
1

Real-Time
Graphics Architecture

Kurt Akeley

Pat Hanrahan

http://www.graphics.stanford.edu/courses/cs448a-01-fall

The Design of
RenderMan

2

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Religious Issue #1

The world is not made of polygons

In fact, polygons weren’t originally supported!

Collection of complex geometric primitives

� Fractals

� L-systems and plants

� Proceduralism and data amplification

� Curved surfaces

� No need to provide normals in the real world

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Religious Issue #2

Realism results from detailed and diverse
geometry, lighting and texturing

Visual or cinematic complexity

� Visual detail per-pixel

� Lots of flops per pixel: computational threshold
(just now crossing)

Implications of diversity

� No single modeler, thus no single shader

� Difficult to offload the complexities of shading to
the modeler

� Flexibility and extensibility critical

3

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Religious Issue #3

“Don’t make pictures that require apologies”

Alvy Ray Smith

Remove all computational artifacts (digital signatures)

� Aliases, quantization, …

Heavy emphasis on doing it right

� Stochastic sampling

� Resampling, minification and magnification

“A pixel is not a little square” (hint: it’s a sample)

� Adaptive subdivision (no polygonal silhouettes)

Again, sort of a threshold phenomena

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

REYES

Renders Everything You Ever Saw (Carpenter)

The Road to Point Reyes
Directed by R. Cook, LucasFilm 1983

4

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

REYES Pipeline

Model

Bound

Cull?

Dice?Split

Grids

Shade

Sample

Visibility

Filter

Image

Textures

N

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Reyes Architecture

� Single internal low-level geometric primitive

Micropolygons (microquadrilaterals)

Dicing creates grids consisting of micropolygons

� Nyquist-sized

¼ pixel area (½ pixel width)

Flat shading adequate

� Split and dice along surface parameters (u, v)

Coherent geometry and texture (texture in shading-space)

� Shading before hiding (hiding=rasterization + z-buffer + …)

Shade in object-order and in object space

Displacement maps (texture before hiding)

5

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

REYES Machine Goals (1986)

Micropolygons (area=¼ pixel) 80,000,000

Pixels 3000 x 1667 (5 MP)

Depth complexity 4

Samples per pixel 16

Geometric primitives 150,000

Micropolygons per grid 100

Shading flops per micropolygon 300

Textures per primitive 6

Total number of textures 100 (1 MB/textures)

Goal ~ 1 frame in 2 minutes – not real-time

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

REYES Machine Architecture

FLAP

Hider

ISM

Filter

TextureA. Levinthal

M. Leather

J. Mock

Model

Image

6

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Influences

Postscript

Page description language for the printed page

RenderMan

Scene description language for photorealistic
imagery

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Design Study #1: Geometric Prims.

REYES had tens of primitives (O-O framework)

� Fractal terrain

� Tear-drop

� …

Primitives (Fournier)

� Modeling primitives: e.g. chair

� Rendering primitives: e.g. b-spline

� Display primitive: i.e. triangle or micropolygon

7

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Design Study #1: Geometric Prims.

RenderMan (identifiable, top-down primitives)

RiSphere(r,h,…)

RiPolygon(nverts, “P”, Ps, “N”, Ns, …);

OpenGL (assembly-based, bottom-up primitives)

glBegin(GL_POLYGON);

glNormal3fv(&N[0]);

glVertex3fv(&P[0]);

…

glEnd(GL_POLYGON);

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Design Study #1: Geometric Prims.

Touch choices

� Display lists turned into macros (relented)

� PointsPolygon (relented)

� Trimmed NURBS (relented)

� RiGeometry(“teapot”); (obviously needed)

Correct decisions?

� Geometric complexity now “out of control”

� Composite objects (e.g. trees): LOD not solved

� Procedural primitives: lazy evaluation

� Scanned primitives: not widely used yet

8

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Design Study #2: Lighting

ShadeTrees:

Ci = Cd*diffuse(N)+Cs*specular(H,s);

Extensible BRDF models

illuminance(N, Pi/2) {

Ci += Cd*Cl*max(N.L);

}

Point and area lights

� Single illuminate construct (not right!)

Environment maps should be treatable as light sources

� solar construct

P,u,v,..

Pu

Pv

N
I

L

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Design Study #2: Lighting

Domain-specific or “little” languages should provide
builtin functions and operators that are high-level
and make it easy to use

Just as important, builtins provide efficiency

� Large calculation quanta allow you to amortize
the overhead of the “interpreter”

� Allow superoptimized implementations

But, builtins should be expressable in the language!

