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Antialiasing

Outline

� What are aliasing and antialiasing?

� Taxonomy of antialiasing approaches

� Exploration of details
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Readings

Required

� Filtering Edges for Gray-Scale Displays, Gupta 
and Sproull, SIGGRAPH Proceedings ’81.

� A Parallel Algorithm for Polygon Rasterization, 
Pineda, Computer Graphics 22, 4 (August ’88).

� A New Simple and Efficient Antialiasing with 
Subpixel Masks, Andreas Schilling, SIGGRAPH ’91.

Recommended

� Multisample extension to OpenGL.
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Modern Graphics Pipeline

Application

Geometry

Rasterization

Texture

Fragment

Display

Antialiasing

Command
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What is “Antialiasing”?
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What is “Aliasing”?

Result of sampling below the Nyquist rate?

� But geometric input has energy at all frequencies

� And there’s no practical way to change this

Reconstruction of a strong low-frequency “alias” of an 
input signal component above the Nyquist limit?

� Agrees with common understanding in signal 
processing terms,

� But still doesn’t cover the “jaggies” case
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Radical Thought

Maybe signal processing theory isn’t the best way to 
approach the problem of eliminating jaggies.

� Can’t band-limit the geometric input

� Jaggies typically aren’t aliasing anyway

� Image is constructed in the framebuffer, not just 
filtered there.

So how should we think of this problem?
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Ideal Jaggie Removal - Integration

Define a 2D spatial filter function for a pixel

� Probably not a box filter (though may be)

� Probably not Sync function (infinite extent is unworkable)

� Empirical, depends on display properties

Render image into an infinite-precision shapes buffer

� Hidden geometry is somehow eliminated,

� Leaving exact geometry and color information

Integrate filter function with geometry/color info for each pixel
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Antialiasing System Goals

Best static image

Good dynamic image

� Avoid sudden frame-to-frame changes

� Good model: bilinear interpolation in texture filtering

� Avoid negative-training (e.g. pulsing aircraft on horizon)

Reasonable

� Hardware and performance costs

� Implementation and application complexity

Integration with other GPU features

� Depth buffer for occlusion computation

� Stencil buffer

� Transparency?
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Taxonomy of Antialiasing Methods

Two fundamental approaches, based on what coverage info is

� Computed per fragment, and

� Stored per pixel in the framebuffer

� Note: coverage may be pre-integrated with filter function

Fractional

� No geometric information

� OpenGL “smooth” antialiasing

Geometric

� Some geometric information

� Point sampling

� Area sampling

� OpenGL “multisample” antialiasing

Each approach has strengths and weaknesses
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Taxonomy

Antialiasing

Geometric

Fractional

Area Sampled

Point Sampled
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Fractional Antialiased Points

Compute percent coverage by integrating:

� Point “geometry”

� With each pixel filter function that intersects the 
point geometry

Pixel filter function
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Fractional Antialiased Points

Compute percent coverage by integrating:
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Fractional Antialiased Points

Compute percent coverage by integrating:

� Point “geometry”

� With each pixel filter function that intersects the 
point geometry

Pixel filter function
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Hardware Implementation

For each point size and sub-pixel point location

� Pre-convolve for each affected pixel

� Store results in a hardware table

Reduce table size by

� Limiting the number of supported point sizes

� Reduces table outputs too

� Limiting sub-pixel position resolution

� Exploiting symmetry

� Horizontal

� Vertical

� Diagonal

Optional: normalize aggregate point intensity (coverage)

� Avoid frame-to-frame strobe effects for moving points
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Framebuffer Operations

Point on background

� Blend point color with background color

� Use coverage at each pixel to determine blend

� C’fb = Af Cf + (1 – Af) Cfb               Af is coverage

Point intersecting point

� Geometric relationship is unknown

� Best guess � random

� Use same blend function!

