Real-Time Graphics Architecture

Kurt Akeley

Pat Hanrahan

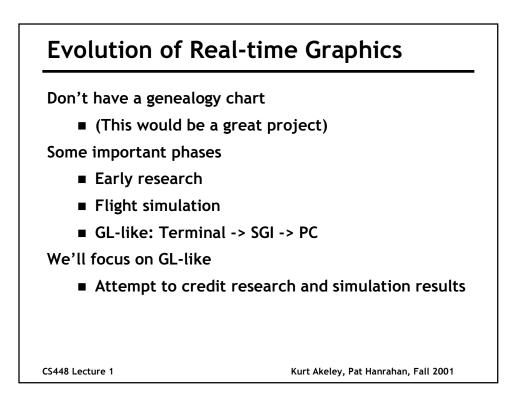
http://www.graphics.stanford.edu/courses/cs448a-01-fall

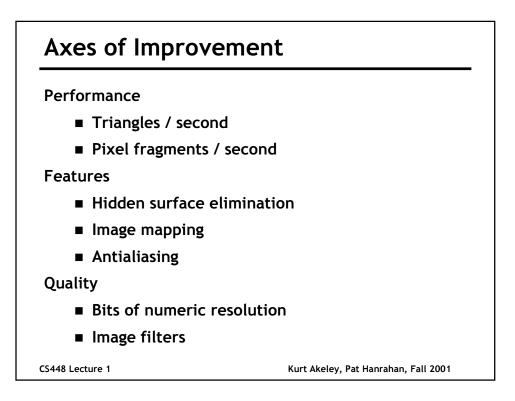
About Kurt

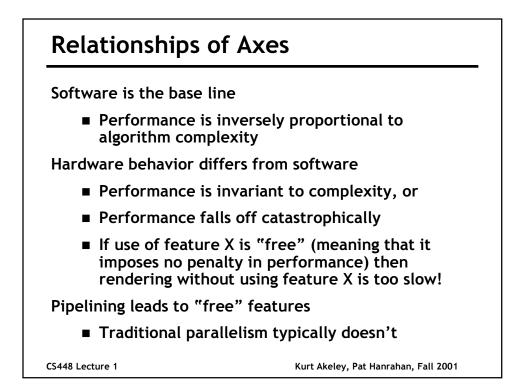
Personal history

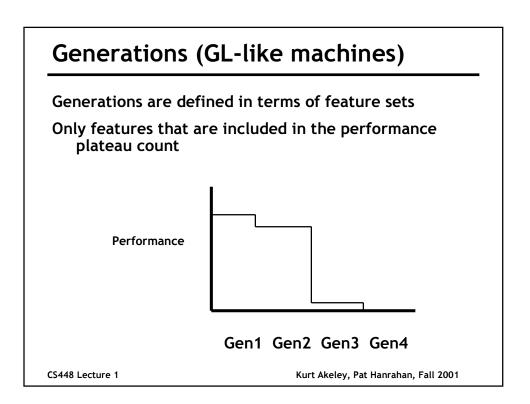
- B.E.E. Univeristy of Delaware, 1980
- M.S.E.E. Stanford, 1982
- SGI co-founder, chief engineer, CTO, 1982 2000
- Lots of SIGGRAPH involvement

