
Surface Reconstruction from Unorganized Points

Hugues Hoppe� Tony DeRose� Tom Duchampy

John McDonaldz Werner Stuetzlez

University of Washington
Seattle, WA 98195

Abstract
We describe and demonstrate an algorithm that takes as input an
unorganized set of points fx1; : : : ;xng � IR3 on or near an un-
known manifold M, and produces as output a simplicial surface that
approximates M. Neither the topology, the presence of boundaries,
nor the geometry of M are assumed to be known in advance — all
are inferred automatically from the data. This problem naturally
arises in a variety of practical situations such as range scanning
an object from multiple view points, recovery of biological shapes
from two-dimensional slices, and interactive surface sketching.

CR Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling.

Additional Keywords: Geometric Modeling, Surface Fitting,
Three-Dimensional Shape Recovery, Range Data Analysis.

1 Introduction
Broadly speaking, the class of problems we are interested in can
be stated as follows: Given partial information of an unknown
surface, construct, to the extent possible, a compact representation
of the surface. Reconstruction problems of this sort occur in diverse
scientific and engineering application domains, including:

� Surfaces from range data: The data produced by laser range
scanning systems is typically a rectangular grid of distances
from the sensor to the object being scanned. If the sensor
and object are fixed, only objects that are “point viewable”
can be fully digitized. More sophisticated systems, such as
those produced by Cyberware Laboratory, Inc., are capable
of digitizing cylindrical objects by rotating either the sensor
or the object. However, the scanning of topologically more

�Department of Computer Science and Engineering, FR-35
yDepartment of Mathematics, GN-50
zDepartment of Statistics, GN-22
This work was supported in part by Bellcore, the Xerox Corporation,

IBM, Hewlett-Packard, the Digital Equipment Corporation, the Depart-
ment of Energy under grant DE-FG06-85-ER25006, the National Library of
Medicine under grant NIH LM-04174, and the National Science Foundation
under grants CCR-8957323 and DMS-9103002.

complex objects, including those as simple as a coffee cup
with a handle (a surface of genus 1), or the object depicted
in Figure 1a (a surface of genus 3), cannot be accomplished
by either of these methods. To adequately scan these objects,
multiple view points must be used. Merging the data generated
from multiple view points to reconstruct a polyhedral surface
representation is a non-trivial task [11].

� Surfaces from contours: In many medical studies it is com-
mon to slice biological specimens into thin layers with a mi-
crotome. The outlines of the structures of interest are then
digitized to create a stack of contours. The problem is to
reconstruct the three-dimensional structures from the stacks
of two-dimensional contours. Although this problem has re-
ceived a good deal of attention, there remain severe limitations
with current methods. Perhaps foremost among these is the
difficulty of automatically dealing with branching structures
[3, 12].

� Interactive surface sketching: A number of researchers, in-
cluding Schneider [21] and Eisenman [6], have investigated
the creation of curves in IR2 by tracing the path of a stylus or
mouse as the user sketches the desired shape. Sachs et al. [19]
describe a system, called 3-Draw, that permits the creation of
free-form curves in IR3 by recording the motion of a stylus fitted
with a Polhemus sensor. This can be extended to the design of
free-form surfaces by ignoring the order in which positions are
recorded, allowing the user to move the stylus arbitrarily back
and forth over the surface. The problem is then to construct
a surface representation faithful to the unordered collection of
points.

Reconstruction algorithms addressing these problems have typi-
cally been crafted on a case by case basis to exploit partial structure
in the data. For instance, algorithms solving the surface from con-
tours problem make heavy use of the fact that data are organized into
contours (i.e., closed polygons), and that the contours lie in paral-
lel planes. Similarly, specialized algorithms to reconstruct surfaces
from multiple view point range data might exploit the adjacency
relationship of the data points within each view.

In contrast, our approach is to pose a unifying general problem
that does not assume any structure on the data points. This approach
has both theoretical and practical merit. On the theoretical side,
abstracting to a general problem often sheds light on the truly critical
aspects of the problem. On the practical side, a single algorithm
that solves the general problem can be used to solve any specific
problem instance.



