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ABSTRACT
We address the problem of curvature estimation from sampled
smooth surfaces. Building upon the theory of normal cycles,
we derive a definition of the curvature tensor for polyhedral
surfaces. This definition consists in a very simple and new
formula. When applied to a polyhedral approximation of a
smooth surface, it yields an efficient and reliable curvature es-
timation algorithm. Moreover, we bound the difference be-
tween the estimated curvature and the one of the smooth sur-
face in the case of restricted Delaunay triangulations.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and problem complexity]: [Ge-
ometrical problems and computations, Computations on dis-
crete structures]; G.2.3 [Discrete Mathematics]: Applications
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Introduction
In many applications such as surface segmentation, anisotropic
remeshing [21] or non-photorealistic rendering, a key step is
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to estimate the curvature of a smooth surface knowing only
a polyhedral approximation of it. A lot of efforts have been
devoted to this problem, leading to several curvature estima-
tors, see [17] for a survey. Popular methods include quadric
fitting, where the estimated curvature is the one of the quadric
that best fits the sample points locally. Other methods typ-
ically consider some definition of curvature that can be ex-
tended to the polyhedral setting. An example is [18], where the
curvature is estimated using a discrete analog of the Laplace-
Beltrami operator. The main shortcomings of these approaches
are the lack of analysis of the quality of the obtained estima-
tors, and also the lack of sound theoretical foundations.

In this paper, we use the theory of normal cycles from differ-
ential geometry to define curvature tensors for a general class
of surfaces, including smooth and polyhedral ones. More pre-
cisely, we associate with each region a tensor which in the
smooth case is the average of the curvature tensor over this
region. The curvature tensor of a polyhedral approximation
of a smooth surface then provides an estimator of the one of
the smooth surface. Our main result is a bound on the differ-
ence between the estimated curvature and the actual one when
the polyhedral approximation is chosen to be a Delaunay tri-
angulation restricted to the surface. This case is important in
practice, in particular when the triangulation is obtained by a
Delaunay-based surface reconstruction algorithm. Under a lo-
cal uniformity condition on the sampling, this bound implies
that our estimator converges linearly with respect to the sam-
pling density. To the best of our knowledge, only weaker re-
sults have been obtained in the past [19]. Our result can be
viewed as a quantitative version of a theorem obtained by J.Fu
[11] for gaussian and mean curvatures. This paper is organized
in four sections. We first introduce some notations and state
the theorem (section 1). Then we present the theory of normal
cycles (section 2) and how they can be used to deal with curva-
ture tensors (section 3), which is a contribution of this paper.
The proof of the theorem, based on geometric measure theory,
is sketched in section 4.

1. STATEMENT OF THE THEOREM
In the sequel, we denote by M a surface in the three dimen-

sional oriented euclidean space �3 . We assume for simplicity
that M is the boundary of some compact set V ⊂ �3 .

1.1 Curvature measures
Let us first recall some basic definitions and notations in

the case where M is smooth. A good reference for these is
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[7]. The unit normal vector at a point p ∈ M pointing out-
ward V will be refered to as n(p). Note that M is thereby
oriented. Given a vector v in the tangent plane TpM to M
at p, the derivative of n(p) in the direction v is orthogonal to
n(p) as n(q) has unit length for any q ∈ M . The derivative
Dpn of n at p thus defines an endomorphism of TpM , known
as the Weingarten endomorphism. The Weingarten endomor-
phism can be shown to be symmetric ; the associated quadratic
form is called the second fundamental form. Eigenvectors and
eigenvalues of the Weingarten endomorphism are respectively
called principal directions and principal curvatures. Both prin-
cipal curvatures can be recovered from the trace and determi-
nant of Dpn, also called mean and gaussian curvature at p.

Our result does not involve curvatures at a single point, but
rather curvature measures, which we define here :

DEFINITION 1. The gaussian curvature measure of M , φG
V ,

is the function that associates with every (Borel) set B ⊂ �3
the quantity :

φG
V (B) =

�
B∩M

G(p)dp

where G(p) is the gaussian curvature of M at point p. Simi-
larly, we define the mean curvature measure φH

V by :

φH
V (B) =

�
B∩M

H(p)dp

H(p) being the mean curvature of M at point p.

Corresponding objects can be defined for triangulated sur-
faces. Assume now that V is a polyhedron with vertex set P
and edge set E.

DEFINITION 2. The discrete gaussian curvature measure
of M , φG

V , is the function that associates with every (Borel)
set B ⊂ �3 the quantity :

φG
V (B) =

�
p∈B∩P

g(p) (1)

where g(p) is the angle defect of M at point p, that is 2π minus
the sum of angles between consecutive edges incident on p.
Similarly, we define the discrete mean curvature measure φH

V

by :

φH
V (B) =

�
e∈E

length(e ∩B)β(e) (2)

|β(e)| being the angle between the normals to the triangles of
M incident on e. The sign of β(e) is chosen to be positive if e
is convex and negative if it is concave.

