Point Cloud Surface Representations

Mark Pauly 2003

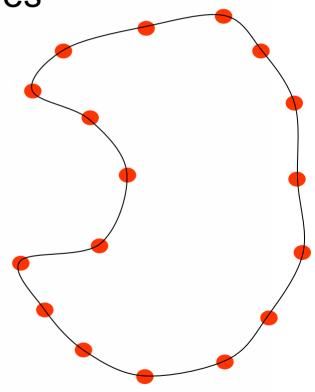
see also EG2003 course on Point-based Computer Graphics available at: http://graphics.stanford.edu/~mapauly/Pdfs/PointBasedComputerGraphics_EG03.pdf

Papers

- Hoppe, DeRose, Duchamp, McDonald, Stuetzle: Surface Reconstruction from Unorganized Points, SIGGRAPH 92
- Carr, Beatson, Cherrie, Mitchell, Fright, McCallum, Evans: Reconstruction and Representation of 3D Objects with Radial Basis Functions, SIGGRAPH 01
- Kalaiah, Varshney: Statistical Point Geometry, Symposium on Geometry Processing, 2003

Introduction

- Many applications need a definition of surface based on point samples
 - Reduction
 - Up-sampling
 - Interrogation (e.g. ray tracing)
- Desirable surface properties
 - Manifold
 - Smooth
 - Local (efficient computation)

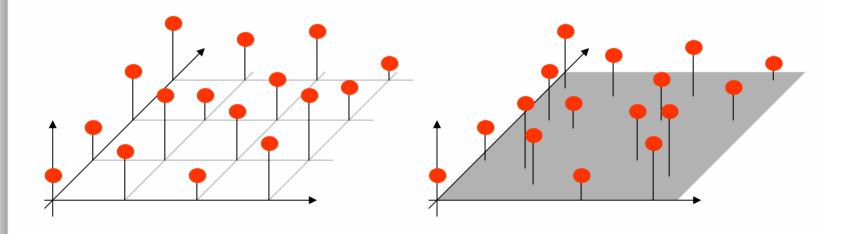


Introduction

- Terms
 - Regular/Irregular, Approximation/Interpolation, Global/Local
- Standard interpolation/approximation techniques
 - Triangulation, Least Squares (LS), Radial Basis Functions (RBF)
- Problems
 - Sharp edges, feature size/noise
- Functional -> Manifold

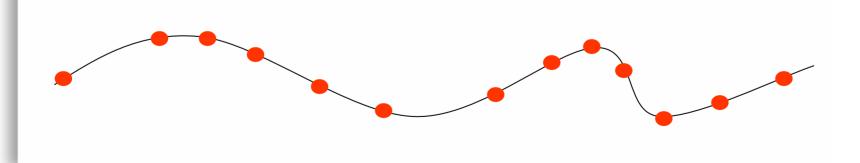
Terms: Regular/Irregular

- Regular (on a grid) or irregular (scattered)
- Neighborhood is unclear for irregular data

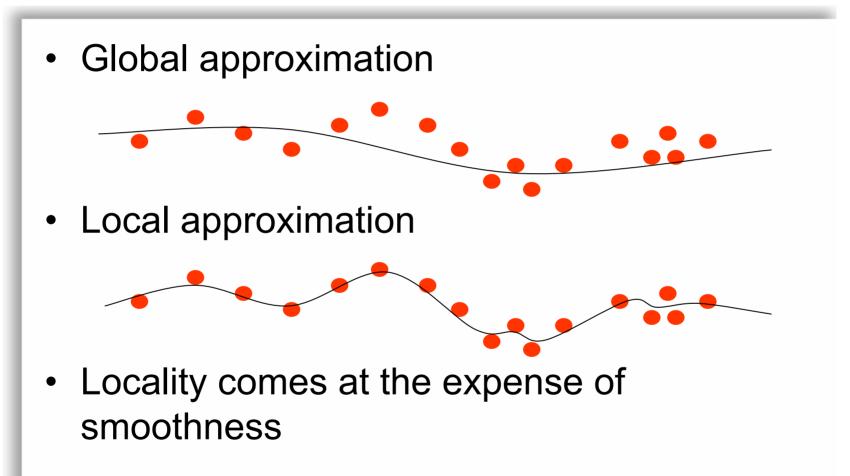


Terms: Approximation/Interpolation

- Noisy data -> Approximation
- Perfect data -> Interpolation

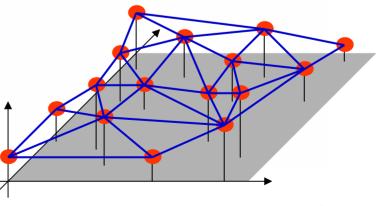


Terms: Global/Local



Triangulation

- Exploit the topology in a triangulation (e.g. Delaunay) of the data
- Interpolate the data points on the triangles
 - Piecewise linear $\rightarrow C^0$

