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Introduction
• Many applications need a definition of 

surface based on point samples
• Reduction
• Up-sampling
• Interrogation (e.g. ray tracing)

• Desirable surface properties
• Manifold
• Smooth
• Local (efficient computation)
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Introduction
• Terms

• Regular/Irregular, Approximation/Interpolation, 
Global/Local

• Standard interpolation/approximation 
techniques
• Triangulation, Least Squares (LS), Radial Basis 

Functions (RBF)
• Problems

• Sharp edges, feature size/noise
• Functional -> Manifold
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Terms: Regular/Irregular

• Regular (on a grid) or irregular (scattered)
• Neighborhood is unclear for irregular data
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Terms: Approximation/Interpolation

• Noisy data -> Approximation

• Perfect data -> Interpolation
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Terms: Global/Local
• Global approximation

• Local approximation

• Locality comes at the expense of 
smoothness
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Triangulation
• Exploit the topology in a triangulation (e.g. 

Delaunay) of the data
• Interpolate the data points on the triangles

• Piecewise linear C0
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Triangulation: Piecewise linear

• Barycentric interpolation on simplices
(triangles)
• given d+1 points xi with values fi and a point x 

inside the simplex defined by xi

• Compute αi from
x = Σi αi ·xi and Σi αi  = 1

• Then
f = Σi αi ·fi
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Least Squares
• Fits a primitive to the data
• Minimizes squared distances between the 

pi’s and primitive g
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Least Squares - Example
• Primitive is a polynomial

•

• Linear system of equations that can be solved using 
normal equations

• Leads to a system of dim(c) equations.
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Radial Basis Functions
• Represent interpolant as

• Sum of radial functions r
• Centered at the data points pi
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Radial Basis Functions
• Solve

to compute weights wi

• Linear system of equations 
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Radial Basis Functions
• Solvability depends on radial function
• Several choices assure solvability

• (thin plate spline)

• (Gaussian)
• h is a data parameter
• h reflects the feature size or anticipated 

spacing among points

( ) dddr log2=

( ) 22 / hdedr −=



15

Interpolation
• Monomial, Lagrange, RBF share the same 

principle:
• Choose basis of a function space
• Find weight vector for base elements by solving 

linear system defined by data points
• Compute values as linear combinations

• Properties
• One costly preprocessing step
• Simple evaluation of function in any point
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Interpolation
• Problems

• Many points lead to large linear systems
• Evaluation requires global solutions

• Solutions
• RBF with compact support

• Matrix is sparse
• Still: solution depends on every data point, 

though drop-off is exponential with distance
• Local approximation approaches
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Typical Problems
• Sharp corners/edges

• Noise vs. feature size
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Functional -> Manifold
• Standard techniques are applicable

if data represents a function

• Manifolds are more general
• No parameter domain
• No knowledge about neighbors
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Implicits
• Each orientable n-manifold can be 

embedded in n+1 – space 
• Idea: Represent n-manifold as zero-set of a 

scalar function in n+1 – space 
• Inside:
• On the manifold:
• Outside: 

( ) 0<xf
( ) 0=xf
( ) 0>xf
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Implicits - Illustration

• Image courtesy Greg Turk
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Implicits from point samples
• Function should be zero in 

data points
•

• Use standard 
approximation techniques 
to find f

• Trivial solution:
• Additional constraints are 

needed

( ) 0=if p

0=f
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Implicits from point samples
• Constraints define inside 

and outside
• Simple approach (Turk, 

O’Brien)
• Sprinkle additional 

information manually
• Make additional 

information soft 
constraints
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Implicits from point samples
• Use normal information 
• Normals could be 

computed from scan
• Or, normals have to be 

estimated
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Detour: Local Surface Analysis

• Estimate local surface properties from local 
neighborhoods:
• No explicit connectivity between samples (as with 

triangle meshes)

• Replace geodesic proximity with spatial proximity 
(requires sufficiently high sampling density!)

• Compute neighborhood according to Euclidean 
distance
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Neighborhood
• K-nearest neighbors

• Can be quickly computed using spatial data-
structures (e.g. kd-tree, octree, bsp-tree)

• Requires isotropic point distribution
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Neighborhood
• Improvement: Angle criterion (Linsen)

• Project points onto tangent plane
• Sort neighbors according to angle
• Include more points if angle between subsequent 

points is above some threshold
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Neighborhood
• Local Delaunay triangulation (Floater)

• Project points into tangent plane
• Compute local Voronoi diagram
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Covariance Analysis
• Covariance matrix of local neighborhood N:

• with centroid

Ni j

i

i

T

i

i

nn

∈
















−

−
⋅

















−

−
= ,

11

pp

pp

pp

pp
C

∑
∈

=
Ni

iN
pp 1



29

Covariance Analysis
• Consider the eigenproblem:

• C is a 3x3, positive semi-definite matrix
All eigenvalues are real-valued
The eigenvector with smallest eigenvalue defines 
the least-squares plane through the points in the 
neighborhood, i.e. approximates the surface 
normal

}2,1,0{, ∈⋅=⋅ llll vvC λ
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Covariance Analysis
• Covariance ellipsoid spanned by the 

eigenvectors scaled with corresponding 
eigenvalue
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Normal Estimation
• Estimate normal direction by least squares fit
• Compute consistent orientation by 

incremental propagation
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Implicits from point samples
+1• Compute non-zero 

anchors in the 
distance field

• Use normal 
information directly 
as constraints
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Implicits from point samples