1.1 Terminology

By a surface we mean a “compact, connected, orientable two-
dimensional manifold, possibly with boundary, embedded in IR3”
(cf. O’Neill [17]). A surface without boundary will be called a
closed surface. If we want to emphasize that a surface possesses a
non-empty boundary, we will call it a bordered surface. A piecewise
linear surface with triangular faces will be referred to as a simplicial
surface. We use kxk to denote the Euclidean length of a vector x,
and we use d(X; Y) to denote the Hausdorff distance between the
sets of points X and Y (the Hausdorff distance is simply the distance
between the two closest points of X and Y).

Let X = fx1; : : : ;xng be sampled data points on or near an
unknown surface M (see Figure 1b). To capture the error in most
sampling processes, we assume that each of the points xi 2 X is
of the form xi = yi + ei, where yi 2 M is a point on the unknown
surface and ei 2 IR3 is an error vector. We call such a sample X
�-noisy if keik � � for all i. A value for � can be estimated in most
applications (e.g., the accuracy of the laser scanner). Features of M
that are small compared to � will obviously not be recoverable.

It is also impossible to recover features of M in regions where
insufficient sampling has occurred. In particular, if M is a bordered
surface, such as a sphere with a disc removed, it is impossible to
distinguish holes in the sample from holes in the surface. To capture
the intuitive notion of sampling density we need to make another
definition: Let Y = fy1; : : : ;yng � M be a (noiseless) sample of a
surface M. The sample Y is said to be �-dense if any sphere with
radius � and center in M contains at least one sample point in Y . A
�-noisy sample fx1; : : : ;xng � IR3 of a surface M is said to be �-
dense if there exists a noiseless �-dense sample fy1; : : : ;yng � M
such that xi = yi + ei, keik � �, i = 1; : : : ; n.

1.2 Problem Statement

The goal of surface reconstruction is to determine a surface M0 (see
Figure 2f) that approximates an unknown surface M (Figure 1a),
using a sample X (Figure 1b) and information about the sampling
process, for example, bounds on the noise magnitude � and the
sampling density �.

We are currently working to develop conditions on the original
surface M and the sample X that are sufficient to allow M to be
reliably reconstructed. As that work is still preliminary, we are un-
able to give guarantees for the algorithm presented here. However,
the algorithm has worked well in practice where the results can be
compared to the original surface (see Section 4).

2 Related Work

2.1 Surface Reconstruction

Surface reconstruction methods can be classified according to the
way in which they represent the reconstructed surface.

Implicit reconstruction methods attempt to find a smooth func-
tion f : IR3

! IR such that fx1; : : : ;xng is close to the zero set
Z(f ). They differ with respect to the form of f and the measure of
closeness. Pratt [18] and Taubin [25] minimize the sum of squared
Hausdorff distances from the data points to the zero set of a poly-
nomial in three variables. Muraki [15] takes f to be a linear combi-
nation of three-dimensional Gaussian kernels with different means
and spreads. His goodness-of-fit function measures how close the
values of f at the data points are to zero, and how well the unit
normals to the zero set of f match the normals estimated from the
data. Moore and Warren [13] fit a piecewise polynomial recursively
and then enforce continuity using a technique they call free form
blending.

In contrast to implicit reconstruction techniques, parametric re-
construction techniques represent the reconstructed surface as a
topological embedding f (�) of a 2-dimensional parameter domain
� into IR3. Previous work has concentrated on domain spaces with
simple topology, i.e. the plane and the sphere. Hastie and Stuet-
zle [9] and Vemuri [26, 27] discuss reconstruction of surfaces by a
topological embedding f (�) of a planar region � into IR3. Schudy
and Ballard [22, 23] and Brinkley [4] consider the reconstruction
of surfaces that are slightly deformed spheres, and thus choose �
to be a sphere. Sclaroff and Pentland [24] describe a hybrid im-
plicit/parametric method for fitting a deformed sphere to a set of
points using deformations of a superquadric.