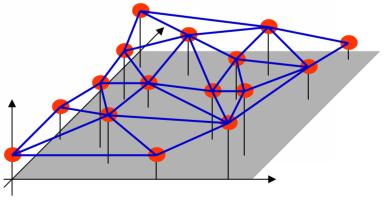


Triangulation: Piecewise linear

- Barycentric interpolation on simplices (triangles)
 - given *d*+1 points *x_i* with values *f_i* and a point *x* inside the simplex defined by *x_i*
 - Compute α_i from

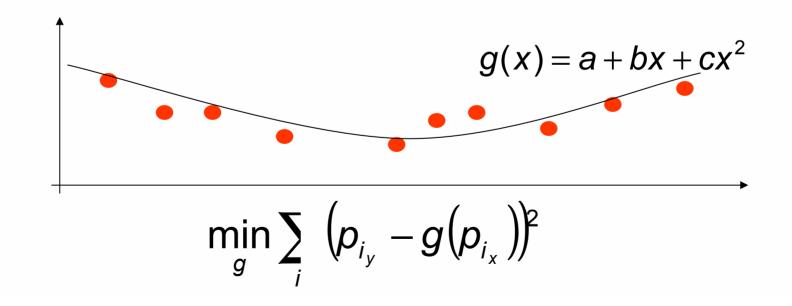
 $x = \Sigma_i \alpha_i \cdot x_i$ and $\Sigma_i \alpha_i = 1$

- Then
 - $f = \Sigma_i \alpha_i \cdot f_i$



Least Squares

- Fits a primitive to the data
- Minimizes squared distances between the p_i's and primitive g



Least Squares - Example

• Primitive is a polynomial

$$g(x) = (1, x, x^{2}, ...) \cdot \mathbf{c}^{T}$$

• min $\sum_{i} (p_{i_{y}} - (1, p_{i_{x}}, p_{i_{x}}^{2}, ...) \mathbf{c}^{T})^{2} \Rightarrow$
$$0 = \sum_{i} 2p_{i_{x}}^{j} (p_{i_{y}} - (1, p_{i_{x}}, p_{i_{x}}^{2}, ...) \mathbf{c}^{T})$$

- Linear system of equations that can be solved using normal equations
- Leads to a system of *dim(c)* equations.

Radial Basis Functions

- Represent interpolant as
 - Sum of radial functions r
 - Centered at the data points p_i

$$f(\mathbf{x}) = \sum_{i} w_{i} r(||p_{i} - \mathbf{x}||)$$

Radial Basis Functions

• Solve
$$p_{j_y} = \sum_{i} w_i r (\| p_{i_x} - p_{j_x} \|)$$

to compute weights w_i

Linear system of equations

$$\begin{pmatrix} r(0) & r(\|p_{0_{x}} - p_{1_{x}}\|) & r(\|p_{0_{x}} - p_{2_{x}}\|) & \cdots \\ r(\|p_{1_{x}} - p_{0_{x}}\|) & r(0) & r(\|p_{1_{x}} - p_{2_{x}}\|) & \cdots \\ r(\|p_{2_{x}} - p_{0_{x}}\|) & r(\|p_{2_{x}} - p_{1_{x}}\|) & r(0) & \cdots \\ \vdots & & \ddots \end{pmatrix} \begin{pmatrix} w_{0} \\ w_{1} \\ w_{2} \\ \vdots \end{pmatrix} = \begin{pmatrix} p_{0_{y}} \\ p_{1_{y}} \\ p_{2_{y}} \\ \vdots \end{pmatrix}$$

