Finding "Holes" In Large Wireless Sensor Network Topology

1. Introduction

Networked embedded sensing is a promising technology for applications ranging from environmental monitoring to industrial asset management. Wireless sensor networks are characterized by limited onboard energy supply, as well as resources such as storage, communication and processing capabilities. Thus, the power of a sensor network lies in the ability of sensor nodes to pool resources together, optimally direct the resources to tasks at hand, and cooperatively gather and process information while satisfying severe resource constraints.

For most applications, objects of interest for our sensing task are mobile. Supporting mobility with resource constrained infrastructure poses special challenges for such a network in terms of its ability to reconfigure its active topology for the sensing task. One specific challenge is to maintain connectivity between two location varying end points while minimizing the number of sensors involved in overlaying messages between the two points. In other words, we want to find the shortest communication path in terms of number of hops between two points, as the two points moving from sensors to sensors.

[image: image1.png]

[image: image2.png]i Example: has o
D.

In figure 1, Assume that initial communication path was set up with methods that we do not discuss in this report. As the two end points change their locations, to find a better route between the two is to determine a path homotopic to the existing path while minimizing certain cost function. Due to the size of common sensor networks, online algorithms have to be distributed in nature. We also prefer greedy online algorithm to save network processing power and storage. However, when there are "holes", where the sizes of area without working nodes (sensors) are significant in the network, finding homotopic path using greedy algorithm is difficult. One solution is to find these "holes" inside the network off-line, so that special information stored in the sensors along the borders of these holes can help in finding the best homotopic path for our task. For example, in figure 1, if the two nodes travel east, by using greedy algorithm, the communication path will be "obstructed" by the upper right hole in its movement to the east. Consequently, we get very inefficient route between these two nodes. If the hole was identified priori and its topological information stored in local sensors, it may be possible that something smart can be done to avoid the situation described above. In this report, we focus on algorithms in finding such "holes".

2. Defining a "Hole"

Formally, a sensor network is represented as a graph G(V, E), where V are the vertices representing sensor nodes and E edges representing one-hop connectivity in the network. We figuratively refer a large area devoid of sensor nodes as a "hole", in the sense that if we imagine an ε-ball for each node in the network. As ε increases, the balls are connected to each other leaving holes only in the areas without enough nodes, such as the two shaded areas shown in figure 1. How large ε should be depends on the radio range of nodes.

For our purpose, we consider a hole exist when a better path can not be found by greedy path finding algorithms. To illustrate, we use Greedy Perimeter Stateless Routing (GPSR) [1] algorithm as an example. Under GPSR, packets are routed geographically. All packets are marked with the positions of their destinations. All nodes know their own positions, and the positions of the nodes a single hop away from them. Using only this local knowledge, GPSR can route a packet to any connected destination. There are two distinct algorithms GPSR uses for routing: a greedy forwarding algorithm that moves packets progressively closer to the destination at each hop, and a perimeter forwarding algorithm that forwards packets where greedy forwarding is impossible.

[image: image3.emf]x

d

a

b

c e

[image: image4.png]Figure % Right-hand Rule Exampl
Packets travel clockwise around the en
closed

The greedy forwarding rule is simple: a node x forwards a packet to its neighbor y that is closest to the destination D marked in the packet, so long as that neighbor y is closer to D than x. Greedy forwarding fails when no neighbor is closer than x to the destination. Figure 2 shows an example topology for greedy forwarding failure; the dotted line represents the radio range of node x, and the dashed line represents the circle centered at D with radius xD. The solid line shows the links that exist, as dictated by radio range. Note that two paths to D exist, but x cannot forward greedily on either of them because both involve temporarily moving farther away than x from the destination.

GPSR recovers from greedy forwarding failure using perimeter mode, which amounts to forwarding packets using the right-hand rule. Figure 3 demonstrates the right-hand rule: upon arriving on an edge at node x, the packet is forwarded on the next edge counterclockwise about x from the ingress edge. This process causes packets to tour enclosed faces; intuitively, it is useful for circumnavigating regions where greedy forwarding fails. GPSR routes perimeter mode packets on a planar subgraph of the network connectivity graph, in which there are no crossing edges. A perimeter is a face of this planar graph.

There must at least be five nodes along the perimeter when greedy forwarding fails. This can be easily proved, hence omitted for brevity. Figure 4 shows an example topology for greedy forwarding failure for GPSR with five nodes enclosing a hole. Here again, x is the source node forwarding a packet to destination location d. x has to pass the packet to either a or b first, which is farther away from destination d. Obviously, if any other node is the source node, greedy forwarding will be successful.

Most perimeters in a dense network are three hops in length [1]. Length (in terms of number of hops) of a perimeter is an indicator of local node density. For greedy forwarding to fail, the perimeter has to be at least of five hops long, however, the converse is not true. Therefore, if we find all the perimeters longer than five hops and locally store additional information in the nodes on the perimeters that can be helpful in case greedy algorithm fails, then online greedy algorithms can be used. We, therefore, define the area enclosed by a perimeter of five or more hops long as a hole.

3. A Distributed Algorithm

In this section, we examine a distributed, autonomous algorithm for finding holes in a large-scale sensor network. As discussed in section 1, our ultimate goal is to develop a greedy algorithm for finding homotopic equivalent paths in a sensor network in the plane. The algorithm discussed here can be run in preprocessing phase and later periodically to scan for new holes, or when sensor outages are detected.

