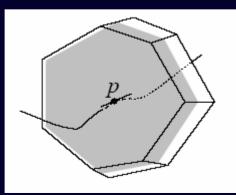
Using Voronoi to determine dimensionality

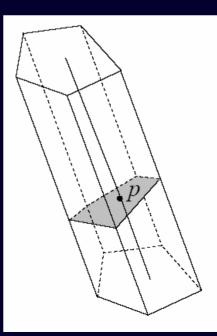
Undersampling and Oversampling in Sample Based Shape Modeling (Detecting Undersampling in Surface Reconstruction)

Shape Dimension and Approximation from Samples

Properties of Voronoi cells

- Reflects local neighborhood
- Round
 - Points in all directions
- Skinny
 - Points in a plane





Issues in surface reconstuction

- Noise
- Partial scans
 - Boundary detection
- Undersampling
 - Real data does not respect sampling condition
- Oversampling
 - Too many points in flat areas

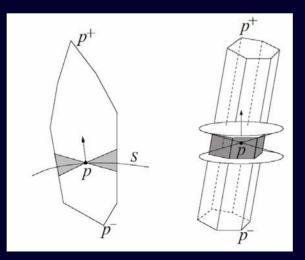
Definitions

- (ϵ , δ) sample – Each $x \in M$ has a sample within $\epsilon f(x)$
 - Each sample has no point within $\delta f(x)$
- Pole
 - Farthest vertex in Voronoi cell
 - Approximates normal
- Height

- Distance between point and negative pole

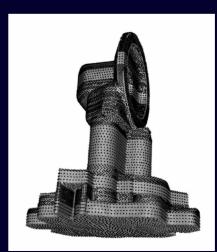
Cocone

- $C_p(\theta, v) = \{y \in V_p: ((y-p), v) \ge \pi/2-\theta\}$
- Usually v is the pole
- q is a cocone neighbor of p if the cocone of p overlaps with V_a



Cocone Algorithm

- Compute Voronoi
- Determine candidate triangles
 Using the cocone
- Remove triangles with free edges
- Extract manifold



What is well sampled?

- Long skinny Voronoi cells
- The poles of neighbors agree
- The paper codifies these ideas
- Example picture

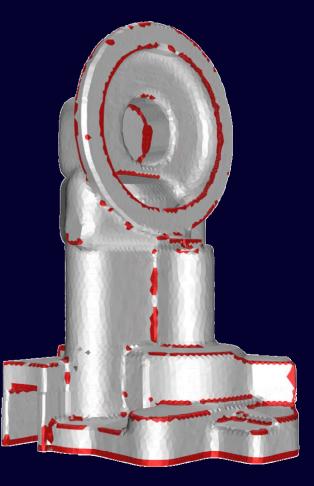
Flat Points

- Good points, define by ρ , α
 - Ratio condition
 - $r_p/h_p \le \rho$
 - $\begin{array}{l} \text{ Normal condition} \\ \forall \ q \ \text{with} \ p \in N_q, \ (v_p, v_q) \leq \alpha \end{array}$
- Samples which are not Cocone neighbors to a boundary sample are flat

Boundary detection

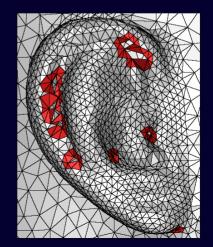
- Identify interior points
- Grow from interior points

 If normal is close
 to one previous point
- Return rest as boundary



Surface Reconstruction

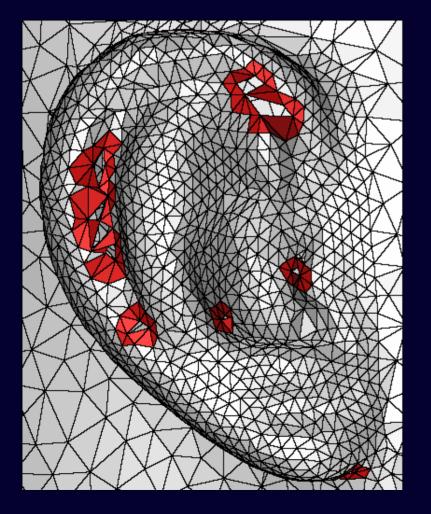
- Compute Voronoi
- Determine candidate triangles
 Using the cocone
- Remove triangles with free edges
 - And not on a boundary
- Extract manifold
- Patch (small) holes