Radial Basis Functions

- Solvability depends on radial function
- Several choices assure solvability
 - $r(d) = d^2 \log d$ (thin plate spline)
 - $r(d) = e^{-d^2/h^2}$ (Gaussian)
 - *h* is a data parameter
 - *h* reflects the feature size or anticipated spacing among points

Interpolation

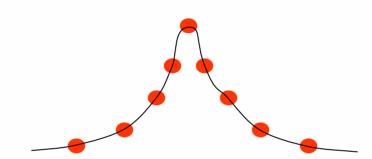
- Monomial, Lagrange, RBF share the same principle:
 - Choose basis of a function space
 - Find weight vector for base elements by solving linear system defined by data points
 - Compute values as linear combinations
- Properties
 - One costly preprocessing step
 - Simple evaluation of function in any point

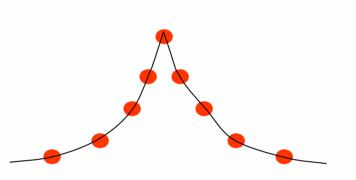
Interpolation

- Problems
 - Many points lead to large linear systems
 - Evaluation requires global solutions
- Solutions
 - RBF with compact support
 - Matrix is sparse
 - Still: solution depends on every data point, though drop-off is exponential with distance
 - Local approximation approaches

Typical Problems

• Sharp corners/edges



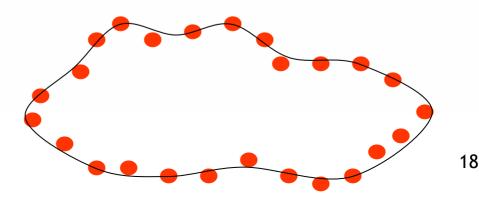


• Noise vs. feature size

Functional -> Manifold

 Standard techniques are applicable if data represents a function

- Manifolds are more general
 - No parameter domain
 - No knowledge about neighbors

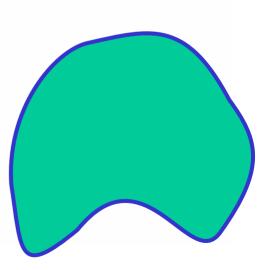


Implicits

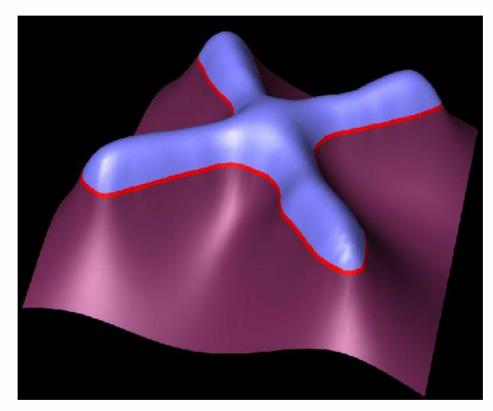
- Each orientable n-manifold can be embedded in n+1 – space
- Idea: Represent n-manifold as zero-set of a scalar function in n+1 – space
 - Inside:
 - On the manifold:
 - Outside:

