each

ordinary point has one up-arc, and one down-arc. This is not true for critical

points, since these will always have either the up-degree or down-degree 6= 1

Thus, Step 2a correctly identifies the ordinary points in the contour

tree, and Step 2(a)(i) correctly removes them from the contour tree.2

Theorem 7.4 Algorithm 7.2 computes the contour tree for the mesh M in

O(N + tα(t)) time and O(n) working space, and requires O(t) output size.

Proof: By Theorem 7.2, Step 1 requires O(N + tα(t)) time and O(n)

working space. Step 2 executes O(n) times, but, as in Theorem 5.19, p.67,

Step 2a and Step 2(a)(i) take O(1) time for each vertex. This gives a total of
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O(N + tα(t)) time and O(n) working space. The output is the contour tree,

which requires O(t) space. 2

Although Algorithm 7.2 correctly computes the contour tree, note that

it assumes that the vertices x1, . . . , xn are in sorted order. If this is not the

case, then the cost of sorting must be included:

Corollary 7.5 Algorithm 7.2 computes the contour tree for an unsorted mesh

in O(n log n + N + tα(t)) time and O(n) working space.2

Finally, some small optimizations of this algorithm are possible. If the

augmented contour tree is not required, it is possible to use the reduction

operation to suppress ordinary points during the computation of the join and

split trees (see Algorithm 6.1, p.76). In this case, we store the HighestVertex

for each component as well as the LowestVertex, and only generate a join tree

arc at a join or the global minimum. Note that splits and local minima will

not be represented in this join tree: they must be inserted.

Fortunately, all splits and local minima are identified in the split tree.

If sufficient information is retained from the join tree computation, it is easy

to determine which arc of the join tree the splits and local minima belong to.

Inserting these vertices on this arc in sorted order then gives the correct join

tree for the contour tree. Since the vertices are already sorted, this can be

done in O(1) time per vertex, for a maximum of O(t) time. However, doing

this adds a significant amount of complexity for relatively little gain, since the

augmented contour tree is used for the purpose of generating seed sets (see

next chapter).
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It appears to be possible to avoid the O(n log n) cost for sorting the

vertices. To do this, note that, for each vertex xi, we need to know the

components in the union-find of it’s neighbours only: this does not depend on

a global ordering of the vertices. If components are ”grown” downwards from

each local maximum, it should be possible to avoid sorting entirely. However,

this would require separate search queues for each local maximum: this makes

the algorithm much more complex, and is likely to be prohibitive in practice.

Note that the O(n log n) in this algorithm is entirely due to the sort,

and not due to the cost of building a data structure. Since sorting can usually

be done efficiently in practice, the cost of sorting may not be a major concern.
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Chapter 8

Generating Seeds

The contour tree represents the connectivity of all level sets: to generate the

isosurfaces, we need seeds for contour-following (Sec. 3.5.1). I start by com-

puting both the contour tree and the augmented contour tree. The contour

tree is used to identify which superarcs intersect the desired level set: this can

be done by searching all superarcs, or by storing the superarcs in an interval

tree. Once the relevant superarcs are identified, a seed edge is selected for each

superarc. This can be done in one of several ways:

8.1 Simple Seed Sets

The simplest method is to store the entire augmented contour tree. To identify

a seed cell for an isovalue h, the corresponding superarcs are searched in the

augmented contour tree to find the arc xixj for which hi < h < hj . However,

xi and xj need not be adjacent to each other in the mesh. If xi is not a split,
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all its down arcs intersect the desired contour, so we simply pick a down-arc.

Similarly, if xj is not a join, any of its up arcs can be used as a seed. If xi

is a split and xj is a join, a problem arises: it is difficult to pick an edge

for the interpolation. This can be dealt with by picking an up arc for each

up superarc when we construct the join tree, and a down arc for each down

superarc, although this adds complexity.

This simple search takes O(n) time, if done with a linear search, or

O(log n) for a binary search. In extreme cases, this could lead to Θ(n log n)

cost to find the seed set.

8.2 Heuristic Seed Sets

Instead of precomputing the seed set, I borrow from Itoh & Koyamada [16, 15]

and Bajaj et al. [2] the trick of associating a path with each superarc. This

path can be computed in the following way at runtime:

1. At a local maximum, start the path with the edge to the lowest-valued

adjacent vertex.

2. At a local minimum, start the path with the edge to the highest-valued

adjacent vertex.

