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The full range of hair simulation problems and practical solutions, both novel research 
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 Familiarity with the fundamentals of computer graphics, numerical linear  algebra, 
differential equations, numerical methods, rigid-body dynamics  collision detection 
and response, physics-based illumination models, and  fluid-dynamics is strongly 
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detection via OBB trees and adaptively sampled distance fields, techniques for hair-
hair interaction using fluid dynamics or sparse-guide hairs, advanced hair illumination 
models, volumetric shadows, and hair rendering using (programmable) graphics 
hardware. 
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Topic 1: Introduction 30 min 

  8:30 State of the Art - Nadia Magnenat-Thalmann 

  8:45 Quest for realism - Ulrich Neumann 

Topic 2: Hair Shape Modeling and Dynamics 

  9:00 A Multiresolution Technique for Hair Styling -Tae-Yong Kim and Fluid flow 
based Hair Modeling - Sunil Hadap 

  9:35 Hair Dynamics -Sunil Hadap and Yizhou Yu 

10:15 Break 

Topic 3: Hair Rendering 

10:30 Hair microstructure and Illumination- Steve Worley 

11:00 Algorithms for hardware accelerated Hair Rendering-Tae-Yong Kim 

Topic 4: Case studies 

11:20 Cultural Heritage applications at MIRALab-Nadia Magnenat-Thalmann 

11:35 Productions Hair/Fur Pipeline at Imageworks- Armin Bruderlin 

Topic 5: Questions and Discussions 

12:00 Audience and Speakers 
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ScheduleSchedule

• Topic 1: Introduction 30 min

8:30 State of the Art - Nadia Magnenat-Thalmann

8:45 Quest for realism - Ulrich Neumann

• Topic 2: Hair Shape Modeling and Dynamics

9:00 A Multiresolution Technique for Hair Styling - Tae-Yong Kim and    
Modeling Hair Shape as Streamlines of Fluid Flow - Sunil Hadap

9:35 Hair Dynamics -Sunil Hadap and Yizhou Yu

10:15 Break

• Topic 3: Hair Rendering

10:30 Hair microstructure and Illumination- Steve Worley

11:00 Algorithms for hardware accelerated Hair Rendering-Tae-Yong 
Kim

• Topic 4: Case studies

11:20 Cultural Heritage applications at MIRALab - Nadia Magnenat-Thalmann

11:35 Productions Hair/Fur Pipeline at Imageworks- Armin Bruderlin

• Topic 5: Questions and Discussions

12:00 Audience and Speakers

ScheduleSchedule
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State of the art for hairState of the art for hair

Prof. Nadia Magnenat-Thalmann

Thalmann@miralab.unige.ch

MIRALab – University of Geneva

www.miralab.ch

OutlineOutline

• Hair simulation overview

• Hair simulation tasks

• Hair models

• Open problems in hair simulation

Our attempts

• Hair as streamlines of fluid flow

• Dynamic hair as continuum

• Validation

• Real time hair
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Hair Simulation 
Overview
Hair Simulation 
Overview

Tasks
M

o
d

e
ls

Though seem to be independent tasks, they are highly interrelated.

Hair Simulation Tasks -
Styling
Hair Simulation Tasks -
Styling

• Hair shape is a result of complex physical 
interaction between hair-hair and hair-
body

• Hairstyling – a constant human passion
curlers, clips, knots, braids and up-dos

• Hair dynamics at interactive speed is 
impossible. Heuristic approach is needed 
for hair shape modeling.

• Thus, hair shape modeling is an exclusive 
task in computer graphics
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Hair Simulation Tasks -
Dynamics
Hair Simulation Tasks -
Dynamics

• Highly anisotropic physical behavior
Solid-liquid duality

• Light weight of hair as compared to 
its acceleration, stiffness, friction and 
air drag

• Constant collisions / frictional 
interactions with the body

• 100,000 to 150,000 hair strands on 
scalp

• Hair-hair interaction, one of the 
unsolved problems of Computer 
Graphics

Unilever hair shots

Hair Simulation Tasks -
Rendering
Hair Simulation Tasks -
Rendering

• Intricate geometry of individual hair

• Large number of hair strands

• Complex interaction with light and 
shadows
multiple scattering, luster, self-
shadowing

• Anisotropy in shading

• Small thickness of the hair – anti-
aliasing
How artists paint hair?
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Hair Models – Particle 
Systems
Hair Models – Particle 
Systems

• Simple (tricks)

• Imagine the “flock of birds”
Hair root leads and rest of the 
hair follows

• Most of the commercial 
animation systems support 
particle system and some form 
of hair rendering as a particle 
system

• Inappropriate for intricate 
hairstyling

• adhoc for Hair Dynamics

• Effective for Hair Rendering

“The End” by Alias|Wavefront 96

Hair Models –
Volumetric Textures
Hair Models –
Volumetric Textures

Perlin et al, 1989

• Spatial density functions 
such as 3d noise and 
turbulence

• Stochastic models, nice way 
of interpreting complexity in 
nature such as grass, trees, 
forests and fur



77

Hair Models –
Volumetric Textures
Hair Models –
Volumetric Textures

• Extension to non-analytic 
“Texels”, tiling of fur 
texture on geometry

• Unlike hypertextures, can 
be used on complicated 
geometry.

Kajiya et al, 1989

Hair Models – Explicit 
Hair Models (styling)
Hair Models – Explicit 
Hair Models (styling)

• Few characteristic hair strands 
are considered for shape

• Interactive definition in 3D, good 
overall control

• Further, population and shape 
control through density, spread, 
jitter and orientation

• Intuitive and versatile

• Effective but time consuming

• Can not be effectively used for 
complex hairstyles involving 
clips, knots and braid

Daldegan et al, 1992



88

• Each and every hair strand is 
considered for dynamics

• Close to physical reality

• Hair-hair interaction is not 
modeled although majority 
of hair volume comes from 
hair-hair interactions

• Hair volume is wrongly 
attributed to large hair 
stiffness 

Kurihara et al, 1992

Hair Models – Explicit 
Hair Models 
(dynamics)

Hair Models – Explicit 
Hair Models 
(dynamics)

Hair as Cantilever 
Beam (styling)
Hair as Cantilever 
Beam (styling)

• The 2d cantilever 
equation is extended 
to 3d by 
appropriately 
selecting a spherical 
coordinate system

• The cantilevered 
hair strands form 
the hairstyle

• One can vary the 
bending properties 
to give waviness
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Hair as Cantilever 
Beam (dynamics)
Hair as Cantilever 
Beam (dynamics)

• One dimensional 
differential equation for 
angular momentum
Euler equation

• However, hairstyle is in 
3d
Approximation by 
evaluating the one 
dimensional equation in 
the plane formed by 
segment and y axis.

Hair as Cantilever 
Beam (collision)
Hair as Cantilever 
Beam (collision)

• Approximation of 
polygonal head by an 
ellipsoid

• Pseudo force field to repel 
hair instead of real 
collision detection
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Hair as Cantilever 
Beam (critique)
Hair as Cantilever 
Beam (critique)

• One of the pioneering work. Use of rigid-body 
dynamics for hair simulation.

• Complete approach for hairstyling, animation 
and rendering

• Simplified single hair dynamic equations

• Hair-body interactions were grossly 
approximated by pseudo force field.

• No hair-hair interaction modeled

LeBlanc et al, 1991

Hair Models – Explicit 
Hair Models 
(rendering)

Hair Models – Explicit 
Hair Models 
(rendering)

• Each hair is drawn as illuminated 
polyline

• Use of graphics hardware for 
speedy line drawing

• Anti-aliasing using pixel blending
Single hair thickness only partially 
covers a pixel width. Thus hair is 
drawn with a transparency to 
avoid aliasing.

• Drawing order has to be from 
back to front
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• Illumination of polylines

• Thin cylindrical geometry, 
source of high anisotropy 
in shading

• Overall shadowing can be 
achieved using traditional 
shadow maps

Shadow map is depth map 
from lights point of view

No self-shadowing

Normal reflection model Reflection from thin cylinder

LeBlanc et al, 1991

Shadows using shadow buffer

Hair Models – Explicit 
Hair Models 
(rendering)

Hair Models – Explicit 
Hair Models 
(rendering)

Hair Models – Explicit 
Hair Models 
(rendering)

Hair Models – Explicit 
Hair Models 
(rendering)

• Self-shadowing can 
be done using 
volume ray casting 
or “deep shadow 
maps”

Lokovic et al, 2000Deep shadow maps
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Hair Models – Cluster 
Hair Models (styling)
Hair Models – Cluster 
Hair Models (styling)

• Or wisp models

• Clump of hair is 
considered for modeling 
instead of individual 
hair strand

• Clumps modeled as 
generalized cylinders.

Zhan Xu,et al, 1999

Hair Models – Cluster 
Hair Models (styling)
Hair Models – Cluster 
Hair Models (styling)

• Generalized cylinder controls 
overall shape

• Stochastic density variation 
confined to the generalized 
cylinder gives details of hair.

• Better control over shape.

• Efficient for rendering.
Ray-tracing of generalized 
cylinders.

• Not suitable for smooth, 
simple hair
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Hair Models – Cluster 
Hair Models 
(dynamics)

Hair Models – Cluster 
Hair Models 
(dynamics)

• Layered wisp model

• A skeleton curve that defines 
large scale motion and 
deformations. It is modeled as 
spring-mass system.

