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Abstract

There are many scientific and engineering applications
where an automatic detection of shape dimension from sam-
ple data is necessary. Topological dimensions of shapes con-
stitute an important global feature of them. We present a
Voronoi based dimension detection algorithm that assigns a
dimension to a sample point which is the topological dimen-
sion of the manifold it belongs to. Based on this dimen-
sion detection, we also present an algorithm to approximate
shapes of arbitrary dimension from their samples. Our em-
pirical results with data sets in three dimensions support our
theory.

1 Introduction.

Interpretation of shapes from its samples is needed in many
scientific and engineering applications. As a result, defining
and detecting features that contain useful information about
the shape are subjects of active research in shape modeling
[4, 13, 21, 22]. A global feature of a shape is its dimen-
sion which has been defined in various ways to accommodate
intricacies and varieties in shapes. Topological and Haus-
dorff dimensions are two such definitions that capture the
global feature, the first one stresses on the space connectiv-
ity and the second one on the space filling property [14, 16].
In this work we focus on the topological dimension of the
shapes that are smooth manifolds embedded in an Euclidean
space. Data collected for scientific analysis through natu-
ral phenomena or simulations lie on such manifolds and can
reveal important information if the underlying dimension is
detected automatically.

Automatic dimension detection is a major challenge in
the fields of learning theory, pattern recognition [5] and ar-
tificial intelligence in general [20, 23]. In these applications
samples can be generated from an otherwise unknown mani-
fold. The dimension of the manifold, if can be detected from
the samples, provides useful feedback to the learning process
and sometimes can be used for various matching purposes in
pattern recognition.

In two and three dimensions, the topological dimension
of a shape becomes obvious with a visual inspection of the
data points. However, often a shape needs to be computed
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from the samples for further processing. For example, in the
study of dynamical systems, the quasiperiodic and chaotic
orbits can be automatically recognized from sample points
in the phase portraits if automatic shape recognition can be
performed; see [23]. To this end one may try reconstruction
algorithms for curves [2, 11, 17] and for surfaces [1, 3, 6, 8,
12, 18]. Unfortunately, these reconstruction algorithms are
of no use if the dimension of the shape is not determined
a priori. For example, a surface reconstruction algorithm
cannot produce a curve out of a sample that has been derived
from a curve. The situation becomes worse when data have
samples from shapes of various dimensions such as the data
from a phase portrait of a sampled dynamical system. In
this case, first, one needs to separate the samples according
to their dimensions and then apply respective reconstruction
steps.

In this paper we present an algorithm that determines
the dimension of the shape from which samples are derived.
Specifically, it assigns a dimension k to a sample point if
it belongs to a manifold of dimension k. We also present
a shape approximation algorithm which filters simplices
from a Delaunay complex approximating the sampled shape
subsequent to the dimension detection step. The assumption
we make on the sampling is that it is feature dependent, i.e.,
it is dense wherever small features exist and is relatively
sparse wherever intricate features are absent. This is similar
to the � -sampling condition introduced in [1, 2]. But, as
argued later, we need a stronger assumption on sampling for
automatic dimension detection and this assumption cannot
be avoided if one wants to guarantee correctness.

Our approach is based on the Voronoi diagrams of the
samples. The dimension of a small neighborhood of a point
in a manifold depends on the dimension of the manifold it-
self. For example, a point on a curve has a neighborhood
homeomorphic to a 1-disk and a point on a surface has neigh-
borhood homeomorphic to a 2-disk. Under an appropriate
sampling condition, the structure of the Voronoi cells of the
sample points contains information about the dimension and
shape of these neighborhoods. We analyze these structures
carefully and extract this information. We test our algorithms
on a number of data sets in three dimensions. Empirical re-
sults support the theory based on which we design the di-
mension detection algorithm DIMENSION and the shape ap-
proximation algorithm COCONESHAPE.