 $f(\mathbf{x}) = 0$ $f(\mathbf{x}) > 0$

 $f(\mathbf{x}) < 0$

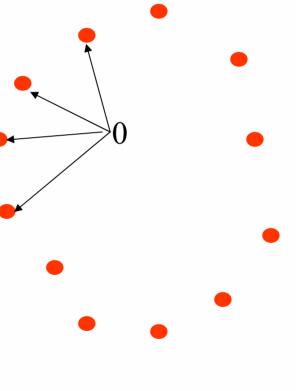


Implicits - Illustration

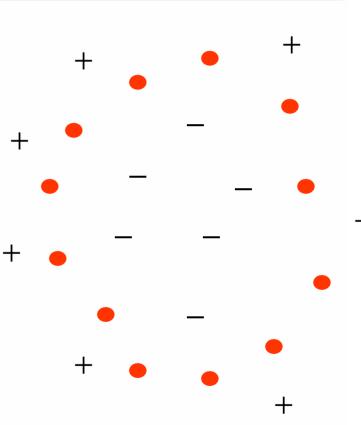


• Image courtesy Greg Turk

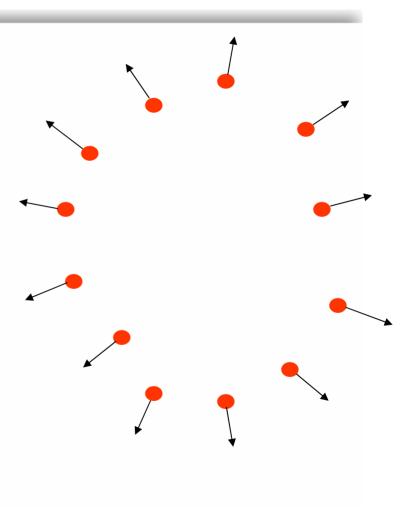
- Function should be zero in data points
 - $f(\mathbf{p}_i) = 0$
- Use standard approximation techniques to find *f*
- Trivial solution: f = 0
- Additional constraints are needed



- Constraints define inside
 and outside
- Simple approach (Turk, O'Brien)
 - Sprinkle additional information manually
 - Make additional information soft constraints



- Use normal information
- Normals could be computed from scan
- Or, normals have to be estimated

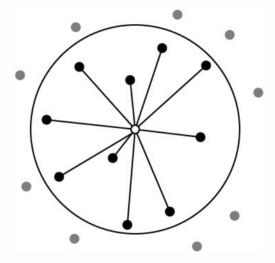


Detour: Local Surface Analysis

- Estimate local surface properties from local neighborhoods:
 - No explicit connectivity between samples (as with triangle meshes)
 - Replace geodesic proximity with spatial proximity (requires sufficiently high sampling density!)
 - Compute neighborhood according to Euclidean distance

Neighborhood

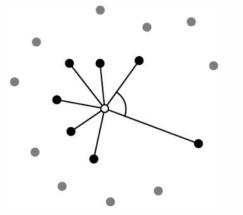
K-nearest neighbors



- Can be quickly computed using spatial datastructures (e.g. kd-tree, octree, bsp-tree)
- Requires isotropic point distribution

Neighborhood

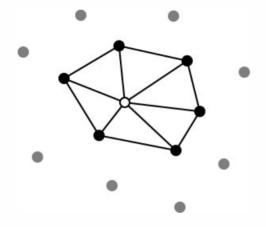
• Improvement: Angle criterion (Linsen)



- Project points onto tangent plane
- Sort neighbors according to angle
- Include more points if angle between subsequent points is above some threshold

Neighborhood

Local Delaunay triangulation (Floater)



- Project points into tangent plane
- Compute local Voronoi diagram

Covariance Analysis

Covariance matrix of local neighborhood N:

$$\mathbf{C} = \begin{bmatrix} \mathbf{p}_{i_1} - \overline{\mathbf{p}} \\ \cdots \\ \mathbf{p}_{i_n} - \overline{\mathbf{p}} \end{bmatrix}^T \cdot \begin{bmatrix} \mathbf{p}_{i_1} - \overline{\mathbf{p}} \\ \cdots \\ \mathbf{p}_{i_n} - \overline{\mathbf{p}} \end{bmatrix}, \quad i_j \in N$$

• with centroid $\overline{\mathbf{p}} = \frac{1}{|N|} \sum_{i \in N} \mathbf{p}_i$

Covariance Analysis

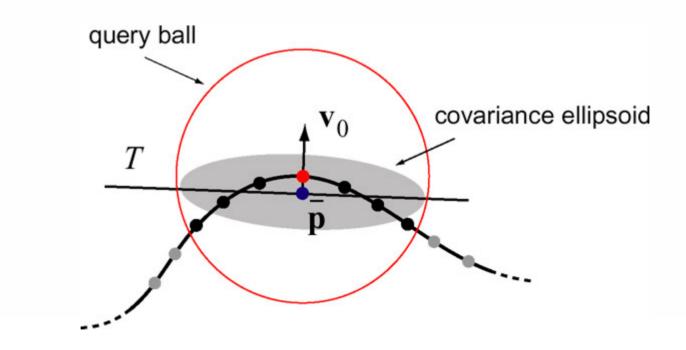
• Consider the eigenproblem:

$$\mathbf{C} \cdot \mathbf{v}_{I} = \lambda_{I} \cdot \mathbf{v}_{I}, \qquad I \in \{0, 1, 2\}$$

C is a 3x3, positive semi-definite matrix
 ⇒ All eigenvalues are real-valued
 ⇒ The eigenvector with smallest eigenvalue defines the least-squares plane through the points in the neighborhood, i.e. approximates the surface normal