• A deformable envelop that coats 
the skeleton, and defines the 
deformation of wisp sections

• A certain number of hair strands 
are distributed inside the 
envelope and only used for 
rendering.

Plante et al, 2001

Hair Simulation 
Overview
Hair Simulation 
Overview

Tasks

M
o

d
e
ls
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Open Problems in Hair 
Simulation
Open Problems in Hair 
Simulation
• Hair Shape Modeling

– Many recent attempts, however not yet matured
• Hair Dynamics

– Stiffness dynamics of individual hair was grossly 
approximated considering current computing power 
(1GHz, 1GB RAM)

– Hair-hair interaction not attempted (until recently)
• Hair Rendering

Fairly matured and is available through commercial 
systems. However, global-illumination for hair with 
detailed shading models is not yet attempted.

• Real-time hair animation and rendering
With possible compromise on the realism

Our ApproachOur Approach

• Hair Shape Modeling*

– Hair shape as streamlines of 
fluid flow

• Hair Rendering
– Single iteration hair 

rendering including 
volumetric shadows using 
graphics hardware

*Sunil Hadap and Nadia Magnenat-Thalmann. "Interactive Hair Styler based on Fluid 
Flow", Eurographics Workshop on Computer Animation and Simulation'2000, Interlaken 
2000
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Our Approach(2)Our Approach(2)

• Hair Dynamics**

– Stiffness dynamics of 
non-straight hair strand

– Elaborate inertial 
dynamics using reduced 
coordinate formulation

– Hair-hair, hair-body and 
hair-air interaction 
dynamics

**Sunil Hadap, Nadia Magnenat-Thalmann, "Modeling Dynamic Hair as a Continuum", 
Computer Graphics Forum, Volume 20, Issue 3, Eurographics 2001 Proceedings, Manchester, 
United Kingdom, September 2001

movie

Real-Time HairReal-Time Hair

• Rendering of Hair at 
interactive  rates

• Animating Hair 
according to the various 
physical forces in real 
time
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Non Real-Time vs Real-
Time Hair
Non Real-Time vs Real-
Time Hair

Real-Time HairNon Real-Time Hair

-Dynamic equations for hair

-Setting physical parameters 

and achieving fast animation 

using Graphics Hardware

-Explicitly (Mass-Spring

Models,Cantilever beam)

-Hair Dynamics as a 

Continuum

Animation

Modelling

-Low Polygonal Mesh

-Hybrid Model 

(Strips+Polylines)

-VolumetricTexture

(Fur / Short Hair)

-Explicitly

-Volumetric texture

-Cluster Model

-Hair as a Fluid

Non Real-Time vs Real-
Time Hair
Non Real-Time vs Real-
Time Hair

Real-Time HairNon Real-Time Hair

Rendering

-Intensively using the 

Graphics Hardware  

(Vertex and Pixel Shaders)

-Avoid expensive 

computations

(Self Shadowing)

- Each hair drawn as 

illuminated polyline

-Anisotropic Lighting

-Self Shadowing

-Back Lighting
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Requirements for 
Real-Time Hair
Requirements for 
Real-Time Hair

In order to achieve realistic looking 
hair and fur and that too in Real Time 
we need to
• Model Hair with less number of primitives
• Use low computation animation techniques 

with approximations
• Use of new-generation Graphics 

Processing Units (GPUs) for rendering

Hair ModellingHair Modelling

• Model hair with low primitive 
count and thus some compromise 
on realism

• Game Characters have hair
modelled as low polygon mesh with 
texture mapped on it

• Long Hairs mostly modelled as 
Pony Tail for easier Animation
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Hair AnimationHair Animation

• Animated Hair adds 
life into the virtual 
character

• Need to define a 
physical model and 
avoid stiff equations 
for achieving fast 
animations

Hair RenderingHair Rendering

• For realism hair should show real-
time modification of appearance based 
on viewing and lighting conditions

• Using modern powerful graphics 
engine makes it possible to render 
complex, high quality hair and fur at 
very interactive frame rates.
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Real Time Short 
Hair or Fur
Real Time Short 
Hair or Fur

Fin textures used on all 
edges normal to the 
surface near silhouettes

Geometrically grow a 
patch of hair (using a 
particle system) and 
sample it into the shell 
and fin textures

RealReal--Time Fur on Arbitrary SurfacesTime Fur on Arbitrary Surfaces [Lengyel ’01]

Real Time Short 
Hair or Fur (2)
Real Time Short 
Hair or Fur (2)

Shell textures are 
concentric, semi-
transparent samples of 
hair volume 

At runtime 
-Render a series of 
textured, concentric 
shells
-Render several fins 
perpendicular to the 
surface
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Real Time Hair 
Framework
Real Time Hair 
Framework

Hair Modeled as a Hybrid of 
Strips and Polylines 
(adjusting LODs depending 
upon viewing distance)

Texture map along with 
transparency map is applied 
to the Strips

Real Time Hair 
Framework (2)
Real Time Hair 
Framework (2)

Animating the hair model by 
defining some control strands 
on the hair model

Use Vertex  Shaders to Perform 
Anisotropic lighting of Hair 



2121

ConclusionConclusion

• Key to Real Time Hair is less number of primitives
– Fast animation
– Fast Rendering

• For achieving Hair in Real Time we need to 
compromise on Realism
– Hybrid Model (Strips + Polylines), No Explicit Hair 

Model
– Avoiding Realistic but computationally expensive 

implementations (self shadowing)

• Need to Intensively use the Programmable 
Graphics Hardware for Animation and 
Rendering

The Quest for Realism in 
Hair Rendering, Modeling, 

and Animation

The Quest for Realism in 
Hair Rendering, Modeling, 

and Animation
Ulrich Neumann

Computer Science Department

Integrated Media Systems Center

University of Southern California

uneumann@graphics.usc.edu
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BackgroundBackground

• Graphics methods evolved for surfaces and 
volumes (sampled continuum)
– Suited to most of the world and data that people 

want to model and visualize

• Long human hair is neither surface nor 
continuum
– A unique problem for modeling, rendering, and 

animating

• This talk presents a summary of hair 
characteristics that lead to unique problems 
in graphics...

Hair is...Hair is...

• Strands – lots of them... (100-150K)
– Long curved strands are represented by multiple line 

segments (for speed), resulting in >Million segments 
to represent a hair style

• High complexity - lots of primitives to control, 
and lots of interactions, collisions, occlusions
– Algorithm efficiency is important!

• Chemistry analogy...
– Surfaces are solids
– Continuum volumes are liquids
– Hair is a suspension

• Small surfaces (solids) held in a volume (liquid)
• Characteristics of both, but also unique properties 
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Lighting and ShadingLighting and Shading

• Volumetric effects
– Scattering, shadows, and extinction

• Multi-scale structures
– Strands - wisps/clusters - layers  
– Anisotropic reflectance model

Sampling Problems Sampling Problems 

• Hair has extreme anisotropic geometry
– micro cross-section and macro length

• Pixel value = aggregate shading and 
occlusion effects of multiple strands

• Supersampling to strand resolution is 
impractical
– Strand color accumulates at pixels
– Occlusion/accumulation is a volumetric density 

function
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ModelingModeling

• Endless variations of hairstyles
– No constraints between hair 

strands and head/body model, 
other than interpenetration

• Multi-scale structures
– Strands - wisps/clusters - layers

AnimationAnimation

• Deformation and motion are common...
Influenced by 
– Inertia, coulomb forces and friction between hairs, 

body collisions, gravity, and air (relative motion)
• Bending is easy - stretching is not

– Soft and stiff system at the same time
• Multi-scale dynamic clustering and breakup 

under motion
– Hairstyle does not behave as a single deformable 

object – clusters form and breakup
– Elastic limit – style memory vs breakup

(Movie illustrates real hair motions)
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Hair Synthesis SystemHair Synthesis System

• Modeling and rendering (and animation) are 
coupled...
– Can’t see model without a renderer
– Can’t render (or animate) without a model

etc...