2 Sampling and Voronoi geometry.

Let � = � M1, M2, . . . , M ��� be a collection of smooth com-
pact manifolds embedded in � d and M = � ��� be its under-
lying space. In general, � can have manifolds of different
dimensions, i.e., Mi, i �	� 1, 2, 
�
�
 , �� may be a k-manifold
for any k, 1 � k � d. In order to determine the dimensions
of the manifolds from their samples, we must assume some
density condition on the samples, otherwise they may be too
sparse to provide any meaningful information about M.

2.1 Sample density. We adapt the density assumption
of [1] which is based on the local feature size of a shape
which measures the distance to the medial axis. The medial
axis of M is the closure of the set of points in � d that have
two or more closest points on M. The local feature size is
a function f : M ��� where f (x) is the Euclidean distance
to the medial axis of a point x � M. Intuitively, f (x) is a
measure of how complicated M is in the neighborhood of x.
A nice property of f ( � ) is that it is Lipschitz continuous, i.e.,
f (x) � f (y) + � x � y � for any two points x and y in M.

A sample P � M is called an � -sample of M if each point
x � M has a sample point p � P within � f (x) distance. This
means that each point in M has a sample within � factor of its
local feature size. We argue that this � -sampling assumption
is not suitable for dimension detection even for small values
of � since it cannot prevent ambiguity.

Figure 1: An ambiguous sample.

Consider the sample shown in Figure 1. The sample
is taken from the surface of a pear and satisfies the � -
sampling condition for ��� 0. 4. However, if it is not
known that the sample is from a surface, the points in
circular arrangements near the top may as well be taken as
a sample of the respective circles. Any dimension detection
algorithm would be confused in this case as to conclude if the
samples are generated from a surface or a set of curves. This
example shows that we need a stricter sampling condition to
disambiguate the dimension of the underlying shapes.

DEFINITION 2.1. A sample P of a collection of smooth
manifolds � is called ( � , � )-sample of M for �2 ���! #"! 1
if each point x $ M has a sample point within " f (x) distance
and each sample point p has all other sample points at least

� f (p) away from it.

Remark. The above definition requires that the sample
be dense with respect to the local feature size, but at the
same time samples cannot be arbitrarily close to form an
arbitrary pattern such as curves on surfaces. Notice that
this requirement is much less strict than the condition where
the sampling has to be uniform everywhere. We chose the
lower bound on � as %2 for making further calculations precise
though any other constant greater than 1 will be equally
valid for our theoretical analysis. Such sampling conditions
have been studied in the context of surface reconstruction in
[9, 15].

2.2 Tangent and normal spaces. Since we are dealing
with a collection & of smooth manifolds in ' d , results from
differential geometry ensure that a tangent space at each
point p ( M is well defined [7]. The dimension of the
tangent space at p coincides with the topological dimension
of the manifold containing p. We also refer to this dimension
as the dimension of p. Our goal is to determine the dimension
of the sample points from their Voronoi cells.

Let Tp denote the tangent space at p, i.e., the affine
subspace of ' d spanned by tangent vectors at p. The affine
subspace spanned by normals to Tp constitute the normal
space Np at p. The dimensions of Np and Tp add up to d.

The main tool we use for detecting dimension is the
geometric structure of the Voronoi cells. Let VP and DP

denote the Voronoi diagram and its dual, the Delaunay
triangulation for a sample P. A Voronoi cell Vp for a sample
point p is the set of all points that are no farther away from
p than any other sample point in P. Let T̃p denote the set
of all points in Tp that are no farther away from p than
from any other sample point, i.e., T̃p = Tp ) Vp. Similarly,
let Ñp = Np ) Vp denote the set of points in Np that are
no farther away from p than from any other sample point.
We call T̃p and Ñp the tangent and normal polytopes of
p respectively. The main observation based on which the
dimension detection proceeds is that the Voronoi cell Vp

of p ( P approximates the Minkowski sum of T̃p and Ñp.
Figure 2 illustrates the above fact. This figure shows the
Voronoi cells of points of various dimensions in an ( * , + )-
sample of M in three dimensions. In the left picture the
tangent polytope is the segment going through p and the
normal polytope is shaded. This is the case for a sample
point on a curve. In the middle picture, the tangent polytope
is shaded and the normal polytope is the line segment going
through p. This is the case for a sample point on a surface. In
the right picture, the tangent polytope is the entire Voronoi
cell and the normal polytope is the single point p. This is the
case for an interior point in a solid.