3. At a join, each ascending superarc corresponds to a join component that

terminates at the join. On each such superarc, store the edge between

the current vertex, and the highest adjacent vertex belonging to that

join component. Start from this edge when finding a seed.
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4. At a split, each descending superarc corresponds to a split component:

again, store a starting edge on the superarc.

5. If none of the above apply, the superarc must descend from a join to a

split: in this case, there is only one descending superarc from the join

(and only one ascending superarc from the split). Therefore, any edge

to a lower-valued vertex adjacent to the join vertex can be used to start

the path, as can any edge to a higher-valued vertex adjacent to the split

vertex.

In all these cases, a supernode has been identified, as has an adjacent

starting node on either an ascending or descending path. Assuming an as-

cending path, if the supernodes do not already straddle the desired isovalue,

advance to the edge from the adjacent node to it’s highest adjacent neighbour.

Repeat until the supernodes straddle the desired isovalue.

Note that this heuristic will never reach a dead end at a local maximum:

if there is more than one maximum to be found in this way, there must be a

join vertex at a lower value than all such maxima. The desired superarc must

then terminate at or before the join vertex.

If the paths are to be preprocessed and stored, perform a breadth-first

search in the same fashion for the isovalue at the far end of the superarc, thus

finding the shortest path to a vertex above that isovalue. This preprocessing

can be performed in O(N ) time and O(n) space, since the same edge is never

considered more than once.
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As noted in [17], a dataset can consist entirely of local extrema: in this

case, t = Ω(n). In this case, it will take Θ(n) time to generate a level set that

intersects all of the superarcs. But no algorithm can improve on this, since

the output size k will be Θ(n).

To determine which superarcs span a level set, the superarcs can be

stored in an interval tree, as Cignoni et al. [5] do with the edges of the original

dataset. This is used by Bajaj etal in [2]. Using this approach reduces the time

to generate a level set to O(log t) + k, at the cost of O(t log t) preprocessing.

Since we expect that t ¿ N (Def. 2.10, p.13), storing superarcs in this way

should not be necessary for crystallographic data.

90



Chapter 9

Implementation

This chapter discusses the major issues that arose during the implementation

of the algorithm, and the solutions adopted in each case.

9.1 Simplicial Subdivision

The first difficulty to be resolved is the assumption that the data is acquired

upon a rectilinear grid(Assn. 1.2). Ideally, we would like to use the rectilinear

grid directly, with the natural tri-linear interpolation function over each voxel.

Unfortunately, all existing contour tree algorithms assume that the data

is in the form of a simplicial mesh: the simplices prevent ambiguities of the

interpolating function inside the mesh(Assn. 1.3).

The immediate consequence of this disparity is that either the algorithm

must be modified so that it works with voxels, or the grid must be converted

into a simplicial mesh. I chose to convert the grid to a simplicial mesh, by
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subdividing each voxel into simplices.

9.1.1 Desiderata for Subdivision

In order for the algorithm to work, our definition of a mesh (Def. 2.1, p.9)

requires that faces be shared between adjacent cells. Thus, where the face of a

voxel is subdivided, the subfaces must be the same in both of the voxels that

intersect at that face.

Note that, in choosing a subdivision, we implicitly choose an interpo-

lation function over the original voxel, composed of the interpolation function

for each simplex in the voxel.

In choosing a subdivision, the ideal is to approximate the tri-linear

interpolation function over the voxels. This gives several criteria for quality, to

which we add some criteria related to efficiency of processing. Not surprisingly,

it is not possible to satisfy all of the following goals:

ii) the interpolation function for a given point should depend solely on the

values at the vertices of the voxel containing the point.

ii) the subdivision should be symmetrical: all vertices should be treated

equally in a given cell.

iii) the subdivision should not magnify the dataset - i.e. it should not require

the addition of data points.

iv) the subdivision should generate as few simplices as possible.

v) if possible, the subdivision should be implicit, for processing efficiency.
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(a) The Subdivision (b) Even Parity (c) Odd Parity

Figure 9.1: Minimal subdivision: 5 simplices / voxel

9.1.2 Some Possible Subdivision Schemes

A number of schemes for subdividing a voxel have been used, or could poten-

tially be used. One of the sample datasets, “atom9” is used to demonstrate

deviations from the ideal tri-linear interpolation. This dataset was constructed

artificially, by placing local “atoms” in IR3. Each “atom” was assumed to be

the centre of a Gaussian distribution of electron density: the volume was sam-

pled at regular intervals to produce the data. One area of this dataset proved

especially good at revealing artefacts due to the subdivision: a zig-zag of atoms

placed on vertices of the sampling grid.

a) Minimal subdivision, using 5 simplices (Fig. 9.1(a)).