Compared to the techniques mentioned above, our method has
several advantages:

� It requires only an unorganized collection of points on or near
the surface. No additional information is needed (such as
normal information used by Muraki’s method).

� Unlike the parametric methods mentioned above, it can recon-
struct surfaces of arbitrary topology.

� Unlike previously suggested implicit methods, it deals with
boundaries in a natural way, and it does not generate spurious
surface components not supported by the data.

2.2 Surface Reconstruction vs Function Recon-
struction

Terms like “surface fitting” appear in reference to two distinct
classes of problems: surface reconstruction and function recon-
struction. The goal of surface reconstruction was stated earlier. The
goal of function reconstruction may be stated as follows: Given a
surface M, a set fxi 2 Mg, and a set fyi 2 IRg, determine a function
f : M ! IR, such that f (xi) � yi.

The domain surface M is most commonly a plane embedded in
IR3, in which case the problem is a standard one considered in
approximation theory. The case where M is a sphere has also been
extensively treated (cf. [7]). Some recent work under the title
surfaces on surfaces addresses the case when M is a general curved
surface such as the skin of an airplane [16].

Function reconstruction methods can be used for surface recon-
struction in simple, special cases, where the surface to be recon-
structed is, roughly speaking, the graph of a function over a known
surface M. It is important to recognize just how limited these spe-
cial cases are — for example, not every surface homeomorphic to a
sphere is the graph of a function over the sphere. The point we want
to make is that function reconstruction must not be misconstrued to
solve the general surface reconstruction problem.

3 A Description of the Algorithm

3.1 Overview

Our surface reconstruction algorithm consists of two stages. In the
first stage we define a function f : D! IR, where D � IR3 is a region
near the data, such that f estimates the signed geometric distance to
the unknown surface M. The zero set Z(f ) is our estimate for M.
In the second stage we use a contouring algorithm to approximate
Z(f ) by a simplicial surface.

Although the unsigned distance function jf j would be easier to
estimate, zero is not a regular value of jf j. Zero is, however, a regular
value of f , and the implicit function theorem thus guarantees that
our approximation Z(f ) is a manifold.

The key ingredient to defining the signed distance function is to
associate an oriented plane with each of the data points. These



tangent planes serve as local linear approximations to the surface.
Although the construction of the tangent planes is relatively simple,
the selection of their orientations so as to define a globally consistent
orientation for the surface is one of the major obstacles facing the
algorithm. As indicated in Figure 2b, the tangent planes do not
directly define the surface, since their union may have a complicated
non-manifold structure. Rather, we use the tangent planes to define
the signed distance function to the surface. An example of the
simplicial surface obtained by contouring the zero set of the signed
distance function is shown in Figure 2e. The next several sections
develop in more detail the successive steps of the algorithm.

3.2 Tangent Plane Estimation

The first step toward defining a signed distance function is to com-
pute an oriented tangent plane for each data point. The tangent plane
Tp(xi) associated with the data point xi is represented as a point oi,
called the center, together with a unit normal vector n̂i. The signed
distance of an arbitrary point p 2 IR3 to Tp(xi) is defined to be
disti(p) = (p�oi) � n̂i. The center and normal for Tp(xi) are deter-
mined by gathering together the k points of X nearest to xi; this set
is denoted byNbhd (xi) and is called the k-neighborhood of xi. (We
currently assume k to be a user-specified parameter, although in Sec-
tion 5 we propose a method for determining k automatically.) The
center and unit normal are computed so that the plane fdisti(p) = 0g
is the least squares best fitting plane to Nbhd (xi). That is, the cen-
ter oi is taken to be the centroid of Nbhd (xi), and the normal n̂i

is determined using principal component analysis. To compute n̂i,
the covariance matrix of Nbhd (xi) is formed. This is the symmetric
3� 3 positive semi-definite matrix

CV =
X

y2Nbhd (xi)

(y� oi)
 (y� oi)

where 
 denotes the outer product vector operator1. If �1
i � �2

i �

�3
i denote the eigenvalues of CV associated with unit eigenvectors
v̂1

i ; v̂
2
i ; v̂

3
i , respectively, we choose n̂i to be either v̂3

i or �v̂3
i . The

selection determines the orientation of the tangent plane, and it must
be done so that nearby planes are “consistently oriented”.