2.3 Voronoi subpolytopes. The Voronoi cell Vp contains
information about the dimension of T̃p and hence Tp. Our
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Figure 2: Tangent and normal polytopes of a sample on a curve (left), surface (middle) and solid (right).

task is to separate T̃p from Ñp from the Voronoi cell Vp.
We achieve this by examining the structure of a sequence
of Voronoi subpolytopes as defined recursively below.
The definition of Voronoi subpolytopes is based on the
concept of poles for Voronoi cells which was introduced in
[1]. We generalize it here for Voronoi subpolytopes. For
convenience we use the notation � (v, w) to denote the acute
angle between the lines supporting two vectors v and w.

DEFINITION 2.2. The Voronoi subpolytopes for a sample
point p � M are special subsets V i

p
�

Vp, i = 1, . . , d
of the Voronoi cell Vp. Let Vd

p = Vp. Assume that V i
p is

already defined. Let vi
p be the farthest point in V i

p from p.
We call vi

p the pole of V i
p and the vector vi

p = vi
p � p its pole

vector. If V i
p is unbounded, vi

p is taken at infinity, and the
direction of vi

p is taken as the average of all directions given
by unbounded edges. The Voronoi subpolytope V i � 1

p is the
minimal polytope containing all points � x : � ((x � p), vi

p) =�
2 � .

Clearly, V i � 1
p 	 V i

p is a polytope orthogonal to the pole
vector of V i

p. In Figure 3 we show the Voronoi subpolytopes
for a sample point on a curve and on a surface, respectively
in three dimensions.

We introduce the definition of height to measure the
structure of Voronoi subpolytopes.

DEFINITION 2.3. The height H i
p of a Voronoi subpolytope

V i
p is the length 
�
 vi

p 
�
 = 
�
 vi
p  p 
�
 .

The height of V i
p measures its elongation, but we also need

a measure for the ‘fatness’ of V i
p which is measured by the

height of V i � 1
p .
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Figure 3: Voronoi subpolytopes for a point on a curve (left)
and a surface (right). V3

p are the entire Voronoi cells, V2
p are

the shaded polygons, V1
p are the line segments going through

p.

3 Geometric guarantees.

Let p � P be an interior point in a manifold of dimension k,
1 � k � d, where P is an ( � , � )-sample of M, the underlying
space of a collection of manifolds � in � d . We assume that
p satisfies the following condition.

ASSUMPTION 3.1. Vp does not contain any boundary point
of M.

One way to satisfy the above assumption for all sample
points is to consider only manifolds without boundary. Of
course, this excludes d-manifolds since they necessarily have
boundaries in � d .

We claim that Vk
p approximates the tangent polytope

T̃p and thus cannot have large heights. All other higher
dimensional Voronoi subpolytopes are long and thin along
some normal direction and they have large height. The
claims are based on the following two observations:



(i) All Voronoi subpolytopes V i
p, k � i � d, contain a

boundary point of Ñp.

(ii) The pole vectors of Voronoi subpolytopes V i
p, k � i �

d, approximate some vector in the normal space Np.

Fact (i) implies that the height H i
p is at least as large as

f (p), the local feature size at p, for k � i � d. Fact (ii)
implies that the affine space of Vk

p is normal to k orthogonal
vectors each of which approximates a vector in the normal
space Np. This in turn means that the affine space of V k

p lies
close to Tp and Vk

p approximates the tangent polytope T̃p. We
extend a result of [3] to show that the diameter of the tangent
polytope is small, O( � )f (p) in specific. It follows that the
height Hi

p is O( � )f (p) for 1 � i � k.
Fact (i) and (ii) hold vacuously for k = d since k � d is

not satisfied. In this case Vk
p = Vp is the tangent polytope and

its height is small due to � -sampling condition.

LEMMA 3.1. Let v � V i
p be any point in the Voronoi

subpolytope V i
p where k � i � d and ��� v � p ���	��
 f (p).

