Point Cloud Surface Representations

Mark Pauly 2003

see also EG2003 course on Point-based Computer Graphics available at: http://graphics.stanford.edu/~mapauly/Pdfs/PointBasedComputerGraphics_EG03.pdf

Papers

- Hoppe, DeRose, Duchamp, McDonald, Stuetzle: Surface Reconstruction from Unorganized Points, SIGGRAPH 92
- Carr, Beatson, Cherrie, Mitchell, Fright, McCallum, Evans: Reconstruction and Representation of 3D Objects with Radial Basis Functions, SIGGRAPH 01
- Kalaiah, Varshney: Statistical Point Geometry, Symposium on Geometry Processing, 2003

Introduction

- Many applications need a definition of surface based on point samples
- Reduction
- Up-sampling
- Interrogation (e.g. ray tracing)
- Desirable surface properties
- Manifold
- Smooth
- Local (efficient computation)

Introduction

- Terms
- Regular/Irregular, Approximation/Interpolation, Global/Local
- Standard interpolation/approximation techniques
- Triangulation, Least Squares (LS), Radial Basis Functions (RBF)
- Problems
- Sharp edges, feature size/noise
- Functional -> Manifold

Terms: Regular/Irregular

- Regular (on a grid) or irregular (scattered)
- Neighborhood is unclear for irregular data

Terms: Approximation/Interpolation

- Noisy data -> Approximation

- Perfect data -> Interpolation

Terms: Global/Local

- Global approximation

- Local approximation

- Locality comes at the expense of smoothness

Triangulation

- Exploit the topology in a triangulation (e.g. Delaunay) of the data
- Interpolate the data points on the triangles
- Piecewise linear $\rightarrow \mathrm{C}^{0}$

Triangulation: Piecewise linear

- Barycentric interpolation on simplices (triangles)
- given $d+1$ points x_{i} with values f_{i} and a point x inside the simplex defined by x_{i}
- Compute α_{i} from

$$
x=\Sigma_{i} \alpha_{i} \cdot x_{i} \text { and } \Sigma_{i} \alpha_{i}=1
$$

- Then

$$
f=\Sigma_{i} \alpha_{i} \cdot f_{i}
$$

Least Squares

- Fits a primitive to the data
- Minimizes squared distances between the p_{i} 's and primitive g

Least Squares - Example

- Primitive is a polynomial

$$
\begin{aligned}
& g(x)=\left(1, x, x^{2}, \ldots\right) \cdot \mathbf{c}^{T} \\
& \cdot \min \sum_{i}\left(p_{i_{y}}-\left(1, p_{i_{x}}, p_{i_{x}}^{2}, \ldots\right) \mathbf{c}^{T}\right)^{2} \Rightarrow \\
& 0=\sum_{i} 2 p_{i_{x}}^{j}\left(p_{i_{y}}-\left(1, p_{i_{x}}, p_{i_{x}}^{2}, \ldots\right) \mathbf{c}^{T}\right)
\end{aligned}
$$

- Linear system of equations that can be solved using normal equations
- Leads to a system of $\operatorname{dim}(c)$ equations.

Radial Basis Functions

- Represent interpolant as
- Sum of radial functions r
- Centered at the data points p_{i}

$$
f(x)=\sum_{i} w_{i} r\left(\left\|p_{i}-x\right\|\right)
$$

Radial Basis Functions

- Solve $p_{j_{y}}=\sum_{i} w_{i} r\left(\left\|p_{i_{x}}-p_{j_{x}}\right\|\right)$
to compute weights w_{i}
- Linear system of equations

$$
\left(\begin{array}{cccc}
r(0) & r\left(\left\|p_{0_{x}}-p_{1 x}\right\|\right) & r\left(\left\|p_{0_{x}}-p_{2_{x}}\right\|\right) & \cdots \\
r\left(\left\|p_{x}-p_{0_{x}}\right\|\right) & r(0) & r\left(\left\|p_{1 x}-p_{2_{x}}\right\|\right) \\
r\left(\left\|p_{2_{x}}-p_{0_{x}}\right\|\right) & r\left(\left\|p_{2_{x}}-p_{1_{x}}\right\|\right) & r(0) & \ddots \\
\quad \vdots \\
w_{1} \\
w_{2} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
p_{0_{0}} \\
p_{1_{1}} \\
p_{2_{2 x}} \\
\vdots
\end{array}\right)
$$

Radial Basis Functions

- Solvability depends on radial function
- Several choices assure solvability
- $r(d)=d^{2} \log d \quad$ (thin plate spline)
- $r(d)=e^{-d^{2} / h^{2}} \quad$ (Gaussian)
- h is a data parameter
- h reflects the feature size or anticipated spacing among points

Interpolation

- Monomial, Lagrange, RBF share the same principle:
- Choose basis of a function space
- Find weight vector for base elements by solving linear system defined by data points
- Compute values as linear combinations
- Properties
- One costly preprocessing step
- Simple evaluation of function in any point

