
CS 468: Computational Topology Introduction Fall 2002

0 Introduction

The primary goal of the course is to present basic concepts fromtopologyandMorse theoryto enable a non-specialist
to grasp and participate in current research in computational topology. As such, this course willnot be a readings
course in computational topology. Rather, I will present basic mathematical concepts from a computer scientist’s
point of view, focusing on computational challenges, and presenting algorithms and data-structures when appropriate.
Near the end of the course, we will examine recent advances in the area by reading research papers from the area.

0.1 Why was this course organized?
Mathematics is written for mathematicians.

— Nicholas Copernicus (1473–1543)

The motive for organizing this course is that concepts in topology are useful in solving problems in computer
science. These problems arise naturally in computational geometry, graphics, robotics, structural biology, and chem-
istry. Often, the questions themselves have been known and considered by topologists. Unfortunately, there are many
barriers to interaction:

1. We do not know the language of topologists. Topology, unlike geometry, is not a required subject in high school
mathematics, and almost never dealt with in undergraduate computer science. The problem is compounded by
the axiomatic nature of topology, which generates a lot of cryptic terminology, making the field inaccessible to
non-topologists.

2. Topology can be very unintuitive and therefore appear extremely complicated, often scaring away interested
computer scientists.

3. Topology is a large field with many branches. We often need simple concepts from each branch. There are
certainly a number of courses in topology offered by the Math department in which one may become acquainted
with the material. However, the focus of these courses is theoretical, concerned with deep questions and exis-
tential results

Because of the relative dearth of interaction between topologists and computer scientists, there are many opportunities
for research. Many topological questions have large complexity: the best known bound, if any bound is known, may
be exponential. For example, I once heard a talk on an algorithm that ran in quadruply exponential time! Let me make
this clear. It was

O(2222
x

)!

And you may overhear topologists boasting that their software can now handle 14 tetrahedra, not just 13. However,
better bounds may exist for questions that are not general, such as problems in low dimensions, where our interests
chiefly lie. We need better algorithms, parallel algorithms, approximation schemes, data structures, and software to
solve these problems within our life time (or the lifetime of the universe.)

The goal of this class is to make algorithmically minded individuals fluent in the language of topology. Currently,
most researchers in computational topology have a mathematics background. My hope is to recruit more computer
scientists into this emerging field.

0.2 What is Topology?
A topologist is a man who doesn’t know the difference between a coffee cup and a donut.

— Unknown

Topology concerns itself with how things are connected, not how they look. Let’s start with a few examples.

Example 0.1 (Loops of String) Imagine you’re given two pieces of strings. We tie the ends of one of them, so it
forms a loop. Are they connected the same way, or differently? One way to find out is to cut both, as shown in
Figure1. When we cut each string, we are obviously changing its connectivity. Since the result is different, they must
have been connected differently to begin with.
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Figure 1. The string on the left is cut into two pieces. The loop string on the right is cut, but still is in one piece.

Example 0.2 (Sphere and Torus)Suppose you have a hollow ball (a sphere) and the surface of a donut (a torus.)
When you cut the sphere anywhere, you get two pieces: the cap, and the sphere with a hole, as shown in Figure2(a)
But there are ways you can cut the torus so that you only get one piece. Somehow, the torus is acting like our string

(a) No matter where we cut the sphere, we get two pieces (b) If we’re careful, we can cut the torus and still leave it in one
piece.

Figure 2. Two pieces or one piece?

loop and the sphere like the untied string.

Example 0.3 (Holding hands) Imagine you’re walking down a crowded street, holding somebody’s hand. When you
reach a telephone pole and have to walk on opposite sides of the pole, you let go of the other person’s hand. Why?[Hint:
Think loops of string...]

Let’s look back to the first example. Before we cut the string, the two points near the cut are near each other. We say
that they areneighborsor in each other’sneighborhoods. After the cut, the two points are no longer neighbors, and
their neighborhood has changed. This is the critical difference between the untied string and the loop: the former has
two ends. All the points in the loop have two neighbors, to their left and right. But the untied string has two points,
each of whom has a single neighbor. This is why the two strings have different connectivity. Note that this connectivity
does not change if we deform or stretch the strings (as if they are made of rubber.) As long as we don’t cut them, the
connectivity remains the same.

You may be rightly suspicious by now, as the toy problem we dealt with is not that complicated. Can we say
anything for more complicated spaces? It turns out we can.