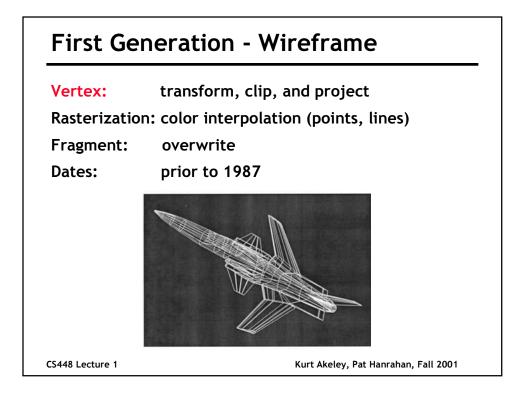
Currently

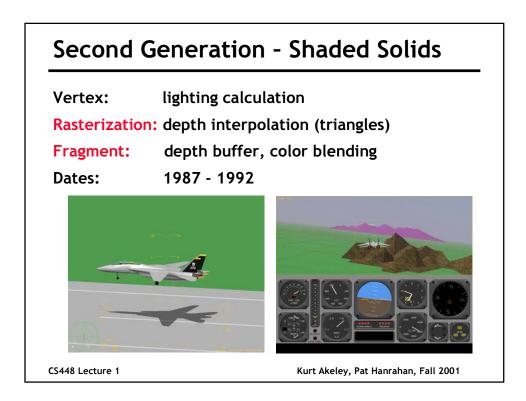

- Reinstated as Ph.D. student here (almost ;-)
- Working at NVIDIA on Fridays
- Book on this subject

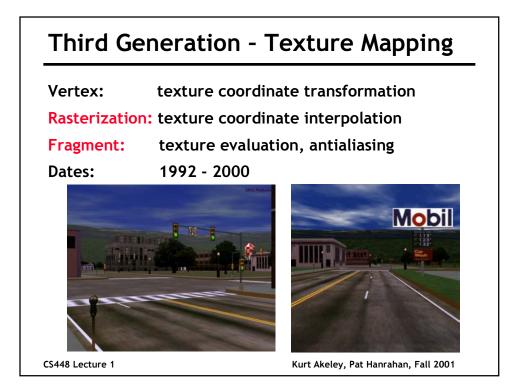

CS448 Lecture 1


Kurt Akeley, Pat Hanrahan, Fall 2001


Other Notes	
OpenGL	
Lots of history with	this
 Good framework for 	understanding
Glossary	
On-line soon	
Feedback	
■ Yes!	
CS448 Lecture 1	Kurt Akeley, Pat Hanrahan, Fall 2001


Introductions (done)	
Evolution of Graphics Sy	stems (Kurt)
Future Evolution (Pat)	
Lecture Schedule (Pat)	
Brief Introduction to Per	rception (Kurt)
Course Logistics (Pat)	





Year	Product	Fill rate	Yr rate	Tri rate	Yr rate
1984	Iris 2000	46M	-	10K	-
1988	GTX	80M	1.2	135K	1.9
1992	RealityEngine	380M	1.5	2M	2.0
1996	InfiniteReality	1000M	1.3	12M	1.6
			1.3		1.8

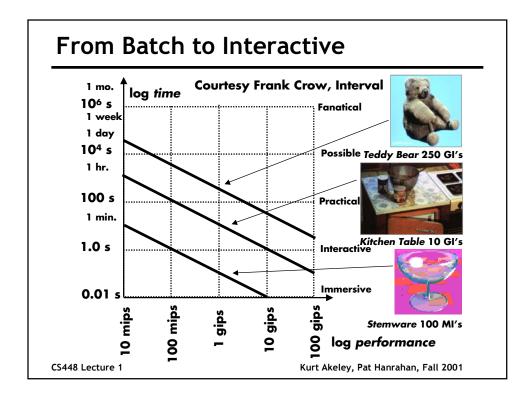
Gen	Year	Product	Fill rate	Yr rate	Tri rate	Yr rate
1st	1984	Iris 2000	46M	-	10K	-
2nd	1988	GTX	80M	1.2	135K	1.9
3rd	1992	RealityEngine	380M	1.5	2M	2.0
3rd	1996	InfiniteReality	1000M	1.3	12M	1.6
				1.3		1.8