In section 2 we will see where these formulas come from
and why we use the same notation for continuous and discrete
curvature measures.

1.2 Anisotropic curvature measures
In the case where M is smooth, the second fundamental

form of M associates with each point p ∈ M a 2 × 2 sym-
metric bilinear form on TpM , denoted by HV (p). The 2 × 2
symmetric bilinear form on TpM having the same eigenvec-
tors as HV (p) but with swapped eigenvalues will be denoted
H̃V (p). These bilinear forms can be extended to 3×3 symmet-

ric bilinear forms H̄V (p) and ¯̃HV (p) by setting H̄V (X, Y ) =

¯̃HV (X, Y ) = 0 whenever X or Y is orthogonal to TpM . The
latter has already been considered by Taubin in [20]. We now
introduce two matrix valued measures which are in some sense
anisotropic versions of curvature measures :

DEFINITION 3. The anisotropic curvature measures H̄V

and ¯̃HV associate with every (Borel) set the 3 × 3 symmetric
bilinear form :

H̄V (B) =

�
B∩M

H̄V (p)dp

¯̃HV (B) =

�
B∩M

¯̃HV (p)dp

Again, corresponding objects can be defined in the polyhe-
dral case. If V is a polyhedron, we define the discrete anisotropic
curvature measures by :

DEFINITION 4.
¯̃HV (B) =

�
e∈E

β(e)length(e ∩ B)−→e ⊗−→e

H̄V (B) =
�
e∈E

length(e ∩B)

2
[(β(e)− sinβ(e))

−→
e+ ⊗

−→
e+

+(β(e) + sinβ(e))
−→
e− ⊗

−→
e−]

where −→e denotes a unit 3-vector with the same direction as
edge e, and e+ and e− respectively denote the normalized sum
and difference of unit normal vectors to triangles incident on
e. If u and v are two vectors, u ⊗ v is the bilinear form with
matrix u.vt.

1.3 Theorem
We now go back to the case where M is smooth. In the

sequel, P denotes a finite subset of M , and T is the Delaunay
triangulation ofP restricted to V , that is the union of Delaunay
simplices the dual of which meet V .

DEFINITION 5. P is said to be a ε-sample [2] of M if for
all point p ∈M , the ball B(p, εlfs(p)) centered on p and with
radius lfs(p) meets P . lfs, the local feature size [2], denotes
the distance function to the medial axis of �3 \M .

THEOREM 1. Let P an ε-sample of M with ε < 0.08.
If B is the relative interior of a union of triangles of ∂T , then :

|φG
T (B)− φG

V (π(B))| ≤ Kε

|φH
T (B)− φH

V (π(B))| ≤ Kε

|| ¯̃HT (B)− ¯̃HV (π(B))|| ≤ Kε

||H̄T (B)− H̄V (π(B))|| ≤ Kε

where for fixed M

K = O(
�

{t∈∂T, t⊂B̄}

r(t)2)

+O(
�

{t∈∂T, t⊂B̄, t∩∂B �=∅}

r(t))

r(t) being the circumradius of triangle t. In particular, when
the sampling is locally uniform [3], K = O(area(B)+length(∂B))1

1This result actually holds for any bounded aspect ratio trian-
gulation projecting homeomorphically on M .
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Here π denotes the projection on M . Thanks to the assump-
tion ε < 0.08, π is indeed defined on ∂T and is a homeomor-
phism from ∂T to M as Amenta et al. showed [1].

2. NORMAL CYCLES AND CURVATURE
MEASURES

Introduced by Wintgen and Zähle [15, 14], the theory of
normal cycles provides a unified way to define curvature for
both smooth and polyhedral surfaces2. Here is a very crude
overview of their approach.

The first observation is that the curvature measures of a
smooth surface actually are byproducts of an object associated
to the surface, called the normal cycle of the surface. More
precisely, the curvature measures of a surface can be easily
recovered from the normal cycle of the surface. Second, the
definition of the normal cycle of a surface has a unique natural
extension to the polyhedral case. Finally, the curvature mea-
sures of a polyhedron are defined to be the measures recovered
from its normal cycle. Before explaining what a normal cycle
is, we shortly review an early approach to curvature measures
and the required background.

2.1 A first approach
Historically, curvature measures were introduced by consid-

ering offsets of V , via the so-called tube formula.
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Figure 1: The tube formula

Let ρ be the distance between M and the medial axis of the
complement of V and

Vε = {p|p /∈ V d(p, V ) < ε} ⊂ �3

that is the ε-offset of V minus V . The tube formula then reads :

V ol(Vε) = area(M)ε + φH
V (M)

ε2

2
+ φG

V (M)
ε3

3

for ε < ρ. Moreover, this formula can be localized : if one
only considers the part Vε(B) of Vε that projects on a subset

2Normal cycles theory actually applies to a much more general
class of objects, of any dimension and any codimension.