• Need to make all the functions of a graphics 
system “hair-capable” to do any work in this 
area

A Multiresolution Technique for 
Hairstyling

A Multiresolution Technique for 
Hairstyling

Tae-Yong Kim

tae@rhythm.com

Rhythm & Hues Studio

*formerly at the University of Southern California
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Modeling Human HairModeling Human Hair

• Complex discontinuous 
volume

• Clusters and curliness

• Virtually any shape is 
possible

• Number of hair strands (100K

To 200K)

Goal Goal 

To build an interactive system for 
modeling

Complex human hair in a reasonable 
amount of time

( < 1 hour)
• Efficient sculpting of volumetric hair model

• Interactive rendering of arbitrary explicit hair

Models
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A multi-res hair

Model

Goal Goal 

photograph

Long hairs cluster, split, and curl away

Complex hairstyles with extreme

discontinuity are difficult to model

Common Problems Common Problems 
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Motivation Motivation 

Clustering effects occur at multiple 
scales

Multiresolution approach for hair

modeling

A multiresolution approach
for hair modeling

A multiresolution approach
for hair modeling

• Hair cluster shape modeling with 
generalized cylinders (GC)

• Subdivision and hierarchical hair structure

• Multiresolution editing tools

• Copy and paste operations

• Capture structural aspects of volumetric 
hairstyles
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Scalp SurfaceScalp Surface

• A parametric surface

S = p(u,v)

• Defines the region of hair

Growth

Scalp space editor

Scalp SurfaceScalp Surface



3030

Atlas for hair cluster 
positioning

Scalp SurfaceScalp Surface

Generalized Cylinder 
(GC)
Generalized Cylinder 
(GC)
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Generalized Cylinder 
(GC)
Generalized Cylinder 
(GC)

Generalized Cylinder 
(GC)
Generalized Cylinder 
(GC)
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Generalized Cylinder 
(GC)
Generalized Cylinder 
(GC)

Generalized Cylinder 
(GC)
Generalized Cylinder 
(GC)
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Generalized Cylinder 
(GC)
Generalized Cylinder 
(GC)

Scale ChangeScale Change
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Twist ChangeTwist Change

Adding DetailsAdding Details

• A single generalized cylinder (GC) is limited 
by a few parameters

• Simply adding more gcs results in too many

Controls
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SubdivisionSubdivision

• Subdivide a parent GC into several smaller 
child gcs

• Hierarchical control over the hair model

• Editing a child GC changes the shape of hair 
strands

• Editing a parent GC affects child gcs as well 
as hair strands

Hair TreeHair Tree

Generalized cylinder

A hair model

Hair strand

• Subdivision allows more refined controls to 
the hair model down to a hair strand
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SubdivisionSubdivision

• Skeleton curves

• Contour functions

• Hair strand generation

• Skeleton curves

SubdivisionSubdivision
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• Contour functions

SubdivisionSubdivision

1. Random Positioning 2. Position Relaxation

[Turk1991]

• Hair strand generation

SubdivisionSubdivision

Overlaps and holes

Uneven hair density
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• Hair strand generation

SubdivisionSubdivision

Hair assignment

Consistent hair density

Multiresolution EditingMultiresolution Editing
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• Bind

When a GC is selected for edit, its descendants

Are attached to the GC

• Update

During editing, the children gcs are updated

Using GC equation of the parent

Multiresolution EditingMultiresolution Editing

Multiresolution EditingMultiresolution Editing
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Copy and PasteCopy and Paste

Transfer a style from one cluster to another

Copy and PasteCopy and Paste
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Copy and PasteCopy and Paste

Copy and PasteCopy and Paste
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Example hairstyling procedureExample hairstyling procedure

Global hair shape modeling with GCs

Subdivision and local editing

Example hairstyling procedureExample hairstyling procedure
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Copy and paste

Example hairstyling procedureExample hairstyling procedure

Multiresolution editing and refinement

Example hairstyling procedureExample hairstyling procedure
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The example we saw in 
the beginning
The example we saw in 
the beginning

ExampleExample

Top level

(30 GCs)

2nd level

(177 GCs)

3rd level

(840 GCs)
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Interactive RenderingInteractive Rendering

• Each hair strand is drawn as opengl lines.

• Integrated rendering system with openGL 
hardware

• Instant feedback for WYSIWYG hair modeling

Interactive visualization of complex hair

geometry during modeling

Level of DetailLevel of Detail

High complexity model

1.2M lines

20000 strands, 60 lines /

strand, a = 0.3

Low complexity model

(100K lines)

5000 strands, 20 lines /

strand, a = 1.0
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High complexity model

1.2M lines

Level of DetailLevel of Detail

Low complexity model

(100K lines)

Results - Curly ponytailResults - Curly ponytail
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ResultsResults

ResultsResults
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ResultsResults

ResultsResults
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See how a hairstyle 
changes the look on the 
same face model!

See how a hairstyle 
changes the look on the 
same face model!

Modeling Hair Shape as 
Streamlines of Fluid Flow
Modeling Hair Shape as 

Streamlines of Fluid Flow

Sunil Hadap

R&D staff, PDI/DreamWorks

hadap@acm.org

Doctoral research at MIRALab, university of Geneva
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Hair Simulation 
Overview
Hair Simulation 
Overview

Task

M
o

d
e
ls

• Spatial density functions such 
as 3d noise and turbulence

• Stochastic models, nice way of 
interpreting complexity in 
nature such as grass, trees, 
forests and fur

• Analytically defined - good for 
anti-aliasing in rendering

Hair Shape Models –
Volumetric Textures
Hair Shape Models –
Volumetric Textures

Perlin et al, 1989

Kajiya et al, 1989
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• Few characteristic hair strands 
are considered for shape

• Interactive definition in 3D, 
good overall control

• Further, population and shape 
control through density, 
spread, jitter and orientation

Hair Shape Models –
Explicit Hair Models
Hair Shape Models –
Explicit Hair Models

Daldegan et al, 1992

• Intuitive and versatile

• Effective but time consuming

• Can not be effectively used for 
complex hairstyles involving 
clips, knots and braid

Hair Shape Models –
Explicit Hair Models
Hair Shape Models –
Explicit Hair Models

Daldegan et al, 1992
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Best of Both – Explicit 
Hair Models and 
Volumetric Texture

Best of Both – Explicit 
Hair Models and 
Volumetric Texture

• Fluid flow has both
– Explicit global shape control

(long hair)
– Rich local details 

(fur)

• Flow Visualization
[Cabral93] [Zckler96]

Hair as Streamlines of 
Fluid Flow
Hair as Streamlines of 
Fluid Flow
• Only a snapshot of fluid flow

• Gravity 
free stream flow condition

• Hair Growth 
secondary flow from within head

• Hair-hair Interactions
continuum property
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Hair as Streamlines of 
Fluid Flow
Hair as Streamlines of 
Fluid Flow

• Hair-body Interactions
flow tangency condition

• Hair Root Lift
flow normal velocity

• Parting Line
stagnation point

Fluid Hair ModelFluid Hair Model

• Ideal Flow
stream, source and vortex

• And their linear combinations

• Stream as gravity

• Source as an obstacle

• Vortex as a curler

… shape the complex flow
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Panel Method –
handling obstacle 
avoidance

Panel Method –
handling obstacle 
avoidance
• Place a number of “unknown” 

sources bellow the body

• Flow Boundary Condition

• Solving for “unknown” source 
strengths

• Flow Form Factor, LU 
decomposition

… now, one does not worry about hair-
hair and hair-body collisions

Interactive Hair Styler 
based on Fluid Flow
Interactive Hair Styler 
based on Fluid Flow

• Polygon reduced geometry 
to define panels

• Hair growth map and 
velocity map

• Placing panel sources
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HairstylingHairstyling
• Place a stream to give 

hair a downward direction

• Place a source to repel 
away unwanted hair on 
face

• Trim hair

• Place vortices to make 
curls

… global shape control

Results – simple and 
complex fluid flow
Results – simple and 
complex fluid flow
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Structured Volumetric 
Textures
Structured Volumetric 
Textures
• Volumetric 

perturbations
waves and noise

• Curvilinear coordinate 
system

• Perturbations applied 
to
the individual hair 
strand or to the clump

• Why “structured”?

Results – volumetric 
textures added to flow
Results – volumetric 
textures added to flow
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Limitations and Future 
Work
Limitations and Future 
Work

• Using the theme hair as stream lines of fluid 
flow need special insight

• Hairstyling is not real-time, only interactive

• A precise control over the hairstyle is not 
possible as fluid flow is global phenomenon

• Clips, braids, knots and fashion accessories

Sunil Hadap

R&D Staff, PDI/DreamWorks

hadap@acm.org

Doctoral research at MIRALab, University of Geneva

Modeling Hair Dynamics
as Continuum

Modeling Hair Dynamics
as Continuum
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Hair Simulation 
Overview
Hair Simulation 
Overview

Task

M
o

d
e
ls

Previous AttemptsPrevious Attempts

Mainly explicit hair models or wisp 
models as they are intuitive and close 
to reality

• Mass-spring-hinge models
[Daldegan et al, Rosenblum et al]

• Simplified cantilever beam, one dimensional 
projective equation
[Anjyo et al, Lee et al]

• Wisp models
[Daldegan et al, Plante et al]
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Why a new model?Why a new model?