Then there is a normal vector np � Np so that

�
((v � p), np) � sin  1 �� (1 ��� ) + sin � 1 �

1 ��� .

Proof. If v � Ñp, then the condition is trivially satisfied.
So, assume v �� Ñp. First we establish that there is a point
z � M so that the line going through v and z intersects the
boundary of the normal polytope Ñp. Consider the cone
Xv = � x : x = tv+(1 � t)y � for all t � [0, 1] and y � Ñp. Since
Ñp has dimension d � k, the dimension of Xv is d � k +1. The
manifold M intersects Xv at p transversally and L = M � Xv

must be a manifold of dimension (d � k + 1) + k � d = 1.
We argue that L must intersect the boundary of Xv at a point
z �� Ñp. If z � Ñp then there is a medial axis point violating
the sampling condition. To see this consider a ball tangential
to M at p growing towards z, i.e., its center moving along pz
from p towards z. It must touch M at another point before or
when it reaches z implying that there is a medial axis point
within the segment connecting z and p. This means z has
the nearest sample point p at a distance more than f (z), a
contradiction to our sampling condition. Thus, z can lie only
on bd(Xv) � Ñp establishing our claim. See Figure 4 for an
illustration.

Let the line going through v and z meet the boundary of
Ñp at m. Clearly, m � bd(Vp). Consider the triangle pvm.
Take np as the vector r � p where r is the other end point
of the line segment in Ñp going through p and m. We are
interested in the angle � rpv. We have

� rpv = � pmv + � pvm.

Since z � M has p as the nearest sample point we have���
z � p

����� � f (z). Applying Lipschitz condition between f (z)
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Figure 4: The polytope Xv in Lemma 3.1 is three dimensional
for a curve point (left) and is two dimensional for a surface
point p (right) in three dimensions. The edges of this
polytope are dashed. Ñp is the lightly shaded polygon for
the curve point, and it is the segment between m and r for
the surface point.

and f (p) we get f (z) �  1 !#" f (p). Therfore,

$
z % p

$	& '
1 (�) f (p).

Also, *�*m ( p *�*,+ f (p) since there is an empty ball touching
M at p with center on the medial axis and on the segment
pm. To see this, again consider growing a ball touching M
at p and moving its center from p towards m until it touches
another point on M. The center of such a ball must be in Vp

since the ball is empty. It follows that

-
pmv . sin / 1 0 z ( p 01

m 2 p
1

3
sin 4 1 5

1 687 .

Considering the triangle pvm we have

9
pvm : sin ; 1 < z 6 p <=

v > p
=

?
sin @ 1 AB (1 C8D ) .

This establishes the claim of the lemma.

LEMMA 3.2. Hi
p E f (p) for k F i G d.

Proof. The Voronoi subpolytope V i
p intersects the normal

polytope Ñp in a polytope of dimension i + (d C k) C d = i C k
which is greater than 0 since i H k. It means that V i

p has a
point, say x, where x I bd(V i

p) J Ñp K bd(Vp) J Ñp. Consider
growing a ball touching M at p always keeping the center on
px until it touches M at another point. The center of this
grown ball is a medial axis point that must lie in Vp since the
ball is empty. Thus, L�L x C p L�L E f (p). In particular, the length
of the pole vector Hi

p = L�L vi
p C p L�L must be at least f (p).



COROLLARY 3.1. There exists a normal vector np � Np for
each pole vector vi

p, k � i � d so that � (vi
p, np) ��� =

2 sin � 1 �
1 �
	 .

Proof. From Lemma 3.2 we get ��� vi
p ���� f (p) for k � i �

d. So, plugging � = 1 into Lemma 3.1 we obtain that�
(vi

p, np) � 2 sin � 1 	
1 �
� = � for some vector np � Np.

LEMMA 3.3. Let x � V i
p be any point on the boundary of

the Voronoi subpolytope V i
p, where i � k. We must have�

2
f (p) ����� x � p ����� �

1  "! sec #%$
2

(1 + 4 & d ' k) (
Proof. The lower bound on )�) x ' p )�) follows from the * -
condition in the sampling density. Since any sample point
must be at least * f (p) away from p, any point on the boundary
of Vp is at least +2 f (p) distance away from p. The point x lies
on the boundary of V i

p and hence on the boundary of Vp.
For the upper bound we first exclude the case k = d.