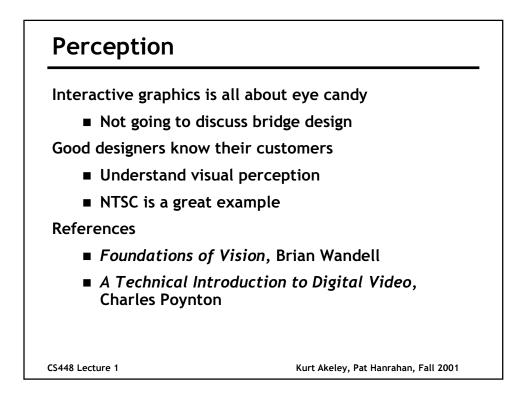
1st 1	984	Iris 2000	4001/			
			100K	-	0.8K	-
2nd 1	988	GTX	40M	4.5	135K	3.6
3rd 1	992	RealityEngine	380M	1.8	2M	2.0
3rd 1	996	InfiniteReality	1000M	1.3	12M	1.6
				2.2		2.2

<i>n</i> VIDIA Graphics growth (225%/yr)							
Season	Product	Process	# Trans	Gflops	32-bit AA Fill	Mpolys	Notes
2H97	Riva 128	.35	3M	5	20M	3M	Integrated 2D/3D
1H98	Riva ZX	.25	5M	7	31M	3M	AGP2x
2H98	Riva TNT	.25	7M	10	50M	6M	32-bit
1H99	TNT2	.22	9M	15	75M	9M	AGP4x
2H99	GeForce	.22	23M	25	120M	15M	HW T&L
1H00	GeForce2	.18	25M	35	200M ¹	25M	Per-Pixel Shading
2H00	NV16	.18	25M	45	250M ¹	31M	230 Mhz DDR
1H01	NV20	.15	55M	80	500M ¹	30M ²	Programmable
THO1 NV20 .15 55M 80 500M ¹ 30M ² Programmable Essentially Moore's Law Cubed. 1: Dual textured 2: Programmable							

Season	Product	Fill rate	Yr rate	Tri rate	Yr rate
2H97	Riva 128	20M	-	3M	-
1H98	Riva ZX	31M	2.4	3M	1.0
2H98	Riva TNT	50M	2.6	6M	4.0
1H99	TNT2	75M	2.3	9M	2.3
2H99	GeForce	120M	2.6	15M	2.8
1H00	GeForce2	200M	2.6	25M	2.8
2H00	NV16	250M	1.6	31M	1.5
1H01	NV20	500M	4.0	30M	1.0
			2.5		2.2
	Yearly Gro	wth well	above M	oore's La	aw

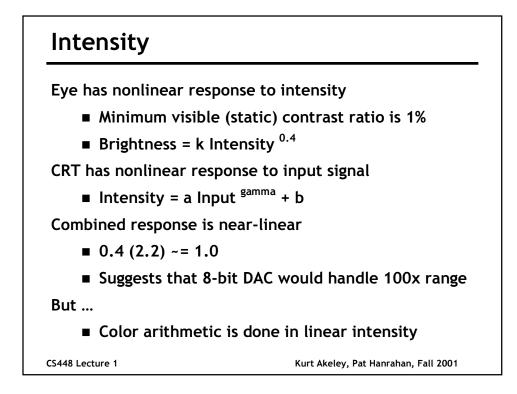
Fourth Generation - Programmability

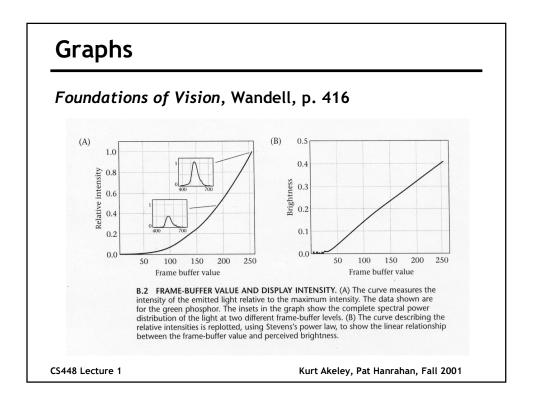

Programmable shading Image-based rendering Convergence of graphics and media processing Curved surfaces