B of M , then we have :

V ol(Vε(B)) = area(B)ε + φH
V (B)

ε2

2
+ φG

V (B)
ε3

3

In the smooth case, the volume of Vε(B) is thus a polyno-
mial in ε, and its coefficients are multiples of the curvature
measures of B. H. Federer [9] actually showed that the vol-
ume of Vε(B) is always a polynomial in ε for ε < ρ, even
if the boundary of V is not smooth. The coefficients of this
polynomial thus provide a way to generalize the definition of
curvature measures as soon as ρ is strictly positive. For in-
stance, if V is a convex polyhedron, the obtained definitions
agree with definition 2 3.

Unfortunately, this approach does not generalize to the case
where V is a non convex polyhedron, for instance, as ρ then
equals 0 ; this is the reason why the theory of normal cycles
was developed.

2.2 Background
The reader acquainted with differential calculus might want

to skip this section. [8] provides a good introduction to the
subject.

2.2.1 2-differential forms

2.2.1.1 Definition.
Let S be a smooth manifold of dimension at least two em-

bedded in some euclidean space �k . If f is a vector field
on S , we denote by fx ∈ TxS the vector associated with a
point x ∈ S . 2-differential forms are, in a certain sense, 2-
dimensional analogs of vector fields :

DEFINITION 6. A 2-differential form ω on S associates
with every point x ∈ S a skew-symmetric bilinear form on
TxS , denoted by ωx.

The following definition shows how a 2-differential form can
be built from two vector fields :

DEFINITION 7. The exterior product f ∧ g of two vector
fields f and g on S , is the 2-differential form defined by :

(f ∧ g)x(u, v) = (fx ∧ gx)(u, v) =
fx.u gx.u
fx.v gx.v

for all x in S and (u, v) ∈ TxS .

Exterior products are special cases of 2-differential forms. How-
ever, they provide a good intuition of the general case : any
2-differential form can actually be written as a linear com-
bination of exterior products of vector fields. It can be seen
from the definition of an exterior product that if A is a lin-
ear transformation of the plane P spanned by u and v, then
(f ∧ g)x(Au,Av) = det(A)(f ∧ g)x(u, v). In particular,
(f ∧g)x(u, v) = (f ∧g)x(u′, v′) for any two direct orthonor-
mal frames (u, v) and (u′, v′) of P . Note that this property
extend to general 2-differential forms by linearity. Similarly,
we have fx ∧ gx(u, v) = f ′

x ∧ g′
x(u, v) for any couple of

orthonormal frames (fx, gx) and (f ′
x, g′

x) spanning the same
oriented plane. Important examples of exterior products are

3The case of a convex polyhedron is actually the first consid-
ered historically, by Jacob Steiner [13].
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area forms. Area forms are a way to represent oriented sur-
faces as 2-differential forms. If T ⊂ S is an oriented surface,
then the area form of T is constructed as follows : for each
point x ∈ T , pick a direct orthonormal frame of the tangent
plane TxT , say (ux, vx). For x /∈ T , set ux = vx = 0.
The area form of T , denoted by aT , is the 2-differential form
u∧v. Intuitively, area forms can be thought of as fields of sur-
face elements : when applied to two vectors a and b in TxS ,
aT x yields the signed area of the parallelogram spanned by
the projections of a and b on TxT .

2.2.1.2 Integration.
2-differential forms can be integrated on oriented surfaces,

in the same way vector fields can be integrated on oriented
curves. To see how, let T be a oriented surface in S and, for
each x ∈ T , let (ux, vx) be a direct orthonormal frame of the
tangent plane TxT . The integral of a 2-differential form ω on
T is defined to be :�

T
ω =

�
T

ωx(ux, vx)dx

For instance, one has
�
T aT = area(T ), which is why area

forms are called this way.

2.2.1.3 Change of variable.
A change of variable is merely the data of a diffeomorphism

φ : S ′ 	−→ S where S ′ is the manifold where the new vari-
ables live. Using such a map, a 2-differential form ω on S can
be transformed into a 2-differential form on S ′, by a process
called pullback :

DEFINITION 8. The pullback of ω by φ, denoted by φ∗ω is
given by :

φ∗ωx(u, v) = ωφ(x)(Dxφ(u), Dxφ(v))

for all x ∈ S ′ and u, v ∈ TxS ′.

In a certain sense, pulling a 2-differential form back amounts
to expressing it in terms of the new variables. The change of
variable formula relates the integral of a 2-differential form
with the one of its pullback. The result turns out to be particu-
larly simple : �

S′
φ∗ω =

�
φ(S′)

ω (3)

For example, if S = S ′ = �2 and h an integrable func-
tion from S to �, applying (3) to ω = haT yields φ∗ω =
Jac(φ)h ◦ φaT : (3) thus generalizes the classical change of
variable formula. For this formula to hold, φ need actually not
be a diffeomorphism from S ′ to S ; the only requirement is
that φ should be a diffeomorphism from S ′ to φ(S ′).