• Hair-hair and hair-air interactions were not 
addressed

• Stiffness dynamics of hair strand was grossly 
approximated

• There are great advancements in computing 
power of workstations since then

Our attemptOur attempt

• Hair-hair, hair-body and hair-air interactions
– fluid dynamics
– unified approach

• Elaborate stiffness dynamics of individual hair
– serial rigid multi-body system
– effective representation of bending and torsion
– no stiff equations
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Hair Medium - Solid 
Liquid Duality
Hair Medium - Solid 
Liquid Duality

•Solids have shape memory

•Liquids continue to deform under 
shearing stresses

•Hair exhibit both the properties

•Initial thinking…

•Long polymer fluid dynamics

•Cellular automata

Hair Medium - Solid 
Liquid Duality
Hair Medium - Solid 
Liquid Duality
We propose to …

Model hair-hair, hair-body, hair-air 
interactions as a continuum, more 
precisely fluid dynamics

Retain geometry of individual hair 
strand and its stiffness, inertial
dynamics

Notion of “hair medium”
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Fluid Dynamics of Hair 
– Physical Properties
Fluid Dynamics of Hair 
– Physical Properties
• Density

relates to number density of hair, rather than physical 
density of hair

• Pressure
ability to keep individual hair-strands apart

• Velocity

ρ

P

vr

Fluid Dynamics of Hair 
– Continuity Equation
Fluid Dynamics of Hair 
– Continuity Equation
Conservation of mass

Relative rate of change of density is equal to 
net negative out-flux

As hair-strands move apart, the density of hair 
medium drops

v
dt
d r

⋅−∇=
ρ

ρ
1
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Fluid Dynamics of Hair 
– Momentum Equation
Fluid Dynamics of Hair 
– Momentum Equation

Acceleration     will be such that

it will even out the pressure variation 

and there will always be a resistance to 

the motion                                                     

in the form of viscosity

bdFpv
dt
vd

+∇−∇⋅∇= )( r
r

υρ

dt
vdr

p∇−

)( vr∇⋅∇υ

Fluid Dynamics of Hair 
– Equation of State
Fluid Dynamics of Hair 
– Equation of State

• If hair volume is squeezed, it gives rise to 
pressure to keep individual hair apart

• Choice of 
• Alignment of hair defines power

• “Design” EOS to suit our needs

cK

n
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Fluid Dynamics of Hair 
– Hair-body 
Interactions

Fluid Dynamics of Hair 
– Hair-body 
Interactions
• No need to model collisions of individual hair 

strands with the body

• Model it in a unified way as flow boundary 
condition

– Flow tangency condition – fluid flow normal to the 
boundary is zero

– Flow slip condition – boundary exerts a viscous 
pressure

Single Hair – Stiffness 
and Inertial Dynamics
Single Hair – Stiffness 
and Inertial Dynamics
• We need to retain individual character of hair

Set of point masses connected by 
springs
n particles, 6n DOFs
Stiff equations, redundant DOFs
Inaccurate inertial dynamics
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Single Hair Dynamics –
avoid stiff equations
Single Hair Dynamics –
avoid stiff equations
• Consider thin cylinders instead of point 

masses

• Remove redundant 3n DOFs

• Constrained Dynamics
Express the system 6n DOFs and constrain the
3n DOFs

• Reduced Coordinate Formulation
Express the system in exact number of 3n DOFs,
i.e. 2n bending DOFs and n torsional DOFs

Single Hair Dynamics –
Rigid Multibody Serial 
Chain

Single Hair Dynamics –
Rigid Multibody Serial 
Chain

Reduced Coordinate Formulation is preferred

– Finally, system has fewer (3n) DOFs
– Simple topology
– Reduced coordinates directly facilitates parametric 

definition of bending and torsion
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Hair as Serial Rigid 
Multi-body Chain
Hair as Serial Rigid 
Multi-body Chain

• n segments of equal lengths, 
single un-branched open-loop 
chain

• Each link is connected to other 
by 3 DOF Spherical Joint

• Stiffness dynamics is 
introduced by joint actuation 
torques

• Inertial dynamics is computed 
using articulated rigid-body 
algorithm

Kinematic link between 
the two models 
Kinematic link between 
the two models 

• Imagine hair strands immerged 
in a thick fluid. The hair-hair 
interaction is captured by fluid 
dynamics.The fluid is allowed to 
move freely, it is rather glued 
to hair strands by a kinematic 
link.

• Eulerian vs Langrangian 
viewpoints

• We use Smoothed Particle 
Hydrodynamics

• We did not succeed using 
Lattice-Boltzmann equation
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Hair Strand Inertial 
and Stiffness Dynamics
Hair Strand Inertial 
and Stiffness Dynamics

ResultsResults
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ResultsResults

ResultsResults
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ResultsResults

Specific Contributions 
and Strengths
Specific Contributions 
and Strengths

Tasks

M
o

d
e
ls
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Limitations and Future 
Work
Limitations and Future 
Work
• Impulse dynamics

• Would want to explore mass-spring-hinge 
system using implicit numerical integration

• Formation hair clumps using condensation of 
hair medium

hairdancehairdance



7070

Modeling Hair-Hair
Interactions Using Sparse Guide 

Hairs

Modeling Hair-Hair
Interactions Using Sparse Guide 

Hairs

Yizhou Yu

Joint work with

Johnny Chang and Jingyi Jin

yyz@cs.uiuc.edu

Department of Computer Science

University of Illinois at Urbana-Champaign

Dynamic Hair 
Interactions
Dynamic Hair 
Interactions

• Hair-Hair Collision

– Volumetric Appearance

– Computationally Expensive for >100,000 Hairs

• Adhesive Forces due to Cosmetics,

Interweaving, Static Charges

– Hairstyle Recovery after Minor Movements

• Hairs are hard to stretch, and                              
interactions become obvious when they are 
sufficiently close.
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Hair Simulation Using Sparse 
Guide Hairs
Hair Simulation Using Sparse 
Guide Hairs
• Simulating Sparse Guide Hairs
– Single strand dynamics for each guide hair

– Simulating adhesive forces using static links

– Simulating hair-hair collisions using density modulate

triangle strips

• Dense Hair Simulation by Interpolation
– Hair interpolation happens at each frame.

– Fixed correspondences between dense hairs and guide

hairs to achieve temporal coherence

– Hair-object collisions are handled after interpolation for 
each individual strand.Simulating Sparse Guide H

Guide Hair ModelingGuide Hair Modeling

• Modeling hair flows with vector fields
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Video: Guide HairsVideo: Guide Hairs

Related Work on Hair 
Animation
Related Work on Hair 
Animation
• Single Strand Dynamics
– Mass-Spring-Hinge Model

[ Rosenblum et al. 91 ], [ Daldegan et. al. 93 ]

– Cantilever Beam

[ Anjyo et al. 92 ]

– Multi-body Open Chain

[ Hadap & Thalman 01 ]

• Hair-Hair Interactions
– Fluid-based Model

[ Hadap & Thalman 01 ]

– Wisp-based Model

[ Plante et al. 01 ]
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Hair StrandHair Strand
• Each hair strand is modeled as a rigid 

multibody open chain

• Forward Dynamics
– Featherstone’s algorithm or Lagrange’s equations for

generalized coordinates.

• Joint actuator force accounts for the bending 
and torsional rigidity of the strand.

– Deviation from the resting position results in a nonzero 
resisting actuator force.

• Hair-hair interactions are formulated as

external forces in addition to gravity.

Static LinksStatic Links

• Breakable elastic connections among      
nearby guide hairs

– Simulate the bonding effects formed when hair is in still

– Enhance hairstyle recovery after minor movements

• Static links enforce neighborhood 
configurations by exerting external forces 
onto the hair strands.
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Static Links as 
Positional Springs
Static Links as 
Positional Springs

• Introduce a local coordinate system to each 
segment of the hair strands.

• Transform points on the nearby strands to 
the segment’s local system and keep them as 
the reference points.

• Forces are generated to recover the original 
relative positions of these reference points.

Force from Static LinksForce from Static Links

• The accumulated force a segment receives 
due to static links can be formulated as

– ks is the spring constant kd is the damping constant, v is 
the time derivative of l, and

• A static link can be broken 

when its length change 

exceeds a threshold.
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Dynamic InteractionsDynamic Interactions

• Use of auxiliary triangle

strips to imagine the

space in between the set

of sparse guide hair

• Collisions between the

hair segments and the

triangle strips are

explicitly considered

Modeling Hair DensityModeling Hair Density

• Every face on a triangle strip is associated

with a density value which can be zero.
– The length of the triangle edges serves as the indicator

for the hair density on a strip.

– If a triangle becomes too elongated, its density is

labeled as zero.

• Hair strands are allowed to go through sparse 
or broken pieces of a triangle strip more 
easily.
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Modeling Collision 
Forces
Modeling Collision 
Forces
• Depending on the orientation of the

penetrating hair vertex and the triangular

face, the repelling spring force might vary

• Where a is the normalized tangential vector of 
the hair at the penetrating vertex, b is the 
interpolated hair orienation on the triangular 
face, λ is the scale factor

• The scale factor λ is adjusted according to the 
hair density.

Adaptive Hair 
Generation
Adaptive Hair 
Generation
• Generate additional

guide strands adaptively

on the fly to cover the

over interpolated regions
– Compare the distance

between two guide strands.

If the distance is too far, an

• Inserted guide hairs can

also be removed during

the simulation



7777

Hair InterpolationHair Interpolation

• Define a local coordinate system at each hair 
root

• Interpolate the transformed coordinates

translation translation + rotation

Random Curliness IRandom Curliness I

• Editing Hairs with an Offset Function
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Random Curliness IIRandom Curliness II

• Parametric Offset Function
–Variable magnitude + variable period

Examples of Curly 
/Wavy  Hair Models
Examples of Curly 
/Wavy  Hair Models
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Hair RenderingHair Rendering

Kajiya-Kay Illumination Model + Adjustable 
Translucency

Video: Braided HairVideo: Braided Hair
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Video: Long HairVideo: Long Hair

Video: Long HairVideo: Long Hair
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Video: BrushVideo: Brush

Conclusions Conclusions 

• Hair mutual interactions are indispensable 
for

realistic hair simulations.

• We use sparse guide hairs to produce hair

motion, and densely interpolated hairs for the

final appearance.