� Call this blend function “uncorrelated”

Works recursively for all points

CS448 Lecture 10 Kurt Akeley, Pat Hanrahan, Fall 2001

Fractional Antialiased Points

Strengths

� Excellent static and dynamic image quality

� Point overlaps are stable if not accurate

� Strobing effects are eliminated by aggregate intensity 
normalization

� Simple and inexpensive to implement and use

� Framebuffer gets blend function, no added storage

� Operates with depth and stencil buffers

Weaknesses

� Depth buffer yields non-optimal results

� Nearer small coverage replaces farther large coverage
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Fractional Antialiased Lines

Table is larger

� Line width, offset to pixel center, slope

� Must exploit symmetry for reasonable table size

� End-of-line filtering can be very expensive

Iterate 1 x n function

Pixel filter function

Offset
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Fractional Antialiased Lines

Strengths

� Very good static and dynamic image quality

� Line overlaps are stable if not accurate

� Roping effects are eliminated by aggregate intensity 
normalization

� Simple and inexpensive to implement and use

� Framebuffer gets blend function, no added storage

� (Barely) operates with depth and stencil buffers

Weaknesses

� Depth buffer yields very non-optimal results

� Nearer small coverage replaces farther large coverage

� Depthcue colors interact badly
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Fractional Antialiased Triangles

Difficult to pre-compute coverage integrations

� Edge slopes OK, but

� Vertexes introduce two edge slopes, and

� Small triangles have all 3 edges in play!

Blending approximation breaks down completely

� Uncorrelated blend leaves visible seams

� Adjacent triangles are anti-correlated, 
not uncorrelated
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Anti-correlated Blend Functions

Assuming perfect tiling, depth complexity 1.0

� E.g. 2D rendering (a clock face, for example)

� C’fb = Af Cf + Cfb

Assuming nearest-to-farthest primitive sorting

� Special case of 3D rendering

� Requires addition of alpha channel in framebuffer

� i = min(Af, (1 – Afb))

� A’fb = Afb + i

� C’fb = i Cf + Cfb
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Fractional Antialiased Triangles

Strengths

� Produces useful results in very specialized 
circumstances

� Requires minimal framebuffer additions

� Anti-correlated (saturation) blend, alpha buffer

Weaknesses

� Filter quality is poor

� Table is impossible to implement, so

� Convolution is typically with a box filter

� Difficult and expensive to implement

� Fails entirely with depth buffer, stencil
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Fractional Antialiasing Summary

Great for single-colored dot clouds

Good for lines

� High-quality filtering, but

� Problems with line-line intersections

Almost useless for triangles

� Expensive to implement

� Filtering quality is poor

� Depth buffer fails completely
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Taxonomy

Antialiasing

Geometric

Fractional

Area Sampled

Point Sampled
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Multi-pass Accumulation Buffer AA

Advantages

� Logical performance/quality ratio

� Simple to implement and to use (e.g. depth buffer)

� Point sample pattern is arbitrary

� “Free” anisotropic texture filtering ….

Disadvantages

� Shading is too expensive

� Reyes renderer shades just once or twice per pixel

� Perception: NTSC chroma vs. luminance bandwidth

� Computation and bandwidth are replicated

� Application, Command, Geometry

Transistors are cheap, communication is expensive
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Multisample Antialiasing

Specify the location of multiple sample points per pixel

� Patterns may differ spatially, but not temporally

Rasterize fragments that include

� A bitmask of occluded samples

� Appropriate color, depth, and texture coords

Evaluate texture once per fragment (not per sample)

Store color and depth for each sample in framebuffer

Resolve samples to final pixel value either

� Each time the pixel is modified, or

� Once, before the buffer is displayed
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Multisample Sample Pattern

Trade-off

� Pseudo random

� Better, more efficient filtering

� Regular

� Easier, more efficient rasterization

Compromise pattern is regular subset

� Manageable sample count

� Empirically best

� Pixar owns patent on this
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Rasterization Fragment Selection

Box sampled, as in tiled rasterization

The bitmask is composed of point samples

Pixel’s box must enclose all sample locations

Might be outside the 1 x 1 ideal pixel area

Look how pixel depth complexity has increased!

Area is 5.0, but 13 fragments are generated
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Rasterization Parameter Assignment

Sample depth at each occluded sample location

� Depth buffer controls “geometry” of final image

Sample color once per fragment

� Do not sample outside the triangle!

