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Reconstruction)
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Approximation from Samples
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Properties of Voronoi cells

• Reflects local neighborhood
• Round

– Points in all directions

• Skinny
– Points in a plane
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Issues in surface reconstuction

• Noise
• Partial scans

– Boundary detection

• Undersampling
– Real data does not respect sampling 

condition

• Oversampling
– Too many points in flat areas
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Definitions

• (ε, δ) sample
– Each x ∈ M has a sample within εf(x)

– Each sample has no point within δf(x)

• Pole
– Farthest vertex in Voronoi cell
– Approximates normal

• Height
– Distance between point and negative pole
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Cocone
• Cp(θ, v) ={y ∈ Vp: ((y-p),v) ≥ π/2-θ}

• Usually v is the pole
• q is a cocone neighbor of p if the 

cocone of p overlaps with Vq
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Cocone Algorithm

• Compute Voronoi
• Determine candidate triangles

– Using the cocone

• Remove triangles with free edges
• Extract manifold
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What is well sampled?

• Long skinny Voronoi cells
• The poles of neighbors agree
• The paper codifies these ideas
• Example picture
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Flat Points

• Good points, define by ρ, α
– Ratio condition

• rp/hp ≤ ρ

– Normal condition
∀ q with p ∈ Nq, (vp, vq)≤ α

• Samples which are not Cocone
neighbors to a boundary sample are flat
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Boundary detection

• Identify interior points
• Grow from interior points

– If normal is close 
to one previous point

• Return rest as boundary
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Surface Reconstruction

• Compute Voronoi
• Determine candidate triangles

– Using the cocone

• Remove triangles with free edges
– And not on a boundary

• Extract manifold
• Patch (small) holes
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Experimental

• Good settings are 
– θ = π/8 
– ρ=.99
– α=π/6

• Theory says
– θ = π/8
– ρ≤ 1.3ε
– α ≤ .14 radians



12

Results
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Oversampling

• Voronoi cells too skinny
– So remove some of the points

• Can preserve poles
– Since the original estimates are the best

• Don’t have to recompute Voronoi
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Results
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Dimension estimation

• k-manifold
– Voronoi cells with d-k large dimensions 

and k small ones

• They codify this
• Need the stronger

sampling condition
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Definitions

• Tangent space
– Subspace spanned by tangents
– Dimension of manifold, k

• Normal space
– dim d-k
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Height

• Hp
i is

– The size of the ith largest dimension of the 
voronoi cell

• Compute pole, take orthogonal, 
compute farthest…



18

Dimension Estimation
• p ∈ P is from a manifold of dim k if

– Hp
i ≥ f(p) for k < i ≤ d

– δ/2 f(p) ≤ Hp
i ≤ ε/(1-ε) sec(α/2(1+4 √(d-k)) 

f(p) for 1 ≤ i ≤ k
• Basically δ/2 f(p) ≤ Hp

i ≤ εf(p)

• Find the dimension where H first is 
small
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Manifold Computation

• Compute the dimension of a point
• Extract the duals of the d-k voronoi

features which intersect the Cocone
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Computing Delaunay

• It is slow compared to other approaches
• Some good news in that direction

– BRIO
– CMU result
– Oct-tree based

• 107 or so points in half an hour



21

Powercrust .05
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Cocone .05



23

Cocone .01
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0 error

• Cocone, Powercrust
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