• We propose to use static links to simulate

adhesive forces and enhance hairstyle

recovery, and density modulated triangle

strips for hair-hair collisions.
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Hair microstructure and 
Illumination

Hair microstructure and 
Illumination

Steve Worley

Founder of Worley Laboratories 

Steve@worley.com

Algorithms for hardware 
accelerated Hair Rendering

Algorithms for hardware 
accelerated Hair Rendering

Tae-Yong Kim

tae@rhythm.com

Rhythm & Hues Studio

*formerly at the University of Southern California
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Cultural Heritage applications at 
MIRALab

Cultural Heritage applications at 
MIRALab

Prof. Nadia Magnenat-Thalmann

Thalmann@miralab.unige.ch

MIRALab – University of Geneva

Augmented life in 
Pompei
Augmented life in 
Pompei

• LIFEPLUS proposes 
new Augmented 
Reality narrative 
spaces for the 
innovative revival of 
life in ancient 
frescos-paintings in 
Pompeii

Lifeplus project(2002-2004)
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ObjectiveObjective

• The revival is based on 
real scenes captured on 
live video sequences 
augmented with real-time 
autonomous groups of 3D 
virtual fauna and flora

• a mobile AR on-site guide 
based on immersive
wearable computing

Xybernaut™ Poma Mobile Assistant

System Architecture 
and Content Database
System Architecture 
and Content Database

Camera

HMD

GPS

Fire Wire video signal

Digital 
Compass

VR audio

VR/AR Runtime Engine

3D rendering

3D sound

skeleton animation

skin deformation

cloth animtion
face animation

speech
hair animation

scenario player

video image buffer

video image blender

TRACK Runtime Engine 
vision based camera tracking

DGPS tracking

3D blue box geometry
3D scene geometry
virtual humans
clothes
hair 
plants
human animations
face animation
sounds
scenarios

real scene track features
multimedia site guide

network

camera
matrix

image
ID

AR video image (VR images composed with real images)
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Research in Clothes 
and Facial Animation
Research in Clothes 
and Facial Animation

• Real-time Cloth 
simulation

– Hybrid deformation

• Real-time Facial emotion 
expression and Speech 
animation

Research in Virtual Hair 
and Flora Simulation
Research in Virtual Hair 
and Flora Simulation

• Real-time Hair simulation

• Real-time plant simulation
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The Making of Ancient 
Hair Styles
The Making of Ancient 
Hair Styles
• References

From Antonio d’Ambrosio, WOMEN AND BEAUTY IN POMPEII, « L’Erma »

• From Pictures (drawing) to 3D model

The Making of Ancient 
Hair Styles
The Making of Ancient 
Hair Styles
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The Making of Ancient 
Hair Styles
The Making of Ancient 
Hair Styles

• From Mural to 3D models

Salvatore Nappo, Salvatore Nappo, 
POMPPOMPÉÉI, GrI, Grüündnd

The Making of Ancient 
Hair Styles
The Making of Ancient 
Hair Styles

• From Concept to 3D model

Character from LifePlus projectCharacter from LifePlus project
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Scenario 1, 
e.g. 

Thermopolio di 
Vetuzio Placido

Scenario 2,
e.g. La Casa dei 

Vettii 

Scenario 3,
e.g. La Villa dei 

Misteri

On-site studies 

Reconstruction Reconstruction 

Work in progressWork in progress
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Research in Humans 
Simulation
Research in Humans 
Simulation
• Real-time realistic 

skin rendering and 
interactive 
programmable 
shading module

• Artificial life 
methods for 
behavioural 
animation of 
virtual characters

movie

Humans in reconstructed 
environment
Humans in reconstructed 
environment



9090

Augmented Reality in 
ancient Pompeii
Augmented Reality in 
ancient Pompeii

movie

Early Mixed Realities simulations

Production Hair/Fur Pipeline at 
Imageworks

Production Hair/Fur Pipeline at 
Imageworks

Armin Bruderlin

Sony Pictures Imageworks

armin@imageworks.com
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Abstract

In this paper we summarize the technological advances in
hair simulation for computer graphics. There are mainly
three tasks in hair simulation - Hair Shape Modeling, Hair
Dynamics and Hair Rendering. Various models developed
for these tasks, fall mainly in the categories ofparticle sys-
tems, explicit hair models, cluster hair modelsand models
based onvolumetric textures. We discuss advantages and dis-
advantages of each of these approaches. We also introduce a
new hair shape modeling paradigm based on fluid flow. The
proposed method provides a sound basis for modeling hair-
body and hair-hair interaction.

Keywords: hair shape modeling, hair animation, hair ren-
dering, hypertexture

1 Introduction

One of the many challenges in simulating believable virtual
humans has been to produce realistic looking hair. The vir-
tual humans, two decades ago, were given polygonal hair
structure. Today, this is not acceptable. Realistic visual de-
piction of virtual humans has improved over the years. At-
tention has been given to all the details necessary for produc-
ing visually convincing virtual humans and many improve-
ments have been done to this effect.

On a scalp, human hair are typically 100,000 to 150,000
in number. Geometrically they are long thin curved cylinders
having varying thickness. The strands of hair can have any
degree of waviness from straight to curly. The hair color can
change from white to grey, red to brown, due to the pigmen-
tation, and have shininess. Thus, difficulties of simulating
hair stem from the huge number and geometric intricacies
of individual hair, complex interaction of light and shadow
among the hairs, the small scale of thickness of one hair com-
pared to the rendered image and intriguing hair to hair inter-
action while in motion. One can conceive three main aspects
in hair simulation - hair shape modeling, hair dynamics or
animation, and hair rendering. Often these aspects are in-
terconnected while processing hairs. Hair shape modeling
deals with exact or fake creation of thousands of individ-
ual hair - their geometry, density, distribution, and orienta-

∗Visiting from Department of Computer Science and Engineering, In-
dian Institute of Technology, Delhi, India. pkalra@cse.iitd.ernet.in

tion. Dynamics of hair addresses hair movement, their colli-
sion with other objects particularly relevant for long hair, and
self-collision of hair. The rendering of hair involves dealing
with hair color, shadow, specular highlights, varying degree
of transparency and anti-aliasing. Each of the aspects is a
topic of research.

Many research efforts have been done in hair simulation
research, some dealing only with one of the aspects of sim-
ulation -shape modeling, dynamics or rendering. Several re-
search efforts were inspired by the general problem of simu-
lation of natural phenomena such as grass, and trees. These
addressed a more limited problem of simulating of fur or
short hair. We divide hair simulation models into four cate-
gories depending upon the underlying technique involved:
particle systems, volumetric textures, explicit hair models
and cluster hair model. We discuss models presented by re-
searchers in each of these model categories and state their
contribution to the three aspects of hair simulation, i.e. hair
shape modeling, hair dynamics and hair rendering. We also
introduce a new hair shape modeling paradigm based on fluid
flow.

The paper is organized as follows. First we give the state
of the art in hair shape modeling. The hair shape modeling
research in each category of the simulation models is pre-
sented. Models for hair dynamics are briefly described in
Section 3. Section 4 presents the problem of hair render-
ing and the various solutions proposed by different people.
Finally, we summarize the effectiveness and limitations of
models in the four categories related to each aspect of hair
simulation in the form of a table. Some future avenues for
research in hair simulation are also outlined.

2 Hair Shape Modeling

Intricate hairstyle is indeed a consequence of physical prop-
erties of an individual hair and complex hair-hair and hair-
body interactions. As we will see in the next section, mod-
eling complex hair dynamics, that too at interactive speeds,
is currently impractical. For the reasons, it would be worth-
while to treathair shape modelingas a separate problem and
use some heuristic approach.

Early attempts of styling long hair were based onexplicit
hair models. In the explicit hair model, each hair strand
is considered for the shape and the dynamics. Daldegan



Figure 1: Hairstyling by defining a few curves in 3D

et al [5] proposed that the user could interactively define a
few characteristic hair strands in 3D and then populate the
hair style based on them. The user is provided with a flex-
ible graphical user interface to sketch a curve in 3D around
the scalp. A few parameters such as density, spread, jitter
and orientation control the process that duplicates the char-
acteristic hairs to form a hair style. Figure 1 illustrates the
method of defining few characteristic curves and resulting
hairstyles from the method. Similarly, even for the fur mod-
eling, Daldeganet al [4], Gelderet al [8] and Bruderlinet
al [1] took similar explicit hair modeling approach. Figure
12 illustrates a furry coat modeled by the explicit hair model.

Figure 2: Cluster Hair Model, by Yanet al

The explicit hair models are very intuitive and close to
reality. Unfortunately, they are tedious for hairstyling. Typ-
ically, it takes 5-10 hours to model a complex hair style, as
in figure 1, using the method in [5]. They are also numeri-
cally expensive for hair dynamics. These difficulties are par-
tially overcome by considering a bunch of hair instead of

individual hair in the case of the wisp/cluster models. This
assumption is quite valid as in reality. Due to effects of ad-
hesive/cohesive forces, hairs tend to form clumps. Watanabe
introduced the wisp modeled in [24, 25]. Yanet al [26] mod-
eled the wisps asgeneralized cylinders, see figure 2. One of
the contributions of the work was also in rendering of hair
using the blend of ray-tracing generalised cylinders and the
volumetric textures. The wisp model is also evident in [2].
Surprisingly, till now, the wisp models are only limited to
static hair shape modeling and we feel that it offers an inter-
esting research possibility of modeling hair dynamics, effi-
ciently. It would be interesting to model, how hair leave one
wisp and join the other under dynamics.