3.3 Consistent Tangent Plane Orientation

Suppose two data points xi;xj 2 X are geometrically close. Ideally,
when the data is dense and the surface is smooth, the corresponding
tangent planes Tp(xi) = (oi; n̂i) and Tp(xj) = (oj; n̂j) are nearly
parallel, i.e. n̂i � n̂j � �1. If the planes are consistently oriented,
then n̂i � n̂j � +1; otherwise, either n̂i or n̂j should be flipped.
The difficulty in finding a consistent global orientation is that this
condition should hold between all pairs of “sufficiently close” data
points.

We can model the problem as graph optimization. The graph
contains one node Ni per tangent plane Tp(xi), with an edge (i; j)
between Ni and Nj if the tangent plane centers oi and oj are suf-
ficiently close (we will be more precise about what we mean by
sufficiently close shortly). The cost on edge (i; j) encodes the de-
gree to which Ni and Nj are consistently oriented and is taken to be
n̂i � n̂j. The problem is then to select orientations for the tangent
planes so as to maximize the total cost of the graph. Unfortunately,
this problem can be shown to be NP-hard via a reduction to MAX-
CUT [8]. To efficiently solve the orientation problem we must
therefore resort to an approximation algorithm.

Before describing the approximation algorithm we use, we must
decide when a pair of nodes are to be connected in the graph. Since

1If a and b have components ai and bj respectively, then the matrix
a
 b has aibj as its ij-th entry.

the surface is assumed to consist of a single connected component,
the graph should be connected. A simple connected graph for a set
of points that tends to connect neighbors is the Euclidean Minimum
Spanning Tree (EMST). However, the EMST over the tangent plane
centers fo1; : : : ;ong (Figure 1c) is not sufficiently dense in edges
to serve our purposes. We therefore enrich it by adding a number
of edges to it. Specifically, we add the edge (i; j) if either oi is
in the k-neighborhood of oj, or oj is in the k-neighborhood of oi

(where k-neighborhood is defined over fo1; : : : ;ong as it was for
X). The resulting graph (Figure 1d), called the Riemannian Graph,
is thus constructed to be a connected graph that encodes geometric
proximity of the tangent plane centers.

A relatively simple-minded algorithm to orient the planes would
be to arbitrarily choose an orientation for some plane, then “propa-
gate” the orientation to neighboring planes in the Riemannian Graph.
In practice, we found that the order in which the orientation is prop-
agated is important. Figure 3b shows what may result when prop-
agating orientation solely on the basis of geometric proximity; a
correct reconstruction is shown in Figure 3c. Intuitively, we would
like to choose an order of propagation that favors propagation from
Tp(xi) to Tp(xj) if the unoriented planes are nearly parallel. This
can be accomplished by assigning to each edge (i; j) in the Rieman-
nian Graph the cost 1� jn̂i � n̂jj. In addition to being non-negative,
this assignment has the property that a cost is small if the unoriented
tangent planes are nearly parallel. A favorable propagation order
can therefore be achieved by traversing the minimal spanning tree
(MST) of the resulting graph. This order is advantageous because it
tends to propagate orientation along directions of low curvature in
the data, thereby largely avoiding ambiguous situations encountered
when trying to propagate orientation across sharp edges (as at the tip
of the cat’s ears in Figure 3b). In the MST shown in Figure 2a, the
edges are colored according to their cost, with the brightly colored
edges corresponding to regions of high variation (where n̂i � n̂j is
somewhat less than 1).

To assign orientation to an initial plane, the unit normal of the
plane whose center has the largest z coordinate is forced to point
toward the +z axis. Then, rooting the tree at this initial node,
we traverse the tree in depth-first order, assigning each plane an
orientation that is consistent with that of its parent. That is, if
during traversal, the current plane Tp(xi) has been assigned the
orientation n̂i and Tp(xj) is the next plane to be visited, then n̂j is
replaced with�n̂j if n̂i � n̂j < 0.