In this case Vk
p = Vp is the tangent polytope with height

Hd
p ,.- f (p) due to sampling condition. Thus, the upper

bound holds trivially in this case. For the other cases when
k / d we first show that the vector xp = x 0 p makes a large
angle with any vector in the normal space Np. Let np 1 Np

be a vector so that 2 (xp, np) is the smallest.
From Lemma 3.1 it follows that for each pole vector vi

p,
k / i , d, there exists a vector ni

p in the normal space

so that 2 (vi
p, ni

p) ,43 , where 3 = 2 sin 5 1 6
1 7
8 is small.

This result with the fact that the vectors vi
p are orthogonal to

each other imply that the vectors ni
p are linearly independent

and thus span Np. Consider the vector vp = 9 d
i=k+1aivi

p if
np = 9 d

i=k+1aini
p. Without loss of generality assume that the

vectors vi
p, ni

p for i = k+1, . . . , d are unit. We can also choose9 d
i=k+1a2

i = 1 which only scales np. With these choices vp

becomes an unit vector. Let : (vp, np) = ; . We show that ;
is small.

We can write ni
p = vi

p + wi where wi is a small vector

with <�<wi <�<>=@? = 2 sin 7 1 8
1 A
B since vi

p is a unit vector andC
(vi

p, ni
p) DFE . Therefore,

np = G d
i=k+1aini

p

= G d
i=k+1aivi

p + G d
i=k+1aiwi

= vp + G d
i=k+1aiwi

It follows that

sin H D I�I G d
i=k+1aiwi I�ID G d

i=k+1 I ai IKJLI�Iwi I�ID E>G d
i=k+1 I ai I

The term G d
i=k+1 I ai I is at most M d N k by Cauchy-Schwartz’s

inequality with the condition O d
i=k+1a2

i = 1. Therefore, for
small P P

2 Q sin R Q SUT d V k

Now consider the angle between xp and np. By triangu-
lar inequalityW

(xp, np) X W
(xp, vp) V W (vp, np)

= Y
2 Z\[ .

Using the contrapositive of Lemma 3.1 we obtain that ]�] x Zp ]�] = ^ f (p) where^ _ ` a
1 b"ced 1

sin( f2 g\hig sin j 1 k
1 l
m )n o p

1 q"res 1
cos( t + u2 )v w x

1 y"ze{ sec |~}
2

(1 + 4 � d � k) �
completing the proof.

Combining Lemma 3.2 and 3.3 we obtain the following
theorem.

THEOREM 3.1. Let p � P be any point derived from a
manifold of dimension k embedded in � d where P is an ( � , � )-
sample and Vp does not contain any boundary point. Then
following conditions hold:

1. Hi
p � f (p) for k � i � d

2. �2 f (p) � Hi
p � �1 �
� sec( �2 (1 + 4 � d � k))f (p)

for 1 � i � k.

4 Dimension detection.

Theorem 3.1 is the basis of our algorithm for dimension
detection. From Theorem 3.1 we have H1

p = O( � )f (p) if we
assume that the dimension of p is at least one. Certainly,
H1

p is small if � is sufficiently small. On the other hand,
Hi

p � f (p) are large for k � i � d. Then, one possible
algorithm to determine k may proceed as follows. Compare
the heights Hi

p with H1
p in decreasing sequence of i starting

with i = d. Continue the sequence of comparisons as long

as the ratio
H1

p

Hi
p

is less than an user chosen parameter � .
The comparison stops when the ratio goes above � and we
note the value of the corresponding i. This strategy has the
potential problem that the heights H i

p for 1 � i � k are small



Figure 5: Output of the algorithm DIMENSION on the datasets CURVES, FOOT, ENGINE and BALL. Points classified one-
dimensional by the algorithm are colored red (leftmost), points classified two-dimensional are colored green (middle two)
and points classified three-dimensional are colored blue (rightmost), respectively.