2.2.2 Integral 2-currents
Integral 2-currents generalize oriented surfaces [12]. They

can be formally defined as linear combinations of oriented sur-
faces with integral coefficients. In particular, any oriented
surface T can be considered as an integral 2-current, which
we will abusively also denote T . Integration of 2-differential
forms is extended to integral 2-currents by linearity :�

nT +pT ′
ω = n

�
T

ω + p

�
T ′

ω

The surface U that is setwise the same as T but with re-
verse orientation thus corresponds to the current −T . Geo-
metrically, integral 2-currents can be thought of as oriented
surfaces with multiplicities. For instance, if T and T ′ are two
oriented surfaces such that orientations of T and T ′ agree on
T ∩T ′, T +T ′ can be represented as T ∪T ′ endowed with the
same orientation as T and T ′, points in T ∩ T ′ having a mul-
tiplicity equal to 2. If orientations of T and T ′ do not agree,
then summing T and T ′ yields a cancellation on T ∩ T ′.

T

T ′

T ′

T − T ′T + T ′

Figure 2: Sum of integral currents.

2.2.3 Invariant 2-forms
Now set S = �3 ×S2. S is obviously a subset of �3 ×�3 .

We will call the first factor of the latter product the point space,
Ep, and the second one the normal space, En. The reason for
this is that an element of S can be thought of as a point in
space together with a unit normal vector. If u is 3-vector, un

will denote the vector (0, u) ∈ Ep × En, and up the vector
(u, 0) ∈ Ep × En. Rigid motions of �3 can be naturally
extended to S : if g is such a motion, one can set ĝ(p, n) =
(g(p), ḡ(n)), where ḡ is the rotation associated with g. We
now define two particular 2-differential forms on S :

DEFINITION 9. Let (p, n) ∈ S and x, y ∈ �3 such that
(x, y, n) is a direct orthonormal frame of �3 . We set :

ωH
(p,n) = xp ∧ yn + xn ∧ yp

ωG
(p,n) = xn ∧ yn

One can actually check that these 2-forms do not depend on
the choice of x and y. Moreover, they are invariant under
rigid motions, that is satisfy ĝ∗ω = ω for all rigid motion
g. Geometric interpretations of these forms will be given in
section 2.5.4. The dimension of the space of invariant forms is
actually 4 [16].

2.3 Smooth case
The theory of normal cycles is inspired by the same ideas

as the one presented in section 2.1, but transposed in a setting
where they can be generalized : the theory of currents. Loosely
speaking, normal cycles are a way to unfold offsets in a higher
dimensional space :

DEFINITION 10. The normal cycle N(V ) of V 4 is the
current associated with the set :

ST⊥V = {(p, n(p))|p ∈M} ⊂ Ep × En

endowed with the orientation induced by the one of M .
4we will sometimes abuse the terminology and write ’the nor-
mal cycle of the oriented surface M ’ instead.
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M and ST⊥V are obviously diffeomorphic via the map :

i : M 	−→ ST⊥V
p −→ (p, n(p))

The connection between normal cycles and curvature mea-
sures lies in the following lemma :

LEMMA 2. �
N(V )

ωG
|i(B∩M) = φG

V (B)�
N(V )

ωH
|i(B∩M) = φH

V (B)

for all (Borel) set B ∈ �3 .

Here ω|i(B∩M) denotes the restriction of ω to i(B ∩M),
that is the form which coincides with ω on i(B ∩ M) and
vanishes elsewhere. In words, curvature measures of a surface
can be recovered by integrating specific differential forms on
its normal cycle.

PROOF. By definition we have :�
N(V )

ωG
|i(B∩M) =

�
i(B∩M)

ωG

The change of variable formula now states that :�
i(B∩M)

ωG =

�
(B∩M)

i∗ωG

To prove the first claim, it is thus sufficient to show that :

i∗ωG = GaM

Let (u, v) be a direct orthonormal frame of TxM , where x ∈
M . By definition, we have :

Dxi(w) = wp + Dxn(w)n

Expressing ωG
i(x) in the frame (un, vn, nn

x), we get

(i∗ωG)x(u, v) =
un.(up + Dxn(u)n) vn.(up + Dxn(u)n)
un.(vp + Dxn(v)n) vn.(vp + Dxn(v)n)

=
u.Dxn(u) v.Dxn(u)
u.Dxn(v) v.Dxn(v)

= G(x)

The proof of the second equality is similar. We omit it here as we will
prove a stronger result in section 3.

2.4 Convex case
When V is convex, a normal cycle can be defined even if

M is not smooth. Indeed, in place of normal vectors, we can
consider normal cones :

DEFINITION 11. The normal cone NCV (p) of a point p ∈
V is the set of unit vectors v such that :

∀q ∈ V −→pq.v ≤ 0

DEFINITION 12. The normal cycle of M is the current as-
sociated with the set

{(p, n)|p ∈ ∂V n ∈ NCV (p)}

endowed with the orientation induced by the one of ∂V .

In particular, when V is convex and smooth, this definition
agrees with the one given in the previous section. We now
state a crucial property of the normal cycle, which we could
have stated in the smooth case as well : the additivity.