Interpolation

- Problems
- Many points lead to large linear systems
- Evaluation requires global solutions
- Solutions
- RBF with compact support
- Matrix is sparse
- Still: solution depends on every data point, though drop-off is exponential with distance
- Local approximation approaches

Typical Problems

- Sharp corners/edges

- Noise vs. feature size

Functional -> Manifold

- Standard techniques are applicable if data represents a function

- Manifolds are more general
- No parameter domain
- No knowledge about neighbors

Implicits

- Each orientable n-manifold can be embedded in n+1 - space
- Idea: Represent n-manifold as zero-set of a scalar function in $\mathrm{n}+1$ - space
- Inside:
$f(\mathbf{x})<0$
- On the manifold: $\quad f(\mathbf{x})=0$
- Outside:
$f(\mathbf{x})>0$

Implicits - Illustration

- Image courtesy Greg Turk

Implicits from point samples

- Function should be zero in data points

$$
\text { - } f\left(\mathbf{p}_{i}\right)=0
$$

- Use standard approximation techniques to find f
- Trivial solution: $f=0$
- Additional constraints are needed

Implicits from point samples

- Constraints define inside and outside
- Simple approach (Turk, + O'Brien)
- Sprinkle additional information manually
- Make additional information soft constraints

Implicits from point samples

- Use normal information
- Normals could be computed from scan

- Or, normals have to be estimated

Detour: Local Surface Analysis

- Estimate local surface properties from local neighborhoods:
- No explicit connectivity between samples (as with triangle meshes)
- Replace geodesic proximity with spatial proximity (requires sufficiently high sampling density!)
- Compute neighborhood according to Euclidean distance

Neighborhood

- K-nearest neighbors

- Can be quickly computed using spatial datastructures (e.g. kd-tree, octree, bsp-tree)
- Requires isotropic point distribution

Neighborhood

- Improvement: Angle criterion (Linsen)

- Project points onto tangent plane
- Sort neighbors according to angle
- Include more points if angle between subsequent points is above some threshold

Neighborhood

- Local Delaunay triangulation (Floater)
-

- Project points into tangent plane
- Compute local Voronoi diagram

Covariance Analysis

- Covariance matrix of local neighborhood N :

$$
\mathbf{C}=\left[\begin{array}{c}
\mathbf{p}_{i_{1}}-\overline{\mathbf{p}} \\
\ldots \\
\mathbf{p}_{i_{n}}-\overline{\mathbf{p}}
\end{array}\right]^{\top} \cdot\left[\begin{array}{c}
\mathbf{p}_{i_{1}}-\overline{\mathbf{p}} \\
\ldots \\
\mathbf{p}_{i_{n}}-\overline{\mathbf{p}}
\end{array}\right], \quad i_{j} \in N
$$

- with centroid $\overline{\mathbf{p}}=\frac{1}{|N|} \sum_{i \in N} \mathbf{p}_{i}$

Covariance Analysis

- Consider the eigenproblem:

$$
\mathbf{C} \cdot \mathbf{v}_{l}=\lambda_{l} \cdot \mathbf{v}_{l}, \quad l \in\{0,1,2\}
$$

- C is a 3×3, positive semi-definite matrix
\Rightarrow All eigenvalues are real-valued
\Rightarrow The eigenvector with smallest eigenvalue defines the least-squares plane through the points in the neighborhood, i.e. approximates the surface normal

Covariance Analysis

- Covariance ellipsoid spanned by the eigenvectors scaled with corresponding eigenvalue

Normal Estimation

- Estimate normal direction by least squares fit
- Compute consistent orientation by incremental propagation

Implicits from point samples

- Compute non-zero anchors in the distance field
- Use normal information directly as constraints

$$
f\left(\mathbf{p}_{i}-\mathbf{n}_{i}\right)=1
$$

$+1<$

Implicits from point samples

- need to constrain distance to avoid selfintersections

$$
f\left(\mathbf{p}_{i}+d_{i} \mathbf{n}_{i}\right)=1
$$

Computing Implicits

- Given N points and normals p_{i}, n_{i} and constraints

$$
f\left(\mathbf{p}_{i}\right)=0, f\left(\mathbf{c}_{i}\right)=d_{i}
$$

- Let $\mathbf{p}_{i+N}=\mathbf{c}_{i}$
- An RBF approximation

$$
f(\mathbf{x})=\sum_{i} w_{i} r\left(\left\|\mathbf{p}_{i}-\mathbf{x}\right\|\right)
$$

- leads to a system of linear equations

Computing Implicits

- Practical problems: $N>10000$
- Matrix solution becomes difficult
- Different solutions
- Sparse matrices allow iterative solution
- Fast multi-pole methods
- Smaller number of RBFs

Computing Implicits

- Needed:

$$
d>c-r(d)=0, r^{\prime}(c)=0
$$

- Compactly supported RBFs

Computing Implicits

- Fast multi-pole methods
- approximate solution using far- and near-field expansion
- hierarchical clustering of nodes
- introduces fitting error and evaluation error