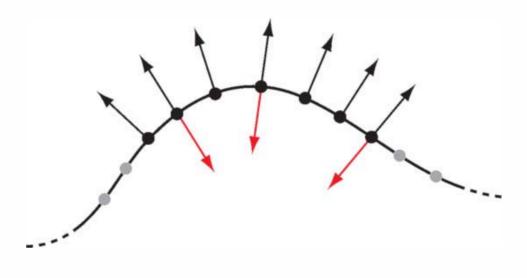
Covariance Analysis

 Covariance ellipsoid spanned by the eigenvectors scaled with corresponding eigenvalue



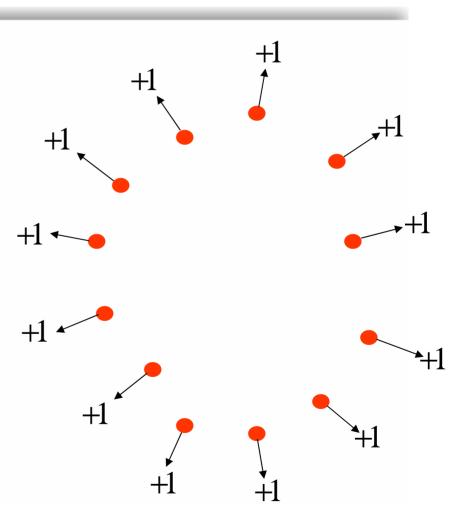
Normal Estimation

- Estimate normal direction by least squares fit
- Compute consistent orientation by incremental propagation



- Compute non-zero anchors in the distance field
- Use normal information directly as constraints

$$f(\mathbf{p}_i + \mathbf{n}_i) = 1$$



 need to constrain distance to avoid selfintersections

$$f(\mathbf{p}_i + d_i\mathbf{n}_i) = 1$$

Computing Implicits

• Given N points and normals P_i, n_i and constraints $f(\mathbf{p}_i) = 0, f(\mathbf{c}_i) = d_i$

• Let
$$\mathbf{p}_{i+N} = \mathbf{c}_i$$

• An RBF approximation

$$f(\mathbf{x}) = \sum_{i} w_{i} r(\|\mathbf{p}_{i} - \mathbf{x}\|)$$

leads to a system of linear equations

Computing Implicits

- Practical problems: *N* > 10000
- Matrix solution becomes difficult
- Different solutions
 - Sparse matrices allow iterative solution
 - Fast multi-pole methods
 - Smaller number of RBFs

Computing Implicits

• Sparse matrices

$$\begin{pmatrix} r(0) & r(||p_0 - p_1||) & r(||p_0 - p_2||) & \cdots \\ r(||p_1 - p_0||) & r(0) & r(||p_1 - p_2||) \\ r(||p - p_0||) & r(||p_2 - p_1||) & r(0) \\ \vdots & & \ddots \end{pmatrix}$$

• Needed:
$$d > c - r(d) = 0, r'(c) = 0$$

• Compactly supported RBFs $-\frac{1}{c}$

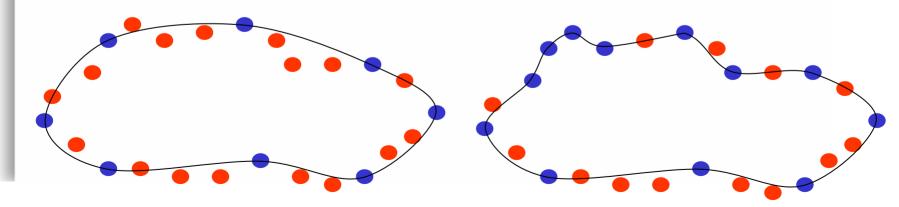
Computing Implicits

- Fast multi-pole methods
 - approximate solution using far- and near-field expansion
 - hierarchical clustering of nodes
 - introduces fitting error and evaluation error

	Direct Methods	Fast Methods	
Storage	O(N^2)	O(N)	
Solve system	O(N^3)	O(NlogN)	
Evaluation	O(N)	<i>O(1)</i> + <i>O(NlogN)</i> setup	