� Choose a sample location in a repeatable manner

� Occluded sample nearest to pixel center

� Occluded sample nearest to “fragment” center

Sample texture coordinates once per fragment

� Pixel center – optimizes for adjacent triangles

� Color sample location – optimizes for silhouette
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Multisample Framebuffer

Store full depth and color values for each sample

Execute full fragment operations for each sample

� Depth buffer

� Stencil buffer

� Blending

� …

Resolve to final color

� Only final color buffers are double buffered

Examples: high-end SGI machines
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8-Sample Multisample Framebuffer

typedef struct {

int red, green, blue, alpha;

} Color;

typedef struct {

Color c;

int depth;

int stencil;

} Sample;

typedef struct {

Color front, back;

Sample s[8];

} Pixel;
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Ideal Multisample Summary

Strengths

� Good full-scene antialiasing quality

� Works seamlessly with depth/stencil buffers

� Even works for interpenetrating triangles

� Operation is predictable and reliable

Weaknesses

� Framebuffer is very expensive

� Bandwidth

� Memory requirements

� Point and line filter quality is mediocre

� Fractional approach has higher filter quality

� But multisample correctly resolves intersections
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Merged Multisample and Fractional

OpenGL Multisample spec designed to allow this

Enable multisample framebuffer

Render triangles in multisample mode

Then render points and lines in fractional mode

� OpenGL “smooth”

Result is

� High-quality points and lines

� Good quality filtering of solids

� No seams or cracks

� Proper occlusion point/line/solid to solid

� Point/line to point/line occlusion still poor
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Architectural Options

Store only mask in framebuffer

� Assume front-to-back rendering

� Intersect and accumulate masks to determine 
blend function

� Examples: early flight simulation IGs

i = (Mf AND  Mfb) / n

M’fb = Mfb OR  Mf

C’fb = i Cf + Cfb

i = min(Af, (1 – Afb))

A’fb = Afb + i

C’fb = i Cf + Cfb

Mask Rendering Anti-correlated Rendering



20

CS448 Lecture 10 Kurt Akeley, Pat Hanrahan, Fall 2001

Architectural Options (continued)

Tiled rendering

� Reduces framebuffer storage requirements

� Multisample buffers needed only for active tiles

� But requires region binned geometry

� Extra frame of latency

� Lots of data management complexity

� Examples

� Pixel Planes 5, PixelFlow

� Talisman

� GigaPixel, ….
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Architectural Options (continued)

Loss-less compression

� One and two-fragment special cases

� Saves bandwidth, not memory

Almost-loss-less compression

� Reduced color precision per sample

� E.g. 16 8-bit samples reconstruct a 12-bit color value

� Saves bandwidth and memory

Lossy compression at pixels

� Examples: endless research papers

� Watch out for failure modes!
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System Evaluation

Simulate possible algorithms

� Run test patterns

� Run scenes from real applications

� Try to break it – application developers will!

Study individual images carefully

More important: study sequences of images!

� Static images do not tell the whole story

Document evaluation procedure when publishing
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Taxonomy

Antialiasing

Geometric

Fractional

Area Sampled

Point Sampled
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Area Sampling

How can one get the good qualities of point sampling

� Accurate depth comparisons

� Samples taken only within triangle boundaries

� “Perfect” anti-correlated blending

� Robust, reliable algorithms

With the greater filter quality of area-based sampling

� Greater spatial resolution

� High-quality, display-tuned filter function

In one algorithm?
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I know of no general solution

But there are “hacks” that get some value



23

CS448 Lecture 10 Kurt Akeley, Pat Hanrahan, Fall 2001

2-fragment Area Filtering

Optimize for special case of just two visible fragments

For each fragment compute

� Coverage mask

� Filter-function-integrated coverage value

At each pixel store

� All multisample values

� One coverage value, and

� One extra state bit (tracks 2-fragment case)

When merging fragment colors during resolution

� Use coverage value in 2-fragment case

� Use multisample values otherwise
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“Schilling” Antialiasing

Choose samples based on coverage, not just geometry

Good idea, but lots of problems

� Must sample outside primitive

� Colors wrap

� T-junctions protrude

Blue triangle occludes ¼ of the pixel’s unit 
area, but only one sample.  Select a second 
sample to get the best “weight”
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A-buffer and Relatives

Variable data structure at each pixel

Strengths

� Handles transparency and depth occlusion

� Simple for applications to program

Weaknesses

� Complex and fragile to implement

� Failure modes are unpleasant!
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Hardware Workshop Papers

R-Buffer: A Pointerless A-Buffer Hardware Architecture,
Wittenbrink, Graphics Hardware 2001.

Single-Pass Full-Screen Hardware Accelerated 
Antialiasing, Lee and Kim, 2000.

Prefiltered Antialiased Lines Using Half-Plane Distance 
Functions, McNamara, McCormack, Jouppi, 2000.

Z3: An Economical Hardware Technique for High-Quality 
Antialiasing and Transparency, Jouppi, Chang, 1999.

High-Quality Rendering Using the Talisman Architecture,
Barkans, 1997
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