Figure 3: Fur as a Volumetric Texture, by Perlinet al

Nature exhibits some interesting fuzzy objects such as
clouds, fire, eroded rocks and fur for which it is hard to
have explicit geometric definition. Using the volumetric tex-
ture approach, fur can be modeled as a volumetric density
function. Perlinet al [18] introducedhypertextures, which
can model fur, see figure 3. Here, fur is modeled as intri-
cate density variations in a 3D space, which gives an illusion
of the fur like medium without defining geometry of each
and every fiber. The model is essentially an extension to
procedural solid texture synthesis evaluated through out the
region, instead of only in the surface. They demonstrated
that, combinations of simple analytical functions could de-
fine furry ball or furry donut. They further used 3D vector
valued noise and turbulence to perturb the 3D texture space.
This gave the natural looks to the otherwise even fur defined
by the hypertexture. A good discussion on the procedural ap-
proach to modeling volumetric texture and fur in particular
is in [7]. Hypertexture method by Perlinet al is only lim-
ited to geometries that can be analytically defined. Kajiyaet
al [12] extended this approach to have hypertextures tiled on
to complex geometry. They demonstrated this by modeling
a furry bear, see figure 10. They used a single solid texture
tile namely texel and mapped it repeatedly on the bear’s ge-
ometry. The texels automatically orient in the direction away
from the surface and thus one has fuzzy volumetric density
variation around the bear, which is the fur.



Figure 4: Hair as streamlines of a fluid flow

As evident from previous discussions, one of the strengths
of the explicit hair models is their intuitiveness and ability
to control the global shape of the hair. On the contrary, vol-
umetric textures give a nice way of interpreting complex-
ity in nature and they are rich in details. We notice that the
fluid flow has both the characteristics, which we would like
to exploit for hair shape modeling. We model hair shape
as streamlines of a fluid flow. For complete details of the
method, we refer to [10]. We choose the flow to be an
ideal flow. User can setup few ideal flow elements around
the body geometry to design a hairstyle, as shown in figure
2. The hair-body interaction is modeled usingsource panel
methodand hair-hair interaction is handled by the continuum
property of fluid. Thus user can design complex hairstyles
without worrying about hair-body and hair-hair interaction.
Hairstyles in figure 5 and 6 are the examples of modeling
hair as a fluid flow.

Figure 5: Hair as a fluid flow

Figure 6: Adding overall volumetric perturbations to the
fluid flow

3 Hair Dynamics

Bending Stiffness
Point Mass

Single Hair Fiber

Cantilever

Damping

Figure 7: Simple mass-spring system for an individual hair
dynamics

Anjyo et al[11], Rosenblumet al[22] and Kuriharaet al[23]
developed dynamic models that are issentialy based on in-
dividual hair. An individual hair is modeled as connected
rigid segments having bending stiffness at each joint. Then
the individual hair is solved for the movement due to the
inertial forces and the collision with the body. Though the
cantilever dynamics and collision avoidance with the body
of each hair is within the scope of current computing power,
modeling complex hair-to-hair interaction is still a challenge.
Figure 8 illustrates the effectiveness of the dynamic model
even though no hair-hair interaction is considered.



Figure 8: Hair animation using the explicit model, by Kuri-
haraet al

In the case of fur, which is mostly modeled as volumetric
texture, one cannot take the explicit model approach for the
animation. In this case, a time varying volume density func-
tion can facilitate animation of fur. One can simulate effects
of turbulent air on the fur using stochastic space perturbation
such as turbulence, noise, Brownian motion etc. Apart from
Lewis [15] and Perlin [17, 18], work by Dischler [6] gave a
generalized method for these animated shape perturbations.

4 Hair Rendering

In the field of virtual humans, hair presents one of the most
challenging rendering problems. The difficulties arise from
various reasons: large number of hair, detailed geometry of
individual hair and complex interaction of light and shadow
among the hairs and their small thickness. The rendering of
hair often suffers from the aliasing problem due to many in-
dividual hairs reflecting light and casting shadows on each
other contribute to the shading of each pixel. Further, con-
cerning display of hairs, we see not only individual hairs but
also a continuous image consisting of regions of hair color,
shadow, specular highlights, varying degree of transparency
and haloing under backlight conditions. The image, in spite
of the structural complexity, shows a definite pattern and tex-
ture in its aggregate form.

In the last decade, the hair-rendering problem has been
addressed by a number of researchers, in some cases with
considerable success. However, most cases work well in par-
ticular conditions and offer limited (or none) capabilities in
terms of dynamics or animation of hair. Much of the work
refers to a more limited problem of rendering fur, which also
has a lot in common with rendering natural phenomena such
as grass and trees. As follows we give the related work in
hair rendering focusing their salient features and limitations.

Particle systems introduced by Reeveset al [19], primar-
ily meant to model class of fuzzy objects such as fire. De-
spite particles small size -smaller than even a pixel- the par-
ticle manifests itself by the way it reflects light, casts shad-
ows, and occludes objects. Thus, the subpixel structure of
the particle needs to be represented only by a model that can

Figure 9: Hair as Connected Particle System, “The End” by
Alias—Wavefront

represent these properties. A particle system is rendered by
painting each particle in succession onto the frame buffer,
computing its contribution to the pixel and compositing it
to get the final color at the pixel. The technique has been
successfully used for rendering these fuzzy objects and inte-
grated in many commercial animation systems. Figure 9 is
an example of how one can use connected particle systems
for the modeling of hair. However, the technique has some
limitations for shadowing and self-shadowing. Much of it is
due to the inherent modeling using particle systems: simple
stochastic models are not adequate to represent the type of
order and orientation of hair. Also, it requires appropriate
lighting model to capture and control the hair length and ori-
entation. The specular highlights in particular owing to the
geometry of the individual strands are highly anisotropic.

Impressive results have been obtained for the more lim-
ited problem of rendering fur, which can be considered as
very short hair. As we have already discussed in the case of
hair shape modeling, Perlinet al [18] introduced hypertex-
tures that can model fur like objects. Hypertexture approach
remains limited to geometries that can be defined analyti-
cally. Kajiya and Kay extended this approach to use it on
the complex geometries. They used a single solid texture
tile namely texel. The idea of texels was inspired by the no-
tion of volume density used in [18]. A texel is a 3D texture
map where both the surface frame and lighting model pa-
rameters are embedded over a volume. Texels are a type of
model intermediate between a texture and a geometry. A
texel is however, not tied to the geometry of any particular
surface and thus makes the rendering time independent of
the geometric complexity of the surface that it extracts. The
results are demonstrated by rendering a teddy bear (figure
10). Texels are rendered using ray casting, in a manner sim-
ilar to that for volume densities using a suitable illumination
model. Kajiyaet al discusses more about the particular fur
illumination model and a general rendering method for ren-
dering volume densities. The rendering of volume densities
are also covered in great detail in the book by Eberet al [7].



Figure 10: Volumetric Texture rendering by Kajiyaet al

In another approach by Goldman [9], emphasis is given on
rendering visual characteristics of fur in cases where the hair
geometry is not visible at the final image resolution -object
being far away from the camera. A probabilistic rendering
algorithm, also referred to as fakefur algorithm is proposed.
In this model, the reflected light from individual hairs and
from the skin below is blended using the expectations of a
ray striking a hair in that area as the opacity factor.

Though the volumetric textures are quite suitable for ren-
dering furry objects or hair patches, rendering of long hair
using this approach does not seem obvious.

A brute force method to render hair is to model each indi-
vidual hair as curved cylinder and render each cylinder prim-
itive. The shear number of primitives modeling hair poses
serious problem to this approach. However, the explicit mod-
eling of hair has been used for different reasons employing
different types of primitives.

An early effort by Csuriet al [3] generated fur-like vol-
umes using polygons. Each hair was modeled as a single
triangle laid out on a surface and rendered using a Z-buffer
algorithm for hidden surface removal. Miller [16] produced
better results by modeling hair as pyramids consisting of tri-
angles. Oversampling was employed for anti-aliasing. These
techniques however, impose serious problems considering
reasonable number and size of hairs.

In an another approach, a hardware Z-buffer renderer was
used with Gouraud shading for rendering hair modeled as
connected segments of triangular prisms on a full human
head. However, the illumination model used was quite sim-
plistic and no effort was done to deal with the problem of
aliasing. LeBlancet al [14] proposed an approach of render-
ing hair using pixel blending and shadow buffers. This tech-
nique has been one of the most effective and practical hair
rendering approach. Though it could be applied for the vari-
ety of hairy and furry objects, one of the primary intention of
the approach was to be able to render realistic different styles
of human hairs. Hair rendering is done by mix of ray trac-
ing and drawing polyline premitives, with added module for

Figure 11: Rendering pipeline of the method-”Pixel Blend-
ing and Shadow Buffer”

the shadow buffer [20]. The rendering pipeline has the fol-
lowing steps: first the shadow of the scene is calculated for
each light source. Then, hair shadow buffer is computed for
each light source for the given hair style model; this is done
by drawing each hair segment into a Z-buffer and extract-
ing the depth map. The depth maps for the shadow buffers
for the scene and hair are composed giving a single com-
posite shadow buffer for each light source. The scene image
with its Z-buffer is generated using scene model and com-
posite shadow buffers. The hair segments are then drawn
as illuminated polylines [27] into the scene using Z-buffer
of scene for determining the visibility and the composite
shadow buffers for finding the shadows. Figure 11 shows
the process and Figure 12 gives final rendered image of a
hairstyle of a synthetic actor with a fur coat.