This fails criterion ii): not all vertices are treated equally. Fig. 9.1(b)

and Fig. 9.1(c) shows the result of applying this subdivision to a sample

dataset. This asymmetry could be mitigated by randomizing the orien-

tation of the subdivision in each voxel, which would violate our condition
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(a) The Subdivision (b) Artefacts

Figure 9.2: Axis-aligned subdivision: 6 simplices / voxel

that subfaces must match between voxels.

b) Axis-aligned subdivision, with 6 simplices, arranged around a major di-

agonal of the voxel (Fig. 9.2(a)).

Again, this fails condition ii). Fig. 9.2(b) shows the result of applying

this subdivision to a sample dataset. As with a), this asymmetry could

be reduced by randomized orientations, but the same difficulty would be

encountered; it would violate our subface-matching condition.

c) Body-centred subdivision, with 12 simplices in a BCC (body-centred

cubic) lattice (Fig. 9.3(a)).

This subdivision shares simplices between two adjacent voxels, reducing

the average number of simplices per cell to 12. However, it fails criterion

i): that interpolation should be restricted to the voxel itself.

d) Face-centred subdivision, with 24 simplices, constructed by subdividing

the voxel into face-centred square pyramids (Fig. 9.4(a))
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(a) The Subdivision (b) Artefacts

Figure 9.3: Body-centred subdivision: 24 simplices / voxel

(a) The Subdivision (b) Artefacts

Figure 9.4: Face-centred subdivision: 24 simplices / voxel
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This subdivision fails criterion iii) by requiring an average of 4 inter-

polated data points per voxel, and condition iv) (it has the largest

magnification factor of all subdivisions considered. However, as seen

in Fig. 9.1(b), Fig. 9.2(b), & Fig. 9.4(b), it fulfills condition iv), which

neither a) nor b) does.

I implemented each of these subdivisions for comparison purposes: the

choice of which one to use depends on the problem from which the data derives.

If the features of the data are large relative to the spacing of the samples, then

artefacts such as those shown in Figs. 9.1(b), 9.1(c), and 9.2(b) are much less

prominent. Either the minimal subdivision or the axis-aligned subdivision can

be used.

If, on the other hand, features are closely spaced (as in Fig. 9.1(b)

and Fig. 9.1(c)), then the face-centred subdivision (24 simplices / voxel) has

fewer unpleasant artefacts than any of the other subdivisions, but requires

significantly more memory and processing time to generate isosurfaces.

In Sec. 9.7, I compare the minimal subdivision scheme with Marching

Cubes (Sec. 3.1).

9.2 Boundary Effects

Both van Kreveld et al. [26] and Tarasov & Vyalyi [23] assume that the con-

tours may extend to the boundaries of the dataset: this complicates their

algorithms for processing the contour tree, results in open surfaces, and adds

additional splits and joins in the contour tree.
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In the early stages of developing the algorithm given above, I was con-

cerned about boundary effects. As a result, I chose to avoid them by em-

bedding the entire dataset in a layer of zeroes (or some other value smaller

than all values in the dataset). This not only avoided boundary cases, but

also reduced the number of splits and joins, and guaranteed that all surfaces

will be closed topologically. The extra layer of cells was rendered as well as

the original dataset. However, since the interpolation inside the original data

set is unaffected by the embedding process, the outer layer could have been

suppressed for rendering.

Instead of automatically adding the zero layer internally, I added the

zeroes to the file in which the data was stored: the zeroes could instead be

added when reading in the data in O(n) time.

This zero-embedding step turned out to be unnecessary: Algorithm 7.2

operates correctly at the boundary. In an implicitly-represented mesh such as

I used, some special handling would still be required, since boundary vertices

do not have the same connectivity as interior vertices.

9.3 Symbolic Perturbation of Data

As noted above, I assume that the data values are unique (Assn. 1.5): that

no two vertices have the same value associated with them. This assumption

is necessary for the guarantee that the critical points occur at the vertices

(Sec. 4.1.1).

For the sake of simplicity, I chose to perturb the data symbolically, by

97



adding an ε to each value proportional to its location in RAM [11]: when

comparing values, ties are broken by comparing memory addresses. This re-

sults in a stable sort order, provided we do not move data around in memory.

Otherwise, this form of symbolic perturbation may give inconsistent results.

Since I assume an array of data, which is initialized at the beginning of the

program, and never moved around, this does not pose a problem.