compared to f (p), but they may not be small with respect to
H1

p . The remedy is obtained by the � -condition on the ( � , � )-
sampling. We note that,

H1
p

Hi
p

� � (1 ��� )
2 � sec ( �2 (1 + 4 	 d 
 k))� (1 
�� )
4 sec ( 2 (1 + 4 � d � k))

= � (1) for 1 � i � k,

and for k � i � d,

H1
p

Hi
p

� ���
1 ����� sec ���

2
(1 + 4 � d � k) �

= O(  )
Thus, a choice of ! in the range"$#  

1 %�&(' sec )+*
2

(1 + 4 , d - k) . ,
(1 -0/ )

4 sec ( 12 (1 + 4 2 d 3 k)) 4
suffices for our algorithm DIMENSION. So, for example, in
dimension 5, with 5 less than 0. 03, 687 [0. 04, 0. 2] will
suffice though in practice we can deal with larger values of 5
with larger 6 .
DIMENSION (P, 6 , d)

1 Compute VP

2 for all p 7 P
3 compute H1

p , 9:9;9 , Hd
p

4 i := d
5 while H1

p < Hi
p = 6

6 i := i 3 1
7 endwhile
8 dim(p) := i
9 endfor

5 Shape approximation.

We use DIMENSION to design a shape approximation algo-
rithm that can approximate M with a piecewise linear com-

plex interpolating the sample P. This algorithm is dimen-
sion independent in that it does not need to know a priori the
dimension of the shape from where the sample is derived.
The algorithm can be seen as a generalization of our CO-
CONE algorithm that reconstructs surfaces in three dimen-
sions [3, 10]. We need the following definition of cocone for
a sample point p.

DEFINITION 5.1. Let p 7 P be a sample point from a
manifold of dimension k. The cocone for p, Cp, is defined
as the set of all points x 7 Vp so that the segment connecting
x and p makes an acute angle less than >8 with Vk

p . See Figure
6 for examples in two and three dimensions.

2 v3

pv p

p
p

Figure 6: Cocone for a curve point in two dimensions (left)
and a surface point in three dimensions (right).

The approximation algorithm COCONESHAPE filters a
subset of k simplices incident to p from the Delaunay trian-
gulation of P. In the COCONE algorithm for surface recon-
struction we selected a set of Delaunay triangles incident to p
that are dual to the Voronoi edges intersected by Cp. Gener-
alizing this idea, we compute the set of k-simplices incident
to p that are dual to the d ? k dimensional Voronoi faces inter-
sected by Cp. All such simplices computed over all sample



points constitute what we call the set of candidate simplices.
We claim that all candidate simplices lie close to the sampled
manifold M.

COCONESHAPE (P, � )
1 Compute VP

2 DIMENSION(P, � , d)
3 T := �
4 for all p � P
5 Let k := dim(p)
6 Compute Vk

p and Cp

7 Compute F, the d � k dimensional Voronoi faces
intersected by Cp

8 T := T � dual(F)
9 endfor

10 Output T

LEMMA 5.1. Let t be a candidate simplex computed by
COCONESHAPE. There is a ball of radius O( � )f (p) where
p is any vertex of t.

Proof. It follows from the definition of cocone Cp and the
proof of Lemma 3.3 that any point x � Cp satisfies the
condition � ((x � p), np) � 3 �

8 	 O( 
 ) where np is an angle-
wise closest vector to x 	 p in Np. Using the contarpositive
of Lemma 3.1, this implies that ��� x 	 p �� = O( 
 )f (p). Since
t is dual to a Voronoi face F that intersects Cp, there exists
a ball centered at a point c = Cp � F with radius O( 
 )f (p)
which circumscribes t.

The above lemma implies that each point on an output
simplex has a point p on the manifold M within a small
distance of O( 
 )f (p). Also, each point in M has a vertex p on
the output complex within 
 f (p) distance. These two facts
imply that the Hausdorff distance between M and T is small
relative to the feature size.