This orientation algorithm has been used in all our examples
and has produced correct orientations in all the cases we have run.
The resulting oriented tangent planes are represented as shaded
rectangles in Figure 2b.

3.4 Signed Distance Function

The signed distance f (p) from an arbitrary point p 2 IR3 to a known
surface M is the distance between p and the closest point z 2 M,
multiplied by �1, depending on which side of the surface p lies.
In reality M is not known, but we can mimic this procedure using
the oriented tangent planes as follows. First, we find the tangent
plane Tp(xi) whose center oi is closest to p. This tangent plane is
a local linear approximation to M, so we take the signed distance
f (p) to M to be the signed distance between p and its projection z
onto Tp(xi); that is,

f (p) = disti(p) = (p� oi) � n̂i:

If M is known not to have boundaries, this simple rule works
well. However, the rule must be extended to accommodate surfaces
that might have boundaries. Recall that the set X = fx1; : : : ;xng

is assumed to be a �-dense, �-noisy sample of M. If there was no
noise, we could deduce that a point z with d(z;X) > � cannot be



a point of M since that would violate X being �-dense. Intuitively,
the sample points do not leave holes of radius larger than �. If
the sample is �-noisy, the radius of the holes may increase, but by
no more than �. We therefore conclude that a point z cannot be
a point of M if d(z;X) > � + �. If the projection z of p onto
the closest tangent plane has d(z;X) > � + �, we take f (p) to be
undefined. Undefined values are used by the contouring algorithm
of Section 3.5 to identify boundaries.

Stated procedurally, our signed distance function is defined as:

i index of tangent plane whose center is closest to p

f Compute z as the projection of p onto Tp(xi) g
z oi � ((p� oi) � n̂i) n̂i

if d(z; X) < � + � then
f (p) (p� oi) � n̂i f= �kp� zkg

else
f (p) undefined

endif

The simple approach outlined above creates a zero set Z(f ) that
is piecewise linear but contains discontinuities. The discontinuities
result from the implicit partitioning of space into regions within
which a single tangent plane is used to define the signed distance
function. (These regions are in fact the Voronoi regions associated
with the centersoi.) Fortunately, the discontinuities do not adversely
affect our algorithm. The contouring algorithm discussed in the
next section will discretely sample the function f over a portion
of a 3-dimensional grid near the data and reconstruct a continuous
piecewise linear approximation to Z(f ).

3.5 Contour Tracing

Contour tracing, the extraction of an isosurface from a scalar func-
tion, is a well-studied problem [1, 5, 28]. We chose to implement
a variation of the marching cubes algorithm (cf. [1]) that samples
the function at the vertices of a cubical lattice and finds the contour
intersections within tetrahedral decompositions of the cubical cells.

To accurately estimate boundaries, the cube size should be set so
that edges are of length less than � + �. In practice we have often
found it convenient to set the cube size somewhat larger than this
value, simply to increase the speed of execution and to reduce the
number of triangular facets generated.

The algorithm only visits cubes that intersect the zero set by push-
ing onto a queue only the appropriate neighboring cubes (Figure 2c).
In this way, the signed distance function f is evaluated only at points
close to the data. Figure 2d illustrates the signed distance function
by showing line segments between the query points p (at the cube
vertices) and their associated projected points z. As suggested in
Section 3.4, no intersection is reported within a cube if the signed
distance function is undefined at any vertex of the cube, thereby
giving rise to boundaries in the simplicial surface.

The resulting simplicial surface can contain triangles with ar-
bitrarily poor aspect ratio (Figure 2e). We alleviate this problem
using a post-processing procedure that collapses edges in the sur-
face using an aspect ratio criterion.2 The final result is shown in
Figure 2f. Alternatively, other contouring methods exist that can
guarantee bounds on the triangle aspect ratio [14].

2The edges are kept in a priority queue; the criterion to minimize is
the product of the edge length times the minimum inscribed radius of its
two adjacent faces. Tests are also performed to ensure that edge collapses
preserve the topological type of the surface.