A minor complication is added in the zero-embedding stage: If the

global minimum is adjacent to the zero-embedding layer, but not to the ele-

ment of that layer which is adjacent to the global minimum in the sorted list,

one or more spurious joins will be added in the zero-embedding layer. This was

resolved by special case treatment of the zero-embedding layer, which can be

assumed to belong to one component. As noted in Sec. 9.2, the zero-embedding

is not required, so this complication can be avoided.

9.4 Searching for Interpolating Edge

To generate an actual level set, it is necessary to use the contour tree to find

seeds to start the contour-following algorithm. This is discussed in more detail

in Sec. 8.

9.5 Local Contours

Since contour trees preserve topological information about the entire dataset,

it proved possible to generate contours locally around individual local maxima
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(a) Local Contours (b) Fixed Contours

Figure 9.5: Comparison of Local and Fixed Contours

(see Fig. 9.5(a)): this provides better resolution of individual peaks than a

single level set can do (Fig. 9.5(b)). Further exploration of this technique is

desirable.

9.6 Memory Requirements

Due to some early design choices, memory overhead of the current implemen-

tation is significant. For each vertex, I store the following information:

1. type: whether the vertex is one of the original data points, an interpo-

lated vertex on a face of a voxel, or an interpolated vertex in the centre

of a voxel

2. value : the value at the vertex
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3. 3 tree nodes: pointers to the vertex in the contour tree, join tree and

split tree: the data types defined for edges and vertices are themselves

inefficient

4. ID : an ID number for the node

5. queue flag : flag marking whether the vertex is on the leaf queue

6. follow flags : flags for which simplices have been visited in the voxel based

at this vertex.

In the case of the body-centred and face-centred subdivisions (Sec. 9.1.2),

this is increased by the need to store the interpolated vertices, if only for

sorting. This was achieved in practice by doubling each dimension of the

grid, increasing storage requirements by a factor of 8. Thus, the face-centred

subdivision uses approximately 800 bytes per vertex at present on a 32-byte

machine.

Clearly, this is excessive: I estimate that the amount of memory required

is about 10-20 bytes per vertex for the minimal subdivision, and perhaps as

much as 100 bytes for the face-centred subdivision. This will be affected,

however, by the complexity of the contour tree, which we saw to be O(t) (in

the worst case, O(n))1.
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Figure 9.6: Timing Results for the Atom9 dataset
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Figure 9.7: Timing Results for the Caffeine2 dataset
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Figure 9.8: Timing Results for the “29g” dataset
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9.7 Timing

In Figs. 9.6, 9.7, and 9.8, I give some sample times for the implementation. The

timing was run on a 300 MHz Power Macintosh for two reasons. The current

operating system (MacOS 8.1) is non-pre-emptive, so it can be assumed that

no other processes interrupted the test runs: thus, timing should be quite

accurate (I rarely observed a deviation of more than about 5%). Secondly, a

convenient function exists to give the current clock value in microseconds since

start-up, providing fine granularity of measurements.

Since the interface for the implementation used OpenGL, I conducted

timing runs by measuring how long it took to construct a display list to render

the isosurface, with normals. This decoupled actual rendering from the cost

of moving through the mesh to locate and generate triangles.

A simple version of the marching cubes algorithm was implemented for

comparison. This consisted of nested loops to march through all the cells in

the mesh, generating triangles in any that intersected the isosurface.

In contrast, the contour-following algorithm takes two passes through

the data: the first pass generates the triangles, marking the cells that have

been visited, while the second pass unmarks the cells. Due to the memory

issues referred to above (Sec. 9.6), timing was performed using the minimal

subdivision.

All available optimizations were enabled, including inlining. However,

the contour-following routine can be assumed not to be optimized, as it is im-

1see Def. 2.10, p.13 and Def. 2.7, p.12 for definition of the parameters.
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plemented recursively: thus, the times shown include overhead for the function

calls.

Each display list was created 100 times, then immediately destroyed:

the average of the results is shown: deviation from the average was small. Also

shown is the triangle count for both algorithms, the number of cells visited by

the contour-following algorithm, and the maximum depth of recursive call.

Isosurfaces were generated at 5% intervals, based on the maximum value

in the dataset: thus, 19 results are shown for each dataset. Note that Marching

Cubes tends to be faster than Contour Following for large isosurfaces, but

slower for small ones.