PROPOSITION 3. Let V1 and V2 be two convex sets in �3

such that V1 ∪ V2 is convex. Then :

N(V1 ∩ V2) + N(V1 ∪ V2) = N(V1) + N(V2)

PROOF. It is sufficient to show that the multiplicities of any
point (p, n) in N(V1∩V2)+N(V1∪V2) and N(V1)+N(V2)
agree. If p does not belong to ∂V1 ∩ ∂V2, this is obvious. If
p lies in ∂V1 ∩ ∂V2, one concludes easily by noticing that
NCV1∩V2(p) = NCV1(p) ∪ NCV2(p) and NCV1∪V2(p) =
NCV1(p) ∩NCV2 (p).

V1
V2

N(V1) N(V2)

V1 ∩ V2

Figure 3: Additivity of the normal cycle

In figure 3 normal cycles are graphically represented by
their image under the map sending (p, n) ∈ Ep×En to p+n.

2.5 Polyhedral case

2.5.1 Definition
Once we know what the normal cycle of a convex is, there is

at most one way of defining the normal cycle of a polyhedron
while keeping the additivity property. Indeed, if one is given a
triangulation of the polyhedron V into tetrahedra ti, i = 1..n,
the normal cycle of V has to be :

N(V ) =

∞�
n=1

(−1)n+1
�

1≤i1<..<in≤n

N(∩n
j=1tij )

by inclusion-exclusion. We will give in 2.5.3 a geometric de-
scription of the obtained current that does not depend on the
chosen triangulation, so that N(V ) is well-defined in the poly-
hedral case.

2.5.2 Simplices
Let us now describe the normal cycle of the polyhedron V .

The way it is defined suggest to look first at the normal cycle
of simplices. Remember that intuitively, these are unfolded
versions of offsets of simplices. Just as their offsets, normal
cycles of simplices can be decomposed into spherical parts,
cylindric parts, and planar parts. The difference is that these
parts now live in Ep × En. We will say that a subset A of
Ep×En lies above a subset B ⊂ �3 if the projection of A on
the point space is included in B. Let us now describe in turn
each type of part for a simplex S of varying dimension :
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• spherical parts lie above vertices of S. They are subsets
of {(p, n)| ||n|| = 1} where p is the considered vertex.
If S is reduced to p, then the spherical part is a whole
sphere. In case S is an edge, then each spherical part is
a half sphere. When S is a triangle, they are spherical
2-gons, and if S is tetrahedron, they are the spherical
triangles spanned by the normals of neighboring facets.
Edges of these spherical polygons are dual to edges of
S, and the external angle between two incident spheri-
cal edges equals the angle between corresponding dual
edges.

• cylindric parts lie above edges of S. They are included
in {(p, n)|p ∈ e, ||n|| = 1, n.e = 0}, e being the
considered edge. If S is reduced to e, the cylindric part
is a whole cylinder. If S is a triangle, it is a half-cylinder,
and if S is tetrahedron, it is a portion of cylinder whose
section is a circle arc joining the normals to incident
facets.

• planar parts lie above facets. They have the form {(p, n)|
p ∈ t} where t is the considered triangle and n a unit
normal vector to t. If S is reduced to t, both possible
orientation for n have to be taken into account, whereas
if S is a tetrahedron, one should only consider the out-
ward normal.

2.5.3 General case
We can now go back to the case of a general polyhedron

V . To begin with, for any point p lying in the interior of V ,
there is a triangulation of V such that p lies in the interior of
a tetrahedron. Thus, there is nothing lying above the interior
of V in N(V ). By a similar argument restricted to a face f of
M = ∂V , the part of N(V ) lying above f is the planar part
f×n, where n is the outward normal to f . The two remaining
cases are slightly more involved.

2.5.3.1 Above edges.
If e is a convex edge of V , V can be triangulated in such a

way that e is included in only one tetrahedron. Above e, N(V )
thus coincides with the normal cycle of this tetrahedron : we
get a cylindric part delimited by the normals to faces incident
on e, with multiplicity 1. If e is concave, one can find a trian-
gulation of V such that e is an edge of exactly two tetrahedra
t and t′. Above e, N(V ) is the sum of the cylindric parts
of N(t) and N(t′) lying above e minus the cylindric part of
N(t ∩ t′) lying above e.

The above picture shows a cross section along a plane per-
pendicular to the concave edge e. As can be seen, we get again
a cylindric part delimited by the normals to facets incident on
e, but with a multiplicity equal to −1, that is with reverse ori-
entation.

2.5.3.2 Above vertices.
Above a vertex p, the situation is more involved, as we ob-

tain a linear combination of at least degree of p half-spheres,
spherical 2-gons and spherical triangles. In magnitude, one
can get arbitrarily large multiplicities if p is not supposed to
be convex. A full description of the part of N(V ) lying above
p can be given by computing the multiplicity µV (p, h) (or
µ(p, h) for short) of (p, h) in N(V ) for each unit vector h :

e

t t′

Figure 4: Normal cycle above a concave edge

LEMMA 4.