4 Results
We have experimented with the reconstruction method on data sets
obtained from several different sources. In all cases, any structure
(including ordering) that might have been present in the point sets
was discarded.

Meshes : Points were randomly sampled from a number of existing
simplicial surfaces3. For instance, the mesh of Figure 3a was
randomly sampled to yield 1000 unorganized points, and these
in turn were used to reconstruct the surface in Figure 3c. This
particular case illustrates the behavior of the method on a bor-
dered surface (the cat has no base and is thus homeomorphic
to a disc). The reconstructed knot (original mesh from Rob
Scharein) of Figure 3d is an example of a surface with simple
topology yet complex geometrical embedding.

Ray Traced Points : To simulate laser range imaging from mul-
tiple view points, CSG models were ray traced from multiple
eye points. The ray tracer recorded the point of first intersec-
tion along each ray. Eight eye points (the vertices of a large
cube centered at the object) were used to generate the point set
of Figure 1b from the CSG object shown in Figure 1a. This
is the point set used in Section 3 to illustrate the steps of the
algorithm (Figures 1a-2f).

Range Images : The bust of Spock (Figure 3e) was reconstructed
from points taken from an actual cylindrical range image (gen-
erated by Cyberware Laboratory, Inc.). Only 25% of the orig-
inal points were used.

Contours : Points from 39 planar (horizontal) slices of the CT
scan of a femur were combined together to obtain the surface
of Figure 3f.

The algorithm’s parameters are shown in the next table for each
of the examples. The execution times were obtained on a 20 MIPS
workstation. The parameter � + � and the marching cube cell size
are both expressed as a fraction of the object’s size. The parameter
�+ � is set to infinity for those surfaces that are known to be closed.

Object n k � + � cell size time
(seconds)

cat 1000 15 .06 1=30 19
knot 10000 20 1 1=50 137
mechpart 4102 12 1 1=40 54
spock 21760 8 .08 1=80 514
femur 18224 40 .06 1=50 2135

5 Discussion

5.1 Tangent Plane Approximation

The neighborhood Nbhd (xi) of a data point xi is defined to consist
of its k nearest neighbors, where k is currently assumed to be an in-
put parameter. In the case where the data contains little or no noise,
k is not a critical parameter since the output has been empirically
observed to be stable over a wide range of settings. However, it
would be best if k could be selected automatically. Furthermore, al-
lowing k to adapt locally would make less stringent the requirement
that the data be uniformly distributed over the surface. To select
and adapt k, the algorithm could incrementally gather points while
monitoring the changing eigenvalues of the covariance matrix (see
Section 3.2). For small values of k, data noise tends to dominate,
the eigenvalues are similar, and the eigenvectors do not reveal the
surface’s true tangent plane. At the other extreme, as k becomes

3Discrete inverse transform sampling [10, page 469] on triangle area was
used to select face indices from the mesh, and uniform sampling was used
within the faces.



large, the k-neighborhoods become less localized and the surface
curvature tends to increase the “thickness” �3

i of the neighborhood.
Another possible criterion is to compare �3

i to some local or global
estimate of data noise. Although we have done some initial exper-
imentation in this direction, we have not yet fully examined these
options.

If the data is obtained from range images, there exists some
knowledge of surface orientation at each data point. Indeed, each
data point is known to be visible from a particular viewing direction,
so that, unless the surface incident angle is large, the point’s tangent
plane orientation can be inferred from that viewing direction. Our
method could exploit this additional information in the tangent plane
orientation step (Section 3.3) by augmenting the Riemannian Graph
with an additional pseudo-node and n additional edges.