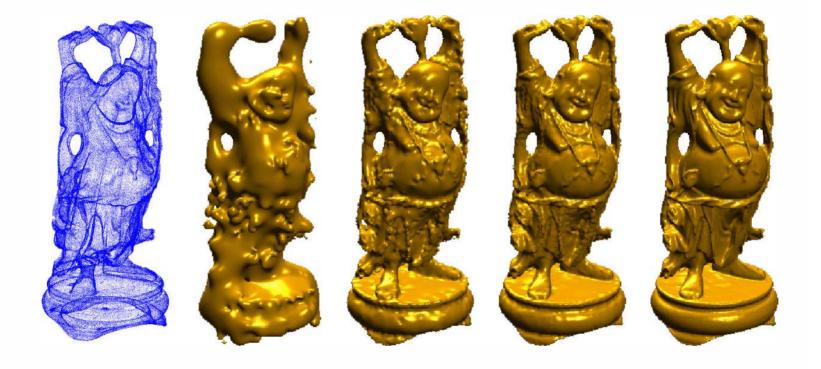
Computing Implicits

- RBF center reduction exploits the redundancy in many point sampled models
- Greedy approach (Carr et al.)
 - Start with random small subset
 - Add RBFs where approximation quality is not sufficient



Computing Implicits

• RBF center reduction: Example



Implicits - Conclusions

- Scalar field is underconstrained
 - Constraints only define where the field is zero, not where it is non-zero
 - Additional constraints are needed
- Signed fields restrict surfaces to be unbounded
 - All implicit surfaces define solids

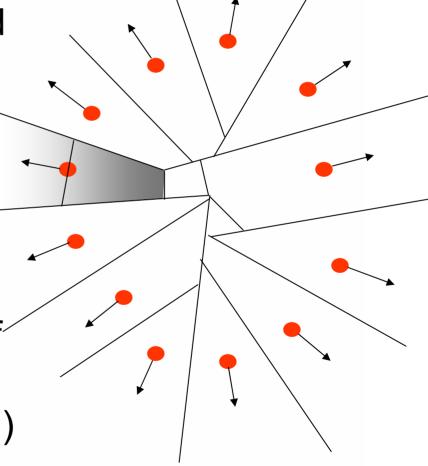
Paper

 Hoppe, DeRose, Duchamp, McDonald, Stuetzle: Surface Reconstruction from Unorganized Points, SIGGRAPH 92

Summary

- Goal:
 - Reconstruct polygonal surface from unorganized set of point samples
- Approach:
 - Approximate signed distance function
 - Use contouring method (marching cubes) to extract triangle mesh

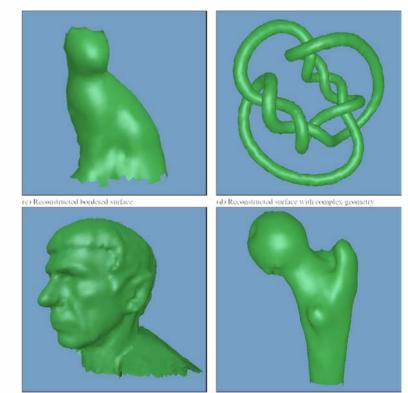
- Use linear distance field per point
 - Direction is defined by normal
 - Normal estimated using covariance analysis
- In every point in space use the distance field of the closest point (Voronoi decomposition)



- $X = \{x_0, ..., x_n\}$ sample of an unknown surface S
- δ -noisy: $x_i = y_i + e_i$, y_i on S, $|e_i| < \delta$
- ρ-dense: Any sphere with radius ρ and center on S contains at least one sampe x_i
 ⇒ justification for using k-nearest neighbors
- Algorithm complexity:
 - k-nearest neighbors: O(k*logN)
 - normal orientation: O(NlogN)
 - contouring: *O(m)*, *m* = #visited cubes

Results

- + shapes of arbitrary topology
- + simple and efficient computation
- crude approximation of signed distance field
- no topological guarantees



(e) Reconstruction from cylindrical range data

(f) Reconstruction from contour data

Paper

 Carr, Beatson, Cherrie, Mitchell, Fright, McCallum, Evans: Reconstruction and Representation of 3D Objects with Radial Basis Functions, SIGGRAPH 01

Summary

- Goal:
 - Reconstruct implicit surface from unorganized point set
- Approach:
 - RBF implicit representation
 - Fast computation of matrix solution using multipole method and RBF center reduction
 - RBF approximation of noisy data