Figure 12: Fur using Explicit Hair Model

Special effects like rendering wet hair require change in
the shading model. Bruderlin [1] presented some simple
ways to account for the wetness of hair -changing the spec-
ularity. That is, hairs on the side of a clump facing the light
are brighter than hairs on a clump away from the light.

Kong and Nakajimaet al[13] presented an approach of us-
ing visible volume buffer to reduce the rendering time. The
volume buffer is a 3D cubical space defined by the user de-
pending upon the available memory and the resolution re-



quired. They consider hair model as combination coarse
background hair and detailed surface hair determined by the
distance from the viewpoint or the opacity value. The tech-
nique reduces considerably the rendering time, however, the
quality of results is not so impressive.

Figure 13: Braid rendered using generalized cylinders and
volumetric texture, by Yanet al

Yan et al [26] combine volumetric texture inside the ex-
plicit geometry of hair cluster defined as a generalized cylin-
der. Ray tracing is employed to get the boundaries of the
generalized cylinder and then the standard volume rendering
is applied along the ray to capture the characteristics of the
density function defined. This may be considered as a hybrid
approach for hair rendering.

5 Conclusion

Hair Modeling� Hair Animation� Hair Rendering�

effective
- tedious to model
- not suitable for
  knots and braids

adequate
- expensive due to size
- inappropriate for
  hair-hair interaction

fast
- inadequate for
  self-shadowing

Explicit Models�

Particle Systems�

Volumetric
Textures�

Cluster Model�

Hair as a Fluid�

inappropriate adhoc
- lacks physical basis
- no hair-hair interaction

effective
- lacks shadowing
  and self-shadowing

effective
-  not suitable for
   long hair

limited
- via Animated Shape
  Perturbation

effective
- expensive

effective
-  not suitable for
   simple smooth hair

not done
- via Animated Shape
  Perturbation

effective

effective
-  not suitable for
   knots and braids

not done not done

Figure 14: Comparison of the various hair models

In this paper we present the state of the art in hair sim-
ulation, one of the most challenging problem of virtual hu-

mans. We consider three aspects in hair simulation: hair
shape modeling, hair rendering and hair dynamics. Different
approaches have been proposed in the literature dealing with
one or more aspects of hair simulation. We divide them into
four categories based on the underlying technique: particle
systems, volumetric textures, explicit hair models and clus-
ter hair model. Some of these techniques are appropriate and
effective only for one of the aspects in hair simulation. In fig-
ure 14, we summarize their role with their effectiveness and
limitations for each aspect of the hair simulation. Notice that
we have introduced a new hair modeling paradigm - “Hair
as a Fluid”. We believe, this approach has good potential
in terms of hair shape modeling and hair dynamics, as the
methodology gives a basis for modeling complex hair-hair
interactions.

No, doubt research in hair simulation despite the inherent
difficulty of its size has been encouraging and shown remark-
able improvements over the years. People in general are not
ready to accept a bald digital actor or an animal without fur.
Such realism to computer graphics characters is also becom-
ing more widely available to the animators. Many of the
commercial software provide suitable solutions and plug ins
for creating hairy and furry characters. An article by Robert-
son [21] gives an overview of various techniques available
for animators.

However, the quest of realism increases after noticing
what one can already achieve. This asks to continue our
research for better solutions. Hair dynamics for instance
remains an area, where existing computing resources im-
pose constraints. It is still very far to imagine real time
hair blowing with full rendering and collisions. Hair dress-
ing and styling also require flexible and convenient modeling
paradigms. Fast and effective rendering methods for all hair
styles -short or long, in all conditions -dry or wet, modeling
all the optical properties of hair are still to be explored. So
there is still long way to go.
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In this talk, I will explain the details of the multiresolution hair modeling technique that 
was originally presented in SIGGRAPH 2002.  The paper introduced a constructive hair 
modeling system with which users can sculpt a wide variety of hairstyles.  In the 
multiresolution hair modeling (MHM) system, initial hair designs are quickly created with 
a small set of hair clusters.  Refinements at finer levels are achieved by subdividing these 
initial hair clusters.  Users can edit an evolving model at any level of detail, down to a 
single hair strand.  High level editing tools support curling, scaling, and copy/paste, 
enabling users to rapidly create widely varying hairstyles.   

Additional Materials 
1. Tae-Yong Kim and Ulrich Neumann, Interactive Multiresolution Hair Modeling and 
Editing, ACM SIGGRAPH Proceedings 2002 (reprinted in the course note). 
2. Tae-Yong Kim, Modeling, Rendering, and Animating Human Hair, Ph. D. Dissertation, 
University of Southern California, 2002 (available at http://graphics.usc.edu/~taeyong) 
3. Links to more papers on hair modeling can be found at 
http://graphics.usc.edu/~taeyong/Links.htm 
 
 



Modeling human hairModeling human hair

• Complex discontinuous volume
• Clusters and curliness
• Virtually any shape is possible
• Number of hair strands (100K 

to 200K)

• Complex discontinuous volume
• Clusters and curliness
• Virtually any shape is possible
• Number of hair strands (100K 

to 200K)

 
 
Modeling human hair such as the one shown in the photograph is known to be difficult for 
many reasons.  To mention a just few, human hair is inherently a complex discontinuous 
volume formed by clustering effects due to hair/hair interaction and styling artifacts such as 
curling.  Through hairstyling, a hair volume can be transformed to virtually any shape.  All 
these complexities become even worse if we consider the number of hair strands to deal 
with which typically ranges from 100,000 to 200,000 
  

To build an interactive system for modeling 
complex human hair in a reasonable amount of time 
( < 1 hour)

• Efficient sculpting of volumetric hair model
• Interactive rendering of arbitrary explicit hair 

models
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Our goal is to develop an interactive hair modeling system that allows the user to model 
complex human hair in a reasonable amount of time (say, in less than an hour).  We aim at 
developing tools with which the user can efficiently sculpt a wide variety of volumetric hair 
model.  We also want the user to be able to interactively edit hair models in a WYSIWYG 
fashion, by providing an interactive rendering capability for arbitrary hair models. 
 

GoalGoal

A multi-res hair 
model

A multiA multi--res res hair hair 
modelmodel photographphotographphotograph

 
 
In this example, we tried to create a hairstyle that looks similar to the hairstyle shown on 
the photograph on the right side. The model construction time was about an hour.  

 

Long hairs cluster, split, and curl awayLong hairs cluster, split, and curl away

Complex hairstyles with extreme discontinuity 
are difficult to model

Common ProblemsCommon Problems

 



What is missing in previous efforts in hair modeling is the ability to model complex 
discontinuous hairstyles as shown in these photographs.  Due to the hair/hair interaction 
and styling procedure, long hairs tend to form a cluster that can split and curl away from 
each other.  These types of complex hairstyles are difficult to model with existing 
techniques since most existing techniques rely on the assumption that the geometry of hair 
varies smoothly and coherently.  
 

Clustering effects occur at multiple scalesClustering effects occur at multiple scales

Multiresolution approach for hair 
modeling

MotivationMotivation

 
 
The multiresolution hair modeling technique was motivated by the observation that these 
discontinous clustering effects often occur at multiple scales.  When viewed from distance, 
a hairstyle appears to consist of a few big clusters.  But if we examine carefully, we can see 
that each big cluster consists of several smaller clusters.  The multiresolution concept has 
been used in many areas of computer graphics.  The idea is to use multiple levels of 
controls when we deal with complex objects, starting from global shapes down to small 
scale details.  We apply this idea to hair modeling. 
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We formulate a multiresolution framework for hair modeling as follows.  The user first 
designs the global shape of a hair model with a small number of generalized cylinder(GC)s.  
To add more details, the generalized cylinders are subdivided into smaller ones, 
constructing a hierarchical hair structure.  Multiresolution editing tools are applied for 
editing an evolving hair model at any level of detail.  Copy and paste operations transfer 
details from any portion of the hair model to another.  With these tools, our hope is to 
provide the user a necessary engine to model and capture the structural aspects of complex 
volumetric hairstyles.  Our system is a constructive hair modeling system where the user 
starts from scratch with a specific head model 
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For each head mesh, we define a parametric surface that we call a scalp surface.  The scalp 
surface defines the region on the head where the user can place hairs. 

 

Scalp space editorScalp space editor

Scalp SurfaceScalp Surface

u
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The parametric space of the scalp surface is mapped to a 2D editor that we call a scalp 
space editor. 

Atlas for hair cluster positioning

Scalp SurfaceScalp Surface

 
 
This 2D scalp space forms an atlas where the user can specify the root position of each hair 
cluster. Once the user places a contour on the scalp, a generalized cylinder is created and 
the user can control a group of hairs by manipulating this generalized cylinder. 



Generalized Cylinder (GC)Generalized Cylinder (GC)Generalized Cylinder (GC)

 
 
Once a generalized cylinder is defined, we can place hairs within its boundary.  
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We represent a generalized cylinder (GC) as combination of four components – skeleton 
curves, contours, scale and twist terms.  The equation of the GC is shown in the slide. 
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A parametric skeleton curve defines the overall shape of the GC.  We use a Catmull-Rom 
Spline curve to represent the skeleton curve C(t). 
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Contour functions R(θ,t) are placed along the skeleton curve and define the boundary of the 
generalized cylinder 
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And the two auxiliary functions (scale, and twist) are used. 
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Here is an example of editing those components.  In this example, the user changes the 
scaling term to fatten the hair cluster. 
 