5.2 Algorithm Complexity

A spatial partitioning Abstract Data Type greatly improves per-
formance of many of the subproblems discussed previously. The
critical subproblems are (with their standard time complexity):

� EMST graph (O(n2))

� k-nearest neighbors to a given point (O(n + k log n))

� nearest tangent plane origin to a given point (O(n))

Hierarchical spatial partitioning schemes such as octrees [20]
and k-D trees [2] can be used to solve these problems more ef-
ficiently. However, the uniform sampling density assumed in our
data allows simple spatial cubic partitioning to work efficiently. The
axis-aligned bounding box of the points is partitioned by a cubical
grid. Points are entered into sets corresponding to the cube to which
they belong, and these sets are accessed through a hash table in-
dexed by the cube indices. It is difficult to analyze the resulting
improvements analytically, but, empirically, the time complexity of
the above problems is effectively reduced by a factor of n, except
for the k-nearest neighbors problem which becomes O(k).

As a result of the spatial partitioning, the Riemannian Graph can
be constructed in O(nk) time. Because the Riemannian Graph has
O(n) edges (at most n+nk), the MST computation used in finding the
best path on which to propagate orientation requires only O(n log n)
time. Traversal of the MST is of course O(n).

The time complexity of the contouring algorithm depends only
on the number of cubes visited, since the evaluation of the signed
distance function f at a point p can be done in constant time (the
closest tangent plane origin oi to p and the closest data point xj to
the projected point z can both be found in constant time with spatial
partitioning).

6 Conclusions and Future Work
We have developed an algorithm to reconstruct a surface in three-
dimensional space with or without boundary from a set of unorga-
nized points scattered on or near the surface. The algorithm, based
on the idea of determining the zero set of an estimated signed dis-
tance function, was demonstrated on data gathered from a variety
of sources. It is capable of automatically inferring the topological
type of the surface, including the presence of boundary curves.

The algorithm can, in principle, be extended to reconstruct mani-
folds of co-dimension one in spaces of arbitrary dimension; that is,
to reconstruct d� 1 dimensional manifolds in d dimensional space.
Thus, essentially the same algorithm can be used to reconstruct
curves in the plane or volumes in four-dimensional space.

The output of our reconstruction method produced the correct
topology in all the examples. We are trying to develop formal
guarantees on the correctness of the reconstruction, given constraints

on the sample and the original surface. To further improve the
geometric accuracy of the fit, and to reduce the space required
to store the reconstruction, we envision using the output of our
algorithm as the starting point for a subsequent spline surface fitting
procedure. We are currently investigating such a method based on
a nonlinear least squares approach using triangular Bézier surfaces.

References
[1] E. L. Allgower and P. H. Schmidt. An algorithm for piecewise

linear approximation of an implicitly defined manifold. SIAM
Journal of Numerical Analysis, 22:322–346, April 1985.

[2] J. L. Bentley. Multidimensional divide and conquer. Comm.
ACM, 23(4):214–229, 1980.

[3] Y. Breseler, J. A. Fessler, and A. Macovski. A Bayesian
approach to reconstruction from incomplete projections of a
multiple object 3D domain. IEEE Trans. Pat. Anal. Mach.
Intell., 11(8):840–858, August 1989.

[4] James F. Brinkley. Knowledge-driven ultrasonic three-
dimensional organ modeling. IEEE Trans. Pat. Anal. Mach.
Intell., 7(4):431–441, July 1985.

[5] David P. Dobkin, Silvio V. F. Levy, William P. Thurston, and
Allan R. Wilks. Contour tracing by piecewise linear approxi-
mations. ACM TOG, 9(4):389–423, October 1990.

[6] John A. Eisenman. Graphical editing of composite bezier
curves. Master’s thesis, Department of Electrical Engineering
and Computer Science, M.I.T., 1988.

[7] T.A. Foley. Interpolation to scattered data on a spherical do-
main. In M. Cox and J. Mason, editors, Algorithms for Ap-
proximation II, pages 303–310. Chapman and Hall, London,
1990.

[8] Michael R. Garey and David S. Johnson. Computers and
Intractability. W. H. Freeman and Company, 1979.

[9] T. Hastie and W. Stuetzle. Principal curves. JASA, 84:502–
516, 1989.

[10] Averill M. Law and W. David Kelton. Simulation Modeling
and Analysis. McGraw-Hill, Inc., second edition, 1991.

[11] Marshal L. Merriam. Experience with the cyberware 3D dig-
itizer. In NCGA Proceedings, pages 125–133, March 1992.