µV (p, h) = χ(St+V (p, h))

where χ is the Euler characteristic and St+V (p, h) is the upper
star of p, that is the union of relative interiors of cells of V
incident on p and lying in the half plane {x| −→px.h ≥ 0}

PROOF. One checks easily that both sides coincide when
V is a simplex. The result then follows as both sides have the
additivity property with respect to V .

Note that this quantity, also called the index of p with re-
spect to the direction h [6][5], is always smaller than 1 if p is
regular in V .

2.5.4 Curvature measures for polyhedra
Curvature measures for a polyhedron V are defined by in-

tegration of corresponding invariant forms on N(V ), just like
in the smooth case. Thanks to the structure of N(V ), it is
sufficient to compute the integral of these forms on spherical,
cylindric and planar parts :

• a tangent plane to a planar part is spanned by two vectors
of Ep. Applying ωG or ωH to a couple of two such vec-
tors yields determinants with at least one zero column.
Planar parts thus do not contribute to the curvature mea-
sures φH and φG, as could be expected.

• the tangent plane to a cylindric part at a point (p, n) is
spanned by up and vn, where u is a vector parallel to
the corresponding edge and v is orthogonal to u. For
the same reason as above, ωG vanishes when applied
to (up, vn). u and v can be chosen so that (u, v, n) is
a direct orthonormal frame. Expressing ωH

(p,n) in the
frame (up, vn), one obtains :

ωH
(p,n)(u

p, vn) =
up.up vn.up

up.vn vn.vn +
un.up vp.up

un.vn vp.vn = 1

The integral of ωH over a subset of a cylindric part thus
equals the area of this subset.

• a tangent plane to a spherical part is spanned by two
vectors of En. Thus, integrating ωH on a subset of such
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a part yields 0. Integrating ωG yields the area of the
subset, by a computation similar to the one given above.

The curvature measure φH
V (B) of a subset B ∈ �3 is the

sum of the areas of cylindric parts of N(V ) lying above B,
weighted by their multiplicities. By the description of N(V )
given in 2.5.3.1, one obtains indeed the formula (2).

φG
V (B) is obtained by summing the areas of spherical parts

lying above B weighted by their multiplicities. Let us do the
computation for parts lying above a vertex p ∈ B. V can
be triangulated such that all tetrahedra incident on p share an
edge pq. These tetrahedra can be numbered in a circular order
around pq, say ti, i = 1..n. Let pi be the common vertex of
ti, ti+1 and M , considering indices mod n, αi be the angle
�pi−1ppi and βi = �pipq. For each simplex S incident on p, the

area of the spherical part SP (S) of N(S) lying above p is :

• S = pq : 2π

• S = pipq : 2(π − βi) as SP (S) is a spherical 2-gon
with angle π − βi at its vertices

• S = ti : 2π−αi−βi−1−βi by the formula giving the
area of a spherical triangle as a function of its angles

Let us now apply the inclusion-exclusion principle to find the
coefficient of each of the areas described above in the lin-
ear combination giving φG

V (p). Areas of SP (ti) appear once
each. Intersecting two tetrahedra ti−1 and ti yields the trian-
gle pipq ; as these are obtained exactly once SP (pipq) has
coefficient−1. The remaining (n2−3n)/2 pairwise intersec-
tions all equal pq. For k ≥ 3, k-fold intersections also equal
pq. Hence, the coefficient of SP (pq) is :

−n2 − 3n

2
+

∞�
k=3

(−1)k+1

�
n
k

�
= 1

Finally, we have :

φG
V (p) =

n�

i=1

(2π − αi − βi−1 − βi) −
n�

i=1

2(π − βi) + 2π

= 2π −
n�

i=1

αi

that is the classical definition of the angle defect at p. This
computation thus agrees with the definition given by equation
(1). Note that unlike the mean curvature measure, the gaus-
sian curvature measure is independant on the orientation, in
the sense that choosing the complement of V instead of V
would yield the same measure.

3. THE SECOND FUNDAMENTAL FORM
VIA THE NORMAL CYCLE

The concept of normal cycle was introduced to define mean
and gaussian curvature measures for a general class of objects.
In this section, we show that it can actually provide a complete
description of the curvature of an object. Not surprisingly,
integrating invariant forms on the normal cycle yields inte-
grals of invariants of the Weingarten endomorphism, namely
its trace and determinant. The basic idea here is to integrate
non invariant forms in order to obtain integrals of each coeffi-
cients in the Weingarten endomorphism matrix.

3.1 Two more 2-differential forms
We now define, for each couple of 3-vectors X and Y , two

2-differential forms on Ep × En from which we will recover
the second fundamental form.

DEFINITION 13. Given a point (p, n) ∈ Ep×En we set :

ωX,Y
(p,n) = (np ×p Xp) ∧ Y n

ω̃X,Y
(p,n) = Xp ∧ (nn ×n Y n)

where ×n and ×p respectively denote cross products in En

and in Ep.

Note that these two forms are bilinear in X and Y , but not
symmetric. However, we will see that integrating them on nor-
mal cycles yields symmetric bilinear forms.