9

“Programming languages should be designed
not by piling feature on top of feature, but

by removing the weaknesses and restrictions
that make additional features appear

necessary”

IEEE Scheme Standard

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Basic Design Cycle

Basic design cycle

� Propose examples

� Propose interface

� Express the examples using the interface

� Iterate, simplifying and enhancing

Lightweight design cycles

� Minimal specifications at first (Quick-Spec)

� Prototype to make sure it works

10

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Abstractions

Build your system around abstractions

CS101: hide details of the implementation

Identify the properties of the abstraction (semantics!)

This allows composability (mechanism)

And compilability and optimizability

Strong vs. weak abstractions

Color and point types vs. vector type

Abstractions have a cost and a benefit

Strong typing is good

Restrictions come at a cost

Abstractions ultimately limit the system

Light and scene abstraction vs. stroke abstraction

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Implications of the Shading Language

The interface is simplified

� RenderMan ~ 100 API calls, OpenGL ~ 300 API calls

� Examples:

� Nothing like two-sided lighting

� No fragment calculations

The implementation is much more complicated

� 90% of the code

� Investment in the future

Advantages

� Original goal: Provide high quality shading models

� Extensibility, adaptability, and efficiency!

� Results in relatively stable interface

11

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Things I’m Most Proud Of …

Size and stability of the interface

Shading language

� illuminance and illuminate constructs

� Derivatives

� Texturing primitives

� uniform and varying variables

Mechanisms for controlling level of detail

Procedural primitive interface

Camera model (not just view)

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Things I Might Change Now …

� Support for spectral computations (rarely used)

� Vertex variables (too complicated and just plain ugly)

� Derivative operator

� Replace with mipd=area() with derivatives … cool, general

� Difficult for ray-tracers and hardware to implement

� Deformations

� Elegant, just add a programmable transformation

� But, difficult to adaptively tesselate and bound

� Lesson: we should have implemented this first!

� Linear integrate and BRDF shaders

� Didn’t appreciate the subtleties of specifying reflection

� Linearity is a big issue in lighting design

� More sophisticated camera model (lens flare, tone repr.)

12

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Things I Never Figured Out …

And hence, punted on …

� Integration of 2D and 3D and 4D(t) graphics

� How to integrate seamlessly?

The achilles heel of I3D graphics

� Material properties when doing CSG

� What happens when you subtract a wood sphere
from a metal cylinder?

� Curve and edge, point shaders

� What is the normal to a curve?

� Procedural file format (ala PostScript)

� Metarenderer

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Things I Didn’t Know About R-T. R. …

Only after I went to Princeton and used GL did I
appreciate many of these things …

� Connection to the application

Power of immediate mode graphics (e.g. LOD)

Access to application data structures

Performance issues in the interface

� Naming and binding mechanisms

� Low-level data types (2f, 3f, 4fv, …)

� Think AGP and networks …

� Range of interactive applications

Image processing and warping via texturing

Integration with GUI and window systems

13

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Things I Was Clueless About …

Physically-based rendering

� Radiosity, radiance and BRDFs

Semantics of programming languages

� Functional programming languages

� Type inference

And, it shows …

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Things Others Have Added …

Subdivision surfaces

Smart lights

Enhancements to procedural primitives

14

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

How to Design

Lightweight design cycles

Be precise

� Make sure foundational parts perfect

� Don’t hide behind imprecise thinking, specify!

� Identify the tricky cases; provide torture tests

� Formalize, but beware of “overconcreteness”

Have a sounding board

� Einstein’s assistant at the IAS

Talk to the real users

� Don’t live in an ivory tower

� But beware of NIH, lack of understanding of the
technology, and lack of vision

Study and learn from other good designs

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Being an Architect

No silver bullet, F. Brooks

Hints on system design, B. Lampson

Dealing with management

� Do they appreciate good design?

Dealing with your colleagues

� Need to know everything, so learn from everyone

� Diplomacy and communication skills essential

� Be rational and fair

� Expect to take a lot of flak

15

CS448 Lecture 16 Kurt Akeley, Pat Hanrahan, Fall 2001

Agreement with Kurt’s talk

Beauty counts

Importance of specification

Don’t design by committee (industry standards)

Co-development of implementation and interface

At least 2 target platforms

…