CS448 Lecture 1

Kurt Akeley, Pat Hanrahan, Fall 2001





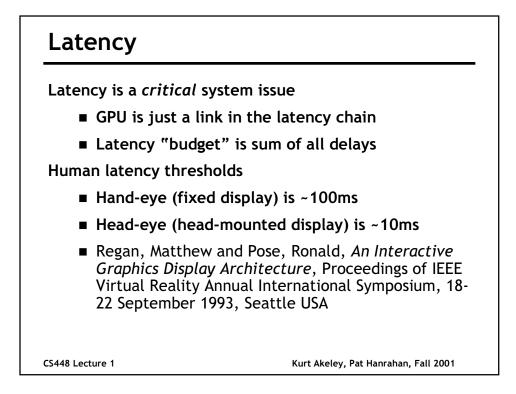
Perception Issu	Jes
Intensity	
Motion	
Latency	
Color	
Resolution	
CS448 Lecture 1	Kurt Akeley, Pat Hanrahan, Fall 2001

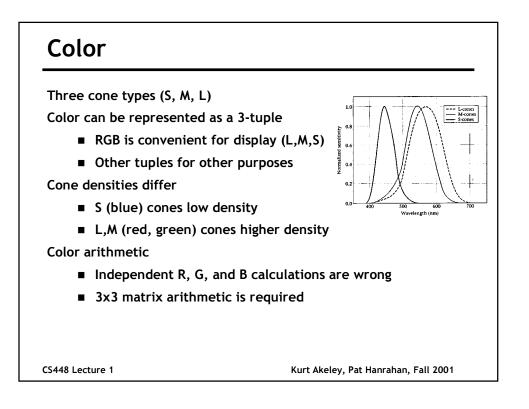
Demo	
Intensity and motion	
CS448 Lecture 1	Kurt Akeley, Pat Hanrahan, Fall 2001

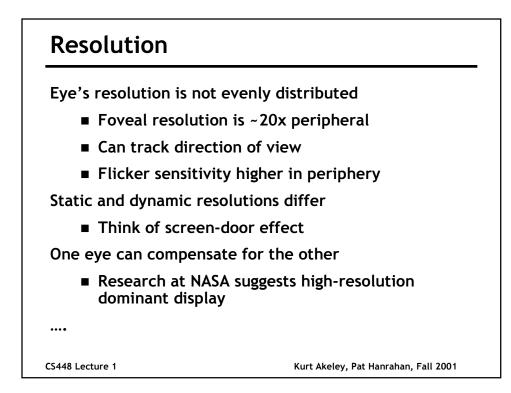
Gamma Correction

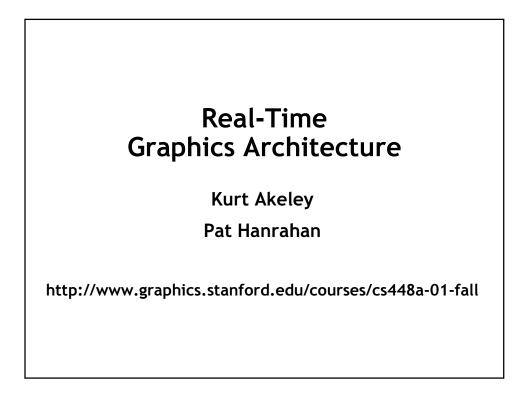
Store image linear in brightness

- Best use of available storage precision
- 256 representable levels are enough
- Requires conversion for each pixel operation
- Historically unusual design choice


Store image linear in intensity


- Native arithmetic format
- Requires conversion during display
- Large brightness steps at low intensities
- 256 representable levels are not enough!
- Historically typical design choice


CS448 Lecture 1


Kurt Akeley, Pat Hanrahan, Fall 2001

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