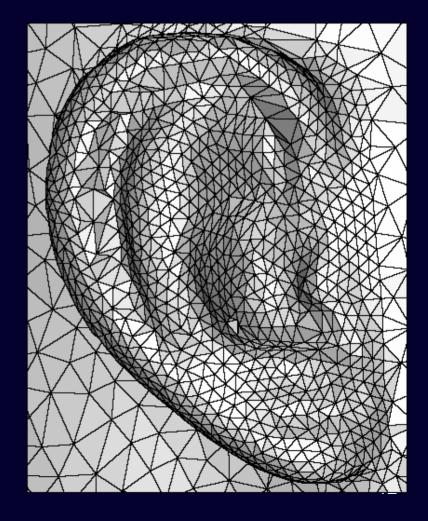


Experimental

- Good settings are
 - $\theta = \pi/8$
 - ρ=.99
 - α=π/6
- Theory says
 - $\theta = \pi/8$
 - $\rho \le 1.3\epsilon$
 - $\alpha \leq .14$ radians

Results

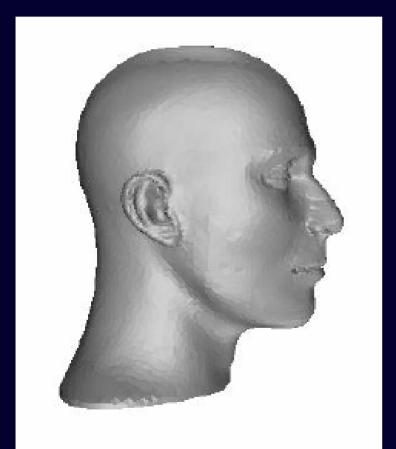


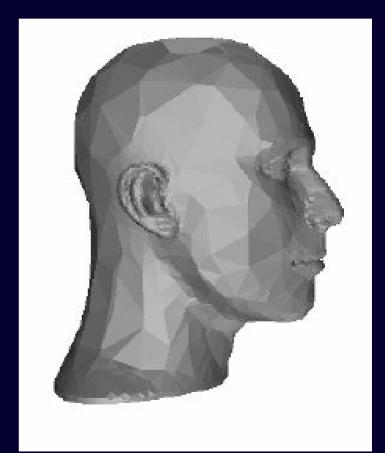


Oversampling

- Voronoi cells too skinny
 So remove some of the points
- Can preserve poles
 - Since the original estimates are the best
- Don't have to recompute Voronoi

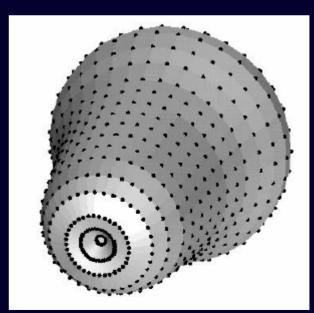
Results





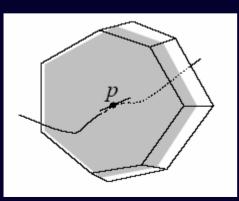
Dimension estimation

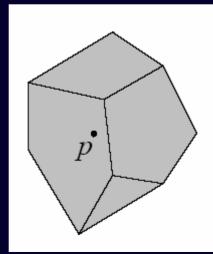
- k-manifold
 - Voronoi cells with d-k large dimensions and k small ones
- They codify this
- Need the stronger sampling condition

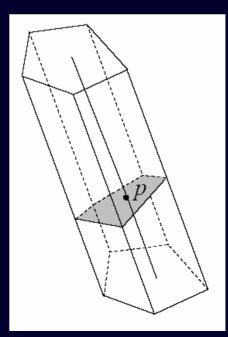


Definitions

- Tangent space
 Subspace spanned by tangents
 Dimension of manifold, k
- Normal space
 - dim d-k





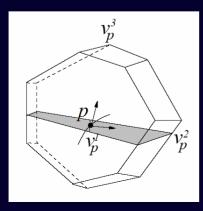


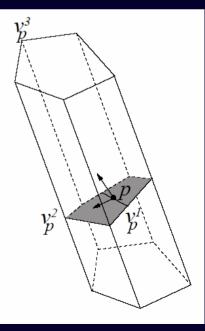
Height

• H_pⁱ is

The size of the ith largest dimension of the voronoi cell

• Compute pole, take orthogonal, compute farthest...