- RBF interpolation
 - $s(x_i) = f_i, i = 1, ..., N$
 - additional constraints using normal information
 - "smoothest" interpolant: $s^* = \operatorname{argmin}_{s \in S} \|s\|$ according to rotation-invariant semi-norm ||.||
 - for noisy surface look for least-squares approximation

$$\min_{s} \rho \|s\|^{2} + \frac{1}{N} \sum_{i=1}^{N} (s(x_{i}) - f_{i})^{2}$$

- RBF center reduction
 - 1. Choose subset of nodes and fit RBF s(x)
 - 2. Evaluate residual $e_i = f_i s(x_i)$ for all x_i
 - 3. If $\{max \{|e_i|\} < fitting accuracy, stop\}$
 - 4. else append new centers where e_i is large
 - 5. recompute s(x) and goto 2

Results

- + Reconstruction from large point sets
- + Irregular sampling distributions
- + Smooth extrapolation for hole filling

Results

- Smoothing operation does not preserve features
- Still relatively slow: Fitting time in order of hours, surface time in order of minutes

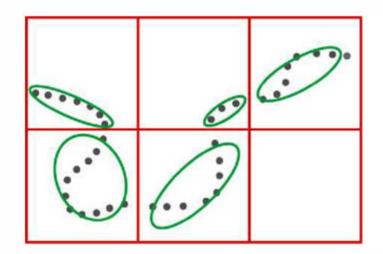
Paper

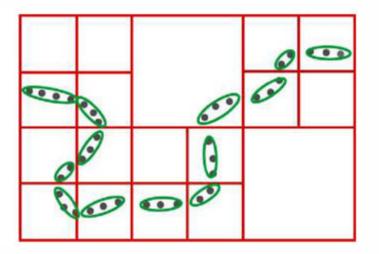
 Kalaiah, Varshney: Statistical Point Geometry, Symposium on Geometry Processing, 2003

Summary

- Goal:
 - Efficiently represent point clouds using statistical methods
- Approach:
 - Octree subdivision
 - PCA on positions, normals, and color
 - k-means clustering and quantization

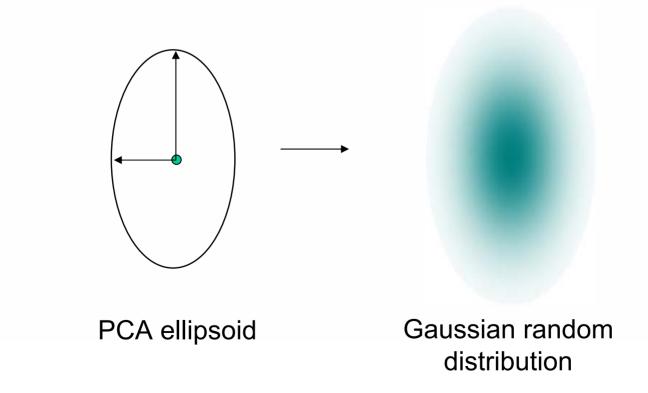
 Subdivide point cloud into clusters using octree hierarchy





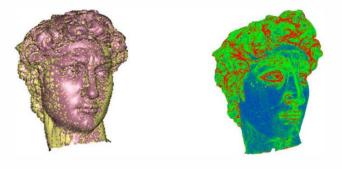
- Apply principal component analysis (PCA) on each cluster (covariance analysis)
- Treat positions, normals, colors separately
- Represent each cluster by mean + covariance ellipsoid
- Collection of ellipsoids provides statistical representation of original point cloud

- Application: Randomized Rendering
 - sample PCA ellipsoids using trivariate Gaussian



• Randomized rendering

• Compression:



Octree Level	Compression (in %)	Max. error (in %)	Avg. error (in %)
Level 9	213.79	0.4161	0.0751
Level 8	829.23	0.546	0.1466
Level 7	3392.11	1.186	0.280
Level 6	13316.08	1.952	0.641
Level 5	45433.10	3.768	1.504
Level 4	104477.13	8.086	3.458

Results

- + Statistical approach well suited for large models
- + Can handle (some) noise
- Decoupling of position and normals leads to inferior rendering quality (no coherence)
- Compression (probably) not competitive
- Hard to apply interrogation or other operators using this representation