Also note that the two algorithms do not produce the same isosur-

faces, since the interpolation inside each voxel differs. In particular, Marching

Cubes generates fewer triangles in most cases. This is not necessarily an ad-

vantage, since contour-following can potentially generate long triangle strips

(see Sec. 3.1.3, p.16 and Sec. 3.5.2, p.22), reducing the cost of sending the tri-

angles to hardware. Although triangle strips were not implemented, the depth

of the recursive call tended to be approximately 2/3 of the total number of

cells visited (see Figs. 9.6, 9.7, and 9.8). This indicates that very long triangle

strips are possible in practice.

Finally, a word about the data sets: since the implementation was on

a small scale, and real crystallographic datasets are generally much larger,

a simple simulation was used: a helper program created data sets from a

list of atomic nuclei and their positions. The caffeine dataset (Fig. 9.7) was
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created by taking a standard crystallographic PDB datafile, and can be seen

in Fig. 9.5. The 9 atom dataset (Fig. 9.6) was created by placing 9 nuclei

of different radii in entirely arbitrary positions. It was particularly useful for

showing artefacts in the data, and can be seen in Fig. 9.4(b). The last dataset

(Fig. 9.8), the largest, consisted of three isolated nuclei. Thus, the isosurfaces

are smaller than would normally be the case: this dataset was included to give

some idea of the potential speed advantage over the marching cubes algorithm

for datasets where N >> k.

Although these results are far from rigorous, it is clear that the contour-

following algorithm is worth implementing for large datasets.
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Chapter 10

Summary

3-D datasets naturally arise in various application fields. Some fields, such as

X-ray crystallography, require interactive visualization of large datasets.

One technique to visualize such datasets is the use of contour trees to

construct isosurfaces. This thesis describes a practical and efficient algorithm

for constructing contour trees for 3-Ddatasets. Details of an implementation

were sketched, and the technique compared with other techniques.

In particular, if we review the properties listed in Sec. 1.3, p.6, we see

that contour tree techniques satisfy all of the properties desired for dealing

with X-ray crystallographic data (see Sec. 9.5, p.98 for details on the last

item).
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Chapter 11

Extensions

A number of extensions are possible in practice. These include: dimensions

other than 3-D, application to irregular meshes, flexible contours, the use of

transparent shells for visualization, and scaling issues.

11.1 Higher and Lower Dimensions

Although the discussion throughout has focussed on 3-D datasets such as those

acquired in X-ray crystallography, the algorithm depends in no way on this

assumption. Implementation details will vary slightly in higher or lower di-

mensions, but the construction outlined above remains valid: the algorithm

is equally useful in 2, 3, 4, or more dimensions, although due to the size of

datasets, 4-Dmay be the practical limit.

Most of the other algorithms described in Ch. 3 can be modified to

work in higher dimensions. Marching Cubes (Sec. 3.1, p.14) would become
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Marching Hypercubes, and would have 65536 cases before symmetry. Most of

the other algorithms would scale rather more easily.

11.2 Irregular Meshes

This thesis assumed that the data was presented on a regular mesh (Assn. 1.2).

As with dimensionality (Sec. 11.1), this assumption is unnecessary: the algo-

rithm as outlined works equally well for irregular meshes. I expect to imple-

ment a version for irregular meshes at some future date.

Again, most of the algorithms described in Ch. 3 can be modified to

work on irregular meshes, with more or less success.

11.3 Flexible Contours

Local contours (Sec. 9.5) have been implemented to show the immediate neigh-

bourhood at local maxima. So far, this has only been implemented for the

superarc incident to each local maximum. To do this, an isovalue is inter-

polated along the superarc incident to the local maximum, and the corre-

sponding contour generated: this fulfills the goal expressed in Sec. 1.3, p.6 for

crystallography. This needs further development, particularly with respect to

user-interface issues, such as when and how to merge contours as the isovalue

passes a supernode.

Note that Marching Cubes, and all of the other algorithms in Ch. 3

except for the contour-following algorithms (Sec. 3.5, p.20) are unable to gen-
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erate flexible or local contours, without significant additional processing time.

11.4 Transparent Shells

A simple extension to the use of isosurfaces is the use of multiple transparent

isosurfaces or shells. As with contour lines on a map, this permits the entire

dataset to viewed simultaneously, rather than a single slice. This idea has

surfaced in the literature (e.g. in Guo [13]), but is not well-developed.

11.5 Scaling And Parallelism

Datasets in 3-D can contain as many as 10003 data points, and may not fit

into available memory. In the future, I will be researching ways to scale the

algorithm to perform efficiently on such large datasets. One way that seems

promising is to use parallel processors to compute partial join trees or contour

trees, then merge the results.
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