Dimension Estimation

- $p \in P$ is from a manifold of dim k if $-H_p^i \ge f(p)$ for $k < i \le d$
 - $\begin{array}{l} \delta / 2 \ f(p) \leq H_p^{-i} \leq \epsilon / (1 \text{-} \epsilon) \ \text{sec}(\alpha / 2 (1 \text{+} 4 \ \sqrt{(d \text{-} k)}) \\ f(p) \ \text{for} \ 1 \leq i \leq k \end{array}$

• Basically $\delta/2 f(p) \le H_p^{i} \le \epsilon f(p)$

Find the dimension where H first is small

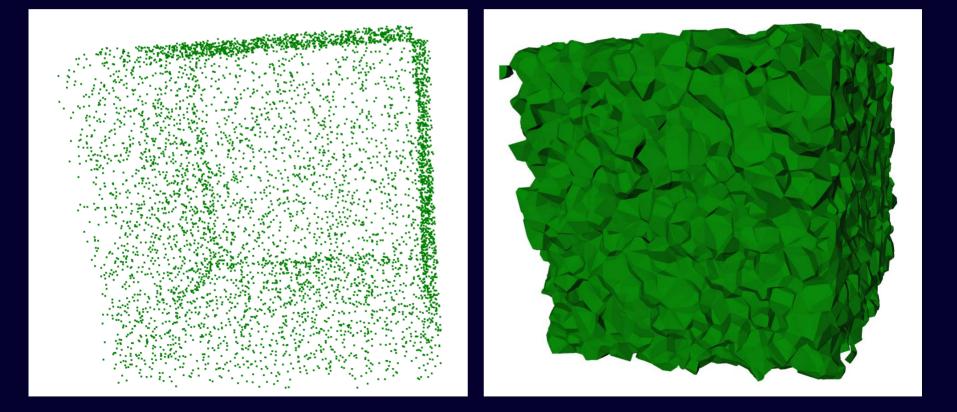
Manifold Computation

- Compute the dimension of a point
- Extract the duals of the d-k voronoi features which intersect the Cocone

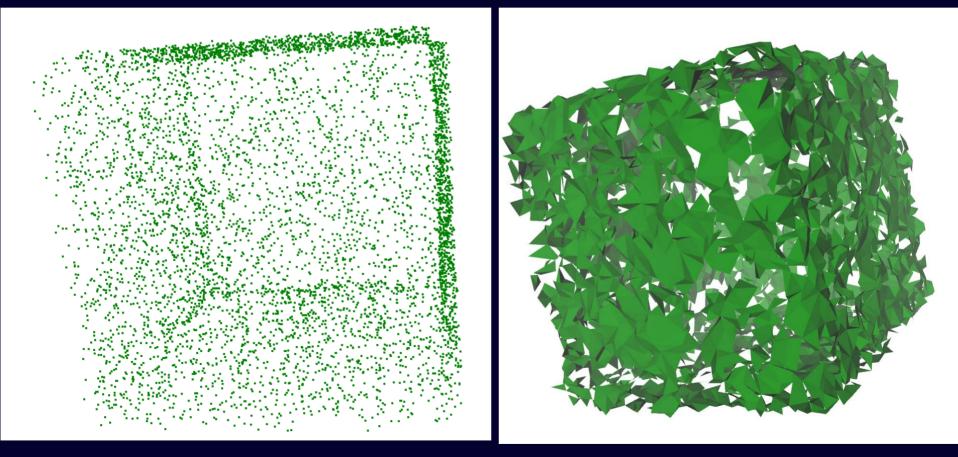
Computing Delaunay

- It is slow compared to other approaches
- Some good news in that direction – BRIO
 - CMU result
 - Oct-tree based
- 10⁷ or so points in half an hour

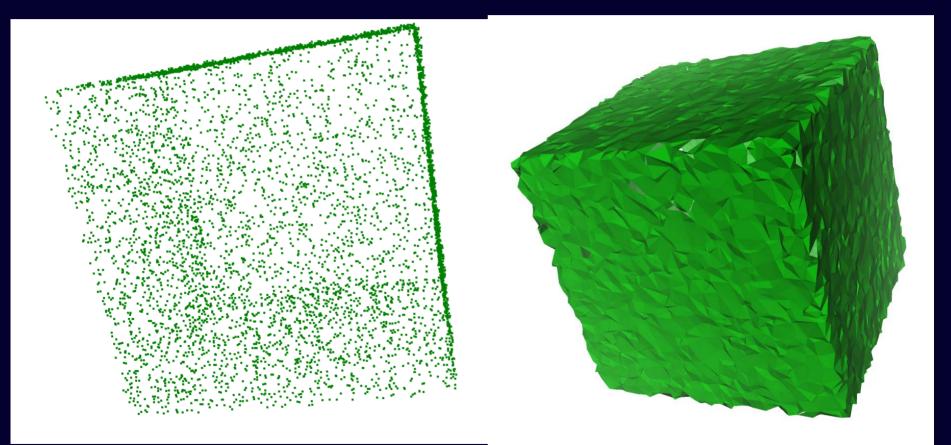
Powercrust .05



Cocone .05



Cocone .01



0 error

Cocone, Powercrust