	Direct Methods	Fast Methods
Storage	$O\left(N^{\wedge} 2\right)$	$O(N)$
Solve system	$O\left(N^{\wedge} 3\right)$	$O(N \log N)$
Evaluation	$O(N)$	$O(1)+O(N \log N)$ setup

Computing Implicits

- RBF center reduction exploits the redundancy in many point sampled models
- Greedy approach (Carr et al.)
- Start with random small subset
- Add RBFs where approximation quality is not sufficient

Computing Implicits

- RBF center reduction: Example

Implicits - Conclusions

- Scalar field is underconstrained
- Constraints only define where the field is zero, not where it is non-zero
- Additional constraints are needed
- Signed fields restrict surfaces to be unbounded
- All implicit surfaces define solids

Paper

- Hoppe, DeRose, Duchamp, McDonald, Stuetzle: Surface Reconstruction from Unorganized Points, SIGGRAPH 92

Summary

- Goal:
- Reconstruct polygonal surface from unorganized set of point samples
- Approach:
- Approximate signed distance function
- Use contouring method (marching cubes) to extract triangle mesh

More Details

- Use linear distance field per point
- Direction is defined by normal
- Normal estimated using covariance analysis
- In every point in space use the distance field of the closest point (Voronoi decomposition)

More Details

- $X=\left\{x_{0}, . ., . x_{n}\right\}$ sample of an unknown surface S
- δ-noisy: $x_{i}=y_{i}+e_{i}, y_{i}$ on $S,\left|e_{i}\right|<\delta$
- ρ-dense: Any sphere with radius ρ and center on S contains at least one sampe x_{i} \Rightarrow justification for using k-nearest neighbors
- Algorithm complexity:
- k-nearest neighbors: $O\left(k^{*} \log N\right)$
- normal orientation: O(NlogN)
- contouring: $O(m), m=\# v i s i t e d ~ c u b e s$

Results

+ shapes of arbitrary topology
+ simple and efficient computation
- crude approximation of signed distance field
- no topological guarantees

Paper

- Carr, Beatson, Cherrie, Mitchell, Fright, McCallum, Evans: Reconstruction and Representation of 3D Objects with Radial Basis Functions, SIGGRAPH 01

Summary

- Goal:
- Reconstruct implicit surface from unorganized point set
- Approach:
- RBF implicit representation
- Fast computation of matrix solution using multipole method and RBF center reduction
- RBF approximation of noisy data

More Details

- RBF interpolation
- $s\left(x_{i}\right)=f_{i}, i=1, \ldots, N$
- additional constraints using normal information
- "smoothest" interpolant: $s^{*}=\operatorname{argmin}_{s \in s}\|s\|$ according to rotation-invariant semi-norm ||.||
- for noisy surface look for least-squares approximation

$$
\min _{s} \rho\|s\|^{2}+\frac{1}{N} \sum_{i=1}^{N}\left(s\left(x_{i}\right)-f_{i}\right)^{2}
$$

More Details

- RBF center reduction

1. Choose subset of nodes and fit RBF $s(x)$
2. Evaluate residual $e_{i}=f_{i}-s\left(x_{i}\right)$ for all x_{i}
3. If $\left\{\max \left\{\left|e_{i}\right|\right\}<\right.$ fitting accuracy, stop
4. else append new centers where e_{i} is large
5. recompute $s(x)$ and goto 2

Results

+ Reconstruction from large point sets
+ Irregular sampling distributions
+ Smooth extrapolation for hole filling

Results

- Smoothing operation does not preserve features
- Still relatively slow: Fitting time in order of hours, surface time in order of minutes

Paper

- Kalaiah, Varshney: Statistical Point Geometry, Symposium on Geometry Processing, 2003

Summary

- Goal:
- Efficiently represent point clouds using statistical methods
- Approach:
- Octree subdivision
- PCA on positions, normals, and color
- k-means clustering and quantization

More Details

- Subdivide point cloud into clusters using octree hierarchy

More Details

- Apply principal component analysis (PCA) on each cluster (covariance analysis)
- Treat positions, normals, colors separately
- Represent each cluster by mean + covariance ellipsoid
- Collection of ellipsoids provides statistical representation of original point cloud

More Details

- Application: Randomized Rendering
- sample PCA ellipsoids using trivariate Gaussian

PCA ellipsoid
Gaussian random distribution

More Details

- Randomized rendering

More Details

- Compression:

Octree Level	Compression (in \%)	Max. error (in \%)	Avg. error (in \%)
Level 9	213.79	0.4161	0.0751
Level 8	829.23	0.546	0.1466
Level 7	3392.11	1.186	0.280
Level 6	13316.08	1.952	0.641
Level 5	45433.10	3.768	1.504
Level 4	104477.13	8.086	3.458

Results

+ Statistical approach well suited for large models
+ Can handle (some) noise
- Decoupling of position and normals leads to inferior rendering quality (no coherence)
- Compression (probably) not competitive
- Hard to apply interrogation or other operators using this representation