Intrinsic topology. Topology attempts to understand the global connectivity of an object by considering how the
object is connected locally. This understanding is really as classifications: objects are grouped into classes with the
same connectivity. Topology identifiesintrinsic properties of objects by transforming a space in some fixed way, and
observing properties that do not change. We call these properties theinvariantsof the space. (Felix Klein gave this
unifying definition for geometry and topology in hisErlanger Programmaddress in 1872.) For example,Euclidean
geometryrefers to the study of invariants under rigid motion inRd, e.g. moving a cube in space does not change its
geometry (thank god!) Topology, on the other hand, studies invariants under continuous, and continuously invertible,
transformations. For example, we can mold and stretch a play-doh ball into a filled cube by such transformations, but
not into a donut shape.

Extrinsic topology. Topology is concerned not only with how an object is connected (intrinsic topology), but how
it is placedwithin another space (extrinsic topology.) For example, suppose we put a knot on a string, and then tie its
ends together. Clearly, the string has the same connectivity as the loop we saw in Example0.1. But no matter how we
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move the string around, we cannot get rid of the knot (in topology terms, we cannot unknot the knot into theunknot.)
Or can we? Can we prove that we cannot?

Don’t worry. We shall make all this excruciatingly formal later on.

0.3 But why are we interested?
How can it be that mathematics, being after all a product of human thought independent of
experience, is so admirably adapted to the objects of reality?

As far as the laws of mathematics refer to reality, they are not certain; and as far as they are
certain, they do not refer to reality.

— Albert Einstein (1879–1955)

We are interested in topology because topological problems often arise in areas that we’rereally interested in. Not
only that, whenever we encounter topology, it manifests itself in a pretty hairy fashion, so that we cannot do away with
it by simple hacks. It keeps crashing our programs and making our lives miserable. Here are a few examples.

Example 0.4 (Graphics) Usually, a computer model is created by sampling the surface of an object and creating a
point set.Surface reconstruction, a major area of research in computer graphics and computational geometry, refers
to the recovery of the lost topology and geometry of a space. Often, we require awatertightsurface, a surface with no
holes or bad connections, as shown in Figure3(a). But this is a topological problem, as we are concerned with how

(a) The Stanford dragon, a surface repre-
sented by 3.2 million triangles. It has no
holes, but 60 tunnels.

(b) Gramicidin A, a protein, with a tun-
nel for channeling ions across lipid mem-
branes.

(c) A knotted DNA [1]

Figure 3. Some spaces with interesting topology

a surface is connected. Even if we get rid of all the holes, we are haunted by holes of another kind: tunnels. These
tunnels, in turn, do not allow a full compression of the model. In topological terms, we need a 2-manifold with no
handles.

Example 0.5 (Robotics)A robot must often plan a path in its world which contains many obstacles. We are interested
in efficiently capturing and representing theconfiguration spacein which a robot may travel. In other words, our
representation of the configuration space must have the same connectivity as the space itself.

Example 0.6 (Geography)Planetary landscapes are modeled as elevations over grids, or triangulations ingeographic
information systems. Usually, there is noise inherent in the data, causing tiny mountains and lakes to arise. We’d like
to remove this noise in a way that does not change important properties of the landscape, such as rain flow, or the
watersheds of lakes and rivers.

Example 0.7 (Biology) A protein is a single chain of amino acids, which folds into a globular structure. TheTher-
modynamics Hypothesisstates that a protein always folds into a state of minimum energy. To predict protein structure,
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we would like to model the folding of a protein computationally. As such, theprotein foldingproblem becomes an
optimization problem: we are looking for a path to the global minimum in a very high-dimensional energy landscape.

We are also interested in capturing the topology of proteins. The small protein in Figure3(b), for example, uses
its tunnel to channel ions. Can we computationally find such features in proteins?

Example 0.8 (Chemistry) In the 1980’s, it was shown that the DNA, the molecular structure of the genetic code of all
living organisms, can become knotted during replication, as shown in Figure3(c). This finding initiated interest in knot
theory among biologists and chemists for the detection, synthesis, and analysis of knotted molecules. One possibility
is to build nano-scale chemical switches and logic gates with these structures. Eventually, chemical computer memory
systems could be built from these building blocks.

Topology gives us tools and methodologies to tackle such problems. So, we become interested.

0.4 What next?
Young man, in mathematics you don’t understand things, you just get used to them.

— John von Neumann (1903–1957)

We need to plow through literally hundreds of definitions from many different areas of mathematics. The right
definition is often the most important step in solving a problem in topology. These definitions were refined in the last
century to require the least initial assumptions, oraxioms. The same refinement process, unfortunately, removed all
intuition (impurities?) from the subject. This means that the first few weeks of the class will be especially dry and
unmotivating, although I will try to provide some intuition when possible. We will not delve deeply into any one area
of mathematics, but learn what we think is useful. Along the way, we will also discuss algorithms, existing software,
and possible projects (things that I really need) for the class.
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