• need to constrain distance to avoid self-
intersections

( ) 1=+ iii df np
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Computing Implicits
• Given N points and normals

and constraints

• Let 
• An RBF approximation

• leads to a system of linear equations

ii np ,
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Computing Implicits
• Practical problems: N > 10000
• Matrix solution becomes difficult
• Different solutions

• Sparse matrices allow iterative solution
• Fast multi-pole methods
• Smaller number of RBFs
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Computing Implicits
• Sparse matrices

• Needed: 

• Compactly supported RBFs

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )





















−−
−−
−−

0
0

0

120

2101

2010

rpprppr
pprrppr
pprpprr

0)(',0)( ==→> crdrcd

cc



37

Computing Implicits
• Fast multi-pole methods

• approximate solution using far- and near-field 
expansion

• hierarchical clustering of nodes
• introduces fitting error and evaluation error

O(1) + O(NlogN)
setup

O(N)Evaluation
O(NlogN)O(N^3)Solve system
O(N)O(N^2)Storage

Fast MethodsDirect Methods
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Computing Implicits
• RBF center reduction exploits the 

redundancy in many point sampled models
• Greedy approach (Carr et al.)

• Start with random small subset
• Add RBFs where approximation quality is not 

sufficient
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Computing Implicits
• RBF center reduction: Example
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Implicits - Conclusions
• Scalar field is underconstrained

• Constraints only define where the field is zero, 
not where it is non-zero

• Additional constraints are needed
• Signed fields restrict surfaces to be 

unbounded
• All implicit surfaces define solids
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Paper
• Hoppe, DeRose, Duchamp, McDonald, 

Stuetzle: Surface Reconstruction from 
Unorganized Points, SIGGRAPH 92
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Summary
• Goal: 

• Reconstruct polygonal surface from unorganized 
set of point samples

• Approach: 
• Approximate signed distance function
• Use contouring method (marching cubes) to 

extract triangle mesh
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More Details

• Use linear distance field
per point
• Direction is defined by

normal
• Normal estimated using 

covariance analysis
• In every point in space 

use the distance field of
the closest point 
(Voronoi decomposition)
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More Details
• X={x0,..,.xn} sample of an unknown surface S
• δ-noisy: xi = yi + ei, yi on S, |ei| < δ
• ρ-dense: Any sphere with radius ρ and 

center on S contains at least one sampe xi

justification for using k-nearest neighbors
• Algorithm complexity:

• k-nearest neighbors: O(k*logN)
• normal orientation: O(NlogN)
• contouring: O(m), m = #visited cubes
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Results
+ shapes of arbitrary 

topology
+ simple and efficient 

computation
- crude approximation of 

signed distance field
- no topological 

guarantees
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Paper
• Carr, Beatson, Cherrie, Mitchell, Fright, 

McCallum, Evans: Reconstruction and 
Representation of 3D Objects with Radial 
Basis Functions, SIGGRAPH 01
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Summary
• Goal: 

• Reconstruct implicit surface from unorganized 
point set

• Approach:
• RBF implicit representation
• Fast computation of matrix solution using multi-

pole method and RBF center reduction
• RBF approximation of noisy data
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More Details
• RBF interpolation

• s(xi)=fi, i=1,...,N
• additional constraints using normal information
• “smoothest” interpolant:                                 

according to rotation-invariant semi-norm ||.||
• for noisy surface look for least-squares 

approximation
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More Details
• RBF center reduction

1. Choose subset of nodes and fit RBF s(x)
2. Evaluate residual ei = fi – s(xi) for all xi

3. If {max {|ei|} < fitting accuracy, stop
4. else append new centers where ei is large
5. recompute s(x) and goto 2



50

Results
+ Reconstruction from large point sets
+ Irregular sampling distributions
+ Smooth extrapolation for hole filling
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Results
- Smoothing operation does not preserve 

features 
- Still relatively slow: Fitting time in order of 

hours, surface time in order of minutes
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Paper
• Kalaiah, Varshney: Statistical Point 

Geometry, Symposium on Geometry 
Processing, 2003
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Summary
• Goal:  

• Efficiently represent point clouds using statistical 
methods

• Approach:
• Octree subdivision
• PCA on positions, normals, and color
• k-means clustering and quantization
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More Details
• Subdivide point cloud into clusters using 

octree hierarchy
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More Details
• Apply principal component analysis (PCA) 

on each cluster (covariance analysis)
• Treat positions, normals, colors separately
• Represent each cluster by mean + 

covariance ellipsoid
• Collection of ellipsoids provides statistical 

representation of original point cloud
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More Details
• Application: Randomized Rendering

• sample PCA ellipsoids using trivariate Gaussian

Gaussian random
distribution

PCA ellipsoid
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More Details
• Randomized rendering
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More Details
• Compression:
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Results
+ Statistical approach well suited for large 

models
+ Can handle (some) noise 
- Decoupling of position and normals leads to 

inferior rendering quality (no coherence)
- Compression (probably) not competitive
- Hard to apply interrogation or other 

operators using this representation
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