6 Experimental results.

We experimented with DIMENSION on three dimensional
data sets. DIMENSION is implemented in C++ using the
computational geometry algorithms library CGAL [25]. We
found that robust Delaunay triangulation/Voronoi diagram
computations in presence of degeneracies and finite preci-
sion arithmetic are absolutely necessary for valid output.
To this end we used the filtered floating point arithmetic of
CGAL. This simulates exact arithmetic only on a demand
basis. Thus, it provides the advantage of exact arithmetic
with a nominal increase in running time which is observed
to be a factor of two in our case. The reported running times
are due to experiments performed on a PC with 933 Mhz
Pentium III processor and 512 MB main memory. We tested
our implementation of DIMENSION on various datasets. See
Figures 5, 8 and Table 1. It turned out that a value of � = 0. 3

gives good results in practice. The results we report here are
all obtained using this value.

We developed the algorithm DIMENSION for manifolds
without boundaries, but tested it also on manifolds with
boundaries. In three dimensions, we can have one and two
manifolds without boundaries. However, three manifolds
embedded in three dimensions necessarily have boundaries.
The boundary of a k-manifold is a k 	 1-manifold, i.e. the
boundary of a volume is a surface. The samples on this
surface have Voronoi cells elongated along the normal to
the surface. Thus, DIMENSION detects these points as lying
on a 2-manifold. Similarly, we observe that points on the
boundary of a surface are detected as lying on a 1-manifold.
See the datasets FOOT, ENGINE and BALL in Figure 5.

The shapes are approximated with our COCONESHAPE

algorithm once the dimensions are detected by DIMENSION.
In three dimensions, we can extract a manifold out of the
candidate simplices which can be proved to be homeomor-
phic to the original curve or surface. Our COCONE software
works on this principle to reconstruct surfaces in three di-
mensions [24]. With the manifold extraction step COCONE-
SHAPE is exactly what COCONE does for surface reconstruc-
tion. Thus, COCONESHAPE acts like COCONE for samples
that are assigned dimension two. It includes samples from
the surfaces of the three manifolds. Figure 7 shows an ex-
ample of a sample from a three manifold in three dimensions
and the reconstruction of its boundary with COCONESHAPE

after the manifold extraction step.

Figure 7: Output of the algorithm DIMENSION on the dataset
TORUS (top) and the reconstruction of the boundary of the
same dataset (bottom). This picture needs to be seen in color.

The sample points on the boundaries of the surfaces
have dimension one. While computing candidate triangles
COCONESHAPE chooses triangles incident to these bound-



ary samples. They are selected by their neighbors whose
dimension is correctly assigned as two. Figure 5 shows that
the boundary samples above the ankle of the foot have been
connected to the rest of the foot correctly. We conclude our
experiments with a data extracted from manifolds of differ-
ent dimensions. The result is shown in Figure 8.

We summarize our experimental data on dimension
detection and reconstruction in Table 1.

number of DIMENSION COCONESHAPE

object points time (sec.) time (sec.)

CURVES 259 2 2
BALL 805 4 1

CACTUS 3280 46 47
ENGINE 11360 237 138
TORUS 19090 466 42
FOOT 20021 110 106

SCENE 29285 227 189

Table 1: Experimental data.

7 Future research.

We need to test the algorithm DIMENSION with data sets in
higher dimensions. Unfortunately, real data in higher dimen-
sions are not as easily available as in the three dimensions.
Also, we need to compute Voronoi diagrams in higher di-
mensions that are robust against numerical errors. Currently
we are in the process of these developments.

The theory developed in this paper applies to manifolds
without boundaries. Although in our experiments in three
dimensions we used heuristics to detect the boundaries, an
algorithm based on sound theory needs to be developed.
Feature recognitions, particularly in higher dimensions, can
benefit from such complete information. We believe that the
structure of the Voronoi cells can again guide us to decipher
this information. Currently research is in progress along this
direction.
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Figure 8: Output of the algorithm COCONESHAPE on the dataset SCENE (top) which has objects of different dimensions
and the reconstruction of the same dataset (bottom). This picture needs to be seen in color.