The algorithm is as follows:

· Each node, for example P(x,y), in the network uniformly at random picks a θ in [0,2π]. A phantom location is generated for this node as P'(x+ kcosθ, y+ ksinθ), where k is a constant to guarantee that P' is closer to P than it to any other nodes.

· Node P looks for a path to destination P' using perimeter forwarding in GPSR. This forces each node in the network to find a perimeter with itself on it.

· Path finding messages passed via the same edge to a node will be considered to be repetitive message, hence ignored.

· If a perimeter found having five or more hops, all nodes on this perimeter will be marked as bordering a hole.

Time complexity for this algorithm is O(1).

Apparently, for node x in figure 4, if its phantom point is picked to be directly south of its location, running this algorithm will not find the perimeter shown in figure 4. In fact, if any node on the perimeter happens to pick its phantom point inside the pentagon, the hole will be found. We are herein interested in the probability of none of the nodes on the perimeter picks its phantom point inside this pentagon, in which case, this algorithm will fail.

If we number the five nodes in figure 4 as node 1, 2, 3, 4, 5, let Pi = Probability that node i's phantom point falls outside the pentagon. Since θ is picked uniform at random from [0,2π], Pi = i's interior angle/360. Then

P = Probability (hole not discovered) = P1P2P3P4P5

We know, from geometric relations, that Σ (1-Pi) = 180×3/360 = 3/2, therefore,

Σ Pi = 5 - 3/2 = 7/2

Finding the upper bound for P becomes a linear optimization problem. The maximum of P is achieved when all Pis are equal.

Pmax = (7/10)5 = 0.1681

Using the same method, we can calculate the probability for the algorithm to fail when there are 6 nodes on the perimeter, in which case, Pmax = 0.0156. Pmax falls rapidly as number of nodes on the perimeter increases.

The upper bound probability for algorithm failure when there are 5 nodes on the perimeter is not low enough from system designer's point of view. To reduce the uncertainty, we can let all the nodes that find themselves not bordering a hole to run the algorithm the second time. The probability for missing a hole with a perimeter of length five is thus reduced to 0.16812 = 0.0283, which is acceptable.

This algorithm is simple, distributed, autonomous and with reasonable level of fault tolerance. We are interested in studying its performance through system simulations.

4. A Global Algorithm

The distributed algorithm introduced in section 3 does very fine-grained searches in the neighborhood of every sensor, and store the information locally. It is designed mainly for routing purpose. In this section, we examine another hole finding algorithm. This is a global algorithm for answering queries like "Is there any holes in XY region?" This algorithm is useful in finding large areas without functioning sensors due to sensor power outage or external interruptions. It is not designed for fine-grained hole finding tasks like the one we discussed in section 3. Hence, we have a different definition for a hole.

Consider a large sensor network. If there is a special region of interest, say XY region, which we want to make sure that the sensors are all working well. How do I run a diagnostic test? We discuss one possible solution for such a problem in this section. Our algorithm is as follows:

· Pick one node at the center of XY region. Using this node as the source to find the minimum spanning tree (MST) inside the XY region. Weights for the MST are Euclidean distances between each pair of nodes that share direct radio connections.

· At each node along the tree down from the root, calculate its distance to the root according to the MST based on its parent's MST distance and its distance to its parent. Calculate the difference between this distance and its Euclidean distance from the root, say δ. If δ > kc, where k is the number of hops from the root to this node and c is a predefined constant, then we consider one hole has just been encountered. Reset the node's MST distance to be equal to its Euclidean distance from the root. Repeat this step until reaching a leaf node.

When XY region is large, to avoid δ value drift due to some correlation in sensor spacing, we can restrict the value of k to be no larger than a constant, say 10. When k exceeds this value, we reset the MST distance of that node to be equal to its Euclidean distance from the root and repeat step 2. Determination of this maximal value of k and constant c depends on the expected size of a hole, and conversely, gives the definition of hole for this algorithm. Further study is needed to determine a set of sensible parameters for this method.

Time complexity for this algorithm is equivalent to the time complexity for forming MST, which is O(ElgV), where E is the number of direct radio links among the nodes and V is the number of nodes within XY region. Result for MST was given in [2].

5. Conclusion

The focus of this report is on discussion of a distributed algorithm for finding holes in a planar graph, where a hole has been defined to be a region enclosed by five or more edges of the graph. We discussed the motivations for finding such a solution in the context of sensor network applications. This study is part of our effort in finding homotopic equivalent paths for communications between a sensor near a moving source and a sensor near a moving sink in a sensor network, subject to restrictions in active network topology. A global algorithm for finding holes in a planar graph is also discussed although not the focus of this report. The main difficulty with this algorithm is in choosing its parameters. Further study is need for this algorithm.

6. References

[1] Sylvia Ratnasamy, Brad Karp, Li Yin, Fang Yu, Deborah Estrin, Ramesh Govindan, Scott Shenker, GHT: A Geographic Hash Table for Data-Centric Storage, First ACM International Workshop on Wireless Sensor Networks and Applications, Atlanta, Georgia, USA, September, 2002

[2] T. Cormen, C. Leiserson, R Rivest, C. Stein, Introduction To Algorithms, second eddition

Figure � SEQ Figure * ARABIC �1�. A path around the holes

Figure 4