3.2 Smooth case

LEMMA 5. If M is smooth, then :�
N(V )

ω̃X,Y
|i(B∩M) = ¯̃HV (B)(X, Y )�

N(V )

ωX,Y
|i(B∩M) = H̄V (B)(X, Y )

PROOF. As in the the proof of lemma 2, we perform a
change of variable in the left-hand side. To compute i∗ω̃X,Y

at a point p ∈ M , we consider the direct orthonormal frame
(e1, e2, n) of �3 where e1 and e2 are principal directions and
n = n(p). If the principal curvatures associated with e1 and
e2 are respectively λ1 and λ2, we have :

i∗ω̃X,Y
p (e1, e2) = ω̃X,Y

(p,n)(e
p
1 + λ1e

n
1 , ep

2 + λ2e
n
2 )

=
X.e1 det(n, Y, λ1e1)
X.e2 det(n, Y, λ2e2)

=
X1 −λ1Y2

X2 λ2Y1

= λ2X1Y1 + λ1X2Y2

= ¯̃HV (p)(X, Y )

where Xi and Yi, i = 1, 2, 3 are the components of X and Y
in (e1, e2, n). The first claim thus follows. The second one
can be proved in a similar way.

3.3 Polyhedral case
The fact that integrals of the second fundamental form can

be recovered from the normal cycle of a smooth surface by
integration of 2-differential forms enables us to define corre-
sponding objects for polyhedral surfaces, as they also have a
normal cycle. The next lemma justifies the definition 4 :

LEMMA 6. If V is a polyhedron, then :�
N(V )

ω̃X,Y
|i(B∩M) = ¯̃HV (B)(X, Y )�

N(V )

ωX,Y
|i(B∩M) = H̄V (B)(X, Y )
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PROOF. Clearly, ω̃X,Y vanishes on planar and spherical
parts. Let e be an edge of M , or a segment included in such
an edge, and CP be the cylindric part of N(V ) lying above
e. The tangent plane to CP at (p, n) ∈ CP has a direct or-
thonormal frame of the form (up, vn), where u is a unit vector
parallel to e. We have :

ω̃X,Y
(p,n)(u

p, vn) =
X.u det(n,Y, 0)
0 det(n, Y, v)

= (X.u)(Y.u)

As a function of X and Y , ω̃X,Y
(p,n)(u

p, vn) is thus a symmetric
bilinear form with 1 as unique non-zero eigenvalue and u (or
e) as associated eigenvector. It thus equals−→e ⊗−→e /length(e)2.
Integration on CP yields :�

CP

ω̃X,Y =
β(e)

length(e)
−→e ⊗−→e

and the first result follows. The derivation of the second one
follows the same lines and is left to the reader.

Both in the smooth and polyhedral case, anisotropic curva-
ture measures generalize the mean curvature measure : indeed,
the trace of ¯̃HV (B)(X,Y ) or H̄V (B)(X, Y ) equals φH

V (B).

4. PROOF OF THE THEOREM
The idea behind the proof of theorem 1 is roughly as fol-

lows. Let E denote the part of N(T ) lying above B and D
be the part of N(M) lying above π(B) (figure 5). Consider
for simplicity that E and D are oriented surfaces, though it is
not really accurate as they actually are currents. By lifting the
projection π to Ep × En, one obtains a map f from E to D.
Define C to be the union of all line segments joining points of
E with their image under f . C is a volume whose boundary is
the union of E, D, and a surface A which is the union of all
line segments joining points of ∂E with their image under f .
By applying Stokes theorem to C and a 2-differential form ω,
one can express the difference between integrals of ω on E and
D as the integral of ω on A plus an integral on C. In particu-
lar, when ω is a form associated with some curvature measure,
this implies that the difference between the considered curva-
ture measures of E and D is the sum of an integral on A plus
an integral on C. In this particular case, the quantities to be
integrated on E and D are bounded. Thus, to get a bound on
the difference of curvature measures, it is sufficient to bound
the volume of C and the area of A. To do so we first bound the
area of E and the length of ∂E, which is the purpose of the
next subsection. The desired bound then follows from the fact
that f has bounded derivatives, and that the distance between
points of E and their image under f is O(ε). Subsection 4.2
resumes the whole proof in a sketchy but more accurate way.

4.1 Bounding the mass of normal cycles
We start with one more definition about currents :

DEFINITION 14. Let T be an integral 2-current. Suppose
T can be written as a linear combination of surface patches
Ti whose relative interior are pairwise disjoint :

T =
n�

i=1

λiTi
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Figure 5: Proof of theorem 1

Then the mass M(T ) of T is defined to be the quantity :

M(T ) =
n�

i=1

|λi|area(Ti)

Intuitively, the mass of a current is its unsigned area, taking
multiplicities into account. We now bound the mass of normal
cycles in the case of restricted Delaunay triangulations. The
following lemma is due to Amenta and Bern[2] :

LEMMA 7. The angle between the normal to a triangle t
in ∂T and the normal to M at a vertex of t is O(r(t)) for fixed
M .