[12] David Meyers, Shelly Skinner, and Kenneth Sloan. Surfaces
from contours: The correspondence and branching problems.
In Proceedings of Graphics Interface ’91, pages 246–254,
June 1991.

[13] Doug Moore and Joe Warren. Approximation of dense scat-
tered data using algebraic surfaces. TR 90-135, Rice Univer-
sity, October 1990.

[14] Doug Moore and Joe Warren. Adaptive mesh generation ii:
Packing solids. TR 90-139, Rice University, March 1991.

[15] Shigeru Muraki. Volumetric shape description of range data
using “blobby model”. Computer Graphics (SIGGRAPH ’91
Proceedings), 25(4):227–235, July 1991.

[16] Gregory M. Nielson, Thomas A. Foley, Bernd Hamann, and
David Lane. Visualizing and modeling scattered multivariate
data. IEEE CG&A, 11(3):47–55, May 1991.

[17] Barrett O’Neill. Elementary Differential Geometry. Academic
Press, Orlando, Florida, 1966.

[18] Vaughan Pratt. Direct least-squares fitting of algebraic sur-
faces. Computer Graphics (SIGGRAPH ’87 Proceedings),
21(4):145–152, July 1987.



(a) Original CSG object (b) Sampled points (xi) (n = 4102)

(c) EMST of tangent plane centers oi (d) Riemannian Graph over oi

Figure 1: Reconstruction of ray-traced CSG object (simulated multi-view range data).

[19] Emanuel Sachs, Andrew Roberts, and David Stoops. 3-Draw:
A tool for designing 3D shapes. IEEE Computer Graphics
and Applications, 11(6):18–26, November 1991.

[20] Hanan Samet. Applications of Spatial Data Structures.
Addison-Wesley, 1990.

[21] Philip J. Schneider. Phoenix: An interactive curve design sys-
tem based on the automatic fitting of hand-sketched curves.
Master’s thesis, Department of Computer Science, U. of Wash-
ington, 1988.

[22] R. B. Schudy and D. H. Ballard. Model detection of cardiac
chambers in ultrasound images. Technical Report 12, Com-
puter Science Department, University of Rochester, 1978.

[23] R. B. Schudy and D. H. Ballard. Towards an anatomical model
of heart motion as seen in 4-d cardiac ultrasound data. In
Proceedings of the 6th Conference on Computer Applications
in Radiology and Computer-Aided Analysis of Radiological
Images, 1979.

[24] Stan Sclaroff and Alex Pentland. Generalized implicit func-
tions for computer graphics. Computer Graphics (SIGGRAPH
’91 Proceedings), 25(4):247–250, July 1991.

[25] G. Taubin. Estimation of planar curves, surfaces and nonpla-
nar space curves defined by implicit equations, with applica-
tions to edge and range image segmentation. Technical Report
LEMS-66, Division of Engineering, Brown University, 1990.

[26] B. C. Vemuri. Representation and Recognition of Objects
From Dense Range Maps. PhD thesis, Department of Electri-
cal and Computer Engineering, University of Texas at Austin,
1987.

[27] B. C. Vemuri, A. Mitiche, and J. K. Aggarwal. Curvature-
based representation of objects from range data. Image and
Vision Computing, 4(2):107–114, 1986.

[28] G. Wyvill, C. McPheeters, and B. Wyvill. Data structures
for soft objects. The Visual Computer, 2(4):227–234, August
1986.



(a) Traversal order of orientation propagation (b) Oriented tangent planes (Tp(xi))

(c) Cubes visited during contouring (d) Estimated signed distance (shown as p� z)

(e) Output of modified marching cubes (f) Final surface after edge collapses

Figure 2: Reconstruction of ray-traced CSG object (continued).



(a) Original mesh (b) Result of naive orientation propagation

(c) Reconstructed bordered surface (d) Reconstructed surface with complex geometry

(e) Reconstruction from cylindrical range data (f) Reconstruction from contour data

Figure 3: Reconstruction examples.