In order to shorten notations we set :

s(B) =
�

{t∈∂T, t⊂B̄}

r(t)2

sd(B) =
�

{t∈∂T, t⊂B̄, t∩∂B �=∅}

r(t)

LEMMA 8. The mass of the part N(T )�(B×En) of N(T )
lying above B is O(s(B)).

PROOF. This mass can be decomposed in three terms : the
mass lying above the interior of the triangles of ∂T , M t, the
mass lying above the interior of the edges of ∂T , Me, and the
mass lying above the vertices of ∂T , Mv . M t is merely the
area of B, so it is O(s(B)). Let us now focus on Me. We
have :

Me =
�

e edge of B

|β(e)| length(e)

Let e be an edge of ∂T and t, t′ be the triangles of ∂T incident
on e. The dihedral angle at e is O(r(t) + r(t′)) by 7, as well
as the length of e. Thus we also have Me = O(s(B)).

The last quantity to consider is Mv . Let u be a vertex of
∂T , and ui, i = 1..n its neighbors in circular order. If ni is
the unit normal to triangle uuiui+1, then the mass lying above
u is smaller than the sum of the areas of spherical triangles
n(u)nini+1. By lemma 7, the area of any such triangle is
O((r(uuiui+1) + r(uui+1ui+2))

2). Summing on all u ∈ B,
we get that Mv = O(s(B)). We thus proved the announced
claim.

LEMMA 9. The mass of ∂(N(T )�(B×En)) is O(sd(B)).
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PROOF. This mass decomposes into the mass lying above
triangles and the one lying above edges. The first one is obvi-
ously O(sd(B)) and the second also by lemma 7.

If the sampling is locally uniform in the sense of [3], then
triangles of ∂T are well-shaped. As a result, we have s(B) =
O(area(B)) and sd(B) = O(length(∂B)).

4.2 Homotopying normal cycles
From now on, we will use the notations of [12] or [10]. Let

f be defined by the following commutative diagram :

SptN(V )
f←−−−−− U × En

i

��� ���p1

M
π←−−−−− U

where U is the open set where π is defined, p1 is the projection
from Ep × En to Ep, and i(x) = (x, n(x)) for all x ∈ M .
For simplicity we will denote the current N(T )�(B×En) by
D and the current N(V )�(π(B) × En) by E, as in figure 5.
Consider the affine homotopy h ([10] pp. 364) between f and
the identity. As SptD is contained in p−1

1 (U), we can define a
3-current C by :

C = h�([0, 1]×D)

By the homotopy formula for currents, we have :

∂C = f�(D) −D − h�([0, 1]× ∂D)

Now the image of the support of D by f is included in SptE
and the one of Spt∂D is included in Spt∂E. By the constancy
theorem ([10] 4.1.31), f�(D) is a multiple of E. Moreover,
comparing the multiplicities at points lying above images by
π of points in the interior of triangles contained in B shows
that the proportionality constant is 1 : f�(D) = E. As a
consequence, the flat norm of D − E satisfies :

F(D −E) ≤M(C) + M(h�([0, 1]× ∂D))

Also :

M(C) ≤ M(D)sup|f − Id|sup||Df ||2

M(h�([0, 1]× ∂D)) ≤ M(∂D)sup|f − Id|sup||Df ||2

by the inequality mentioned at page 364 in [10]. ||Df ||2 is
less than ||Dπ||2||Di||2 so sup||Df ||2 can be bounded by a
function of the maximal curvature of M on π(B). Let now
x = (p, n) ∈ U×En. By definition f(x) = (π(p), n(π(p))).
It can easily be shown that |p−π(p)| = O(ε). Also by lemma
7 |n(p) − n(π(p))| = O(ε). Plugging in the bounds on the
masses obtained in the previous section, one gets that F(D −
E) ≤ Kε with the notations of the theorem. One concludes
by noticing that the forms ω̃X,Y , ωX,Y are bounded and have
bounded derivatives. In order to get the bound for the gaussian
curvature measures, one needs first to extend ωG to a bounded
2-form on Ep × En having a bounded derivative, which can
be done.

Conclusion
We presented a mathematically sound way to define average
curvature tensors for each region of a polyhedral surface, based
upon the theory of normal cycles. Moreover, in the case where

the polyhedral surface is the restricted Delaunay triangulation
of a sampled smooth surface, we showed that these curvature
tensors converge linearly towards the ones of the smooth sur-
face, under a reasonable sampling condition. Choosing a small
neighborhood of a given vertex as averaging region provides
an estimation of the smooth curvature tensor at this vertex.
In practice, this method is fast and provides very nice results.
However, it still is not very clear how the neighborhood should
be chosen. It would be interesting to try to choose it so as to
minimize the theoretical error bound.
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Figure 6: Directions of minimal curvature estimated on a mesh of Michelangelo’s David. For each vertex, the averaging
domain used for computations is the 2-ring of that vertex.
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