{ })()()ˆsin()()()ˆcos(),()(),,( tBtStNtStrRtCtrV BN

rr
θθθθ ++=

Twist ChangeTwist Change

 
 
And in this example, the user curls a hair cluster by changing the twist term. 
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The details that can be modeled through a single generalized cylinder are limited by a few 
parameters that we saw (contours, twist, and scale functions).  To add more details to the 
model, one can simply increase the number of GCs.  But, doing so will also increase the 
number of controls that the user has to deal with. 
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For more efficient control, we subdivide a GC, the parent, into several smaller ones.  Using 
the parent-children relationship, we provide a hierarchical control over the hair model.  



Editing a child GC changes the shape of hair strands that are controlled by this GC.  On the 
other hand, editing a parent GC changes the shape of its children, consequently changing 
the shape of hair strands, in a hierarchical manner. 

 
 

• Subdivision allows more refined controls to the hair 
model down to a hair strand
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The parent-children relationship between clusters is stored in a tree structure that we call a 
hair tree.  The entire hair model consists of a small number of top-level generalized 
cylinders and a large number of smaller GCs that stem from them.  At the bottom of the 
hierarchy, each hair strand is controlled by these GCs.  The user can subdivide a hair cluster 
repeatedly until the control over the desired level of detail is achieved. 
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To subdivide a generalized cylinder, we need to create the skeleton curves, contour 
functions and other parameters of each child GC. 
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The skeleton curve of each child GC is created using the generalized cylinder equation of 
the parent.   
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The contour functions of child GCs are first copied from the parent and scaled down and 
placed randomly inside the contour of parent GC.  The positions of these contours are then 
evenly redistributed through a position relaxation step. 
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Since we allow arbitrarily shaped contours, these contours can overlap and leave holes 
between the boundaries of GCs.  If we generate hair strands independently inside each GC, 
this can result in visually distracting hair density variation in the overlapping regions 

 

• Hair strand generation•• Hair strand generationHair strand generation
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Consistent hair density

 
 
To avoid this problem, we first uniformly sample the root position of hairs and then assign 
each hair strand to GCs.  In the image on the left side, the root position of each hair strand 
on the scalp is drawn as colored dot.  Colors indicate the GCs that controls the hair strands. 
This way, we can maintain consistent hair densities across the entire scalp.  A pseudo-code 
to find the ‘owner’ GC of a hair strand is shown below. 

 

 

function FINDOWNEROFAHAIRSTRAND (HairStrand H) 
O  NULL ,  C  first root cluster,  done  FALSE 
while (!done and C != NULL) do  
    done  TRUE 
    forall {S | S is a sibling of C or C itself } do 
        CHECKFORINCLUSION(H,S) 
         if S contains H and its center is closer to H than O   
              O  S 
             done  FALSE 
    if (!done) 
        C  O.FIRSTCHILD 
if (O is not a leaf cluster)  
    forall { L | L is a descendent of O and a leaf node } do 
        if L’s center is closer to H than O   
              O  L 
return O            
 



Multiresolution Editing Multiresolution Editing 

 
 

Now we show an example of the user editing a hair model using the hierarchical control. 
Note that the details are preserved while a parent cluster is edited. 
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We perform the multiresolution editing operations in two steps.  Whenever the user selects 
and edits a GC, we perform a bind operation that attaches its child nodes to the edited 



parent.  During editing, we update the skeleton curves of its children using the GC equation 
of the parent. 

 

•Bind: P = V(r,θ,t)
(r,θ,t)=V-1(P) 

{ })()()ˆsin()()()ˆcos(),()(),,( tBtStNtStrRtCtrV BN

rr
θθθθ ++=

•Update: P’ = V’(r,θ,t)

V(r,θ,t) V’(r,θ,t)

Multiresolution EditingMultiresolution Editing

 
 
The bind procedure is the inverse transform of the GC equation.  For each control point of 
the skeleton curve of each child, we compute the parametric coordinate r, θ and t of the GC 
equation.  Whenever a parent GC changes by the user, we update the skeleton curves of 
child GCs with the precomputed parametric coordinates.  Details of the binding operations 
can be found in the reprinted paper. 
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The bind and update process can be also used to transfer a style from one cluster to another 
cluster. 
 

V1 V2

(r,θ,t)=V1
-1(P)

Copy and PasteCopy and Paste

 
 

In this case, the parametric coordinates of child clusters of the source model are first 
computed using the bind operation as before 
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But this time, new child clusters are added to the target model and their skeleton curves are 
generated using the parametric coordinates computed in the bind operation. 
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Using the hierarchy of the hair tree, the copy and paste operation can be performed at any 
level of detail.  For example, if a highest level GC is copied, we can recursively copy all the 
children GCs too.  The braid model shown above was created by copying a single braid 
model at three different levels of details. 
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Now we will go through an example hairstyling process.  First, the user designs the overall 
shape of a hair model with about 20 generalized cylinders. 
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One hair cluster is subdivided and edited to be curly 
 

 
 

Copy and pasteCopy and paste
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This curly cluster is copied onto all the other clusters on the sides. 
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The bang hair cluster is subdivided and the model is further refined 
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The example we saw in the beginning of this note was created with similar modeling steps. 
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This model consists of about a thousand generalized cylinders, hierarchically defined at 4 
levels of details.  At the bottom of the hierarchy, we created about twenty thousand hair 
strands.   
 

•Each hair strand is drawn as OpenGL lines.

•Integrated rendering system with OpenGL 
hardware

•Instant feedback for WYSIWYG hair 
modeling
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geometry during modeling
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Virtually, the shape of any hair strand can be explicitly modeled through the hierarchical 
control described so far.  Since the geometry is explicitly maintained, our model can be 



rendered with any existing hair renderer.  We want the hair renderer to be as fast as possible, 
to provide the user an instant visual feedback during modeling.  To facilitate interactive 
viewing during modeling, we use integrated hair rendering algorithms that exploit existing 
openGL hardware as much as possible.  For more details of these hair rendering algorithms, 
see the note ‘algorithms for hardware accelerated hair rendering’ in this course. 

 

High complexity model 
1.2M lines

20000 strands, 60 lines / 
strand, a = 0.3

Low complexity model 
(100K lines)

5000 strands, 20 lines / 
strand, a = 1.0

Level of DetailLevel of DetailLevel of Detail

 
 

Using a low complexity model can increase the interactivity for distant viewing while a 
high complexity model can be used for a high quality renderer.  The overall look of the 
model is similar since the ‘structure’ of the hair model is kept separate in the hierarchical 
control. 

 

Level of DetailLevel of DetailLevel of Detail

High complexity model
(1.2M lines)

Low complexity model
(100K lines)

 



Below are example hair models that were created with the multiresolution hair modeling 
system.  The same face model was used throughout these examples.  Note how a hairstyle 
can change the impression and look on the same face model. 
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See how a hairstyle changes the 
look on the same face model!

See how a hairstyle changes the See how a hairstyle changes the 
look on the same face model!look on the same face model!

 



Hair Shape as Streamlines of Fluid Flow

Sunil Hadap∗
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Figure 1: Intricate Hairstyle from “399 Great Hairstyles”

In the past two decades, there have been many advances in shape modeling, dynamics and rendering of general
class of fuzzy objects – fur, hair, grass and particle systems [Gelder and Wilhelms 1997; Goldman 1997; Neyret 1998;
Reeves 1983]. However, shape modeling of (especially long styled) hair remains an ever challenging problem. Hair
shape needs a special attention because it has enormous geometric complexity at hair strand level. Yet, overall there
seems to be a definite inherent simplicity and order, observe Figure 1. “399 Great Hairstyles” [Rudiger et al. 1998]
is an exhaustive visual reference of various beautiful hairstyles.

For the complete discussion on the State-of-the-Art in Hair Simulation, we refer to [Magnenat-Thalmann et al.
2000; Hadap 2003]. In this section we take a quick recap. There are three main hair simulation tasks – shape
modeling, animation and rendering. Each of these tasks can be associated with two broad model categories – explicit
hair models [Daldegan et al. 1993; Anjyo et al. 1992; LeBlanc et al. 1991; Rosenblum et al. 1991] and volumetric
textures [Neyret 1998; Kajiya and Kay 1989; Lewis 1989; Perlin and Hoffert 1989]. In the explicit hair models,
each hair strand is considered for shape and dynamics. Daldegan et al [Daldegan et al. 1993] proposed that one
could define a few characteristic hair strands and then populate the hair based on them. Similarly, Anjyo et al
[Anjyo et al. 1992] developed a dynamic model that is based on individual hair strand. Though these models are
intuitive and close to reality, they are tedious for shape modeling and numerically expensive for hair dynamics. These
difficulties are partially overcome by considering a bunch of hair instead of individual hair strands in the case of the
wisp models [Chen et al. 1999; Watanabe and Suenaga 1989; Watanabe and Suenaga 1992; Yang et al. 1999]. In
the volumetric texture approach, hair is modeled as a volumetric density function [Kajiya and Kay 1989; Perlin and
Hoffert 1989]. Though these models are extremely powerful, one does not have an explicit control over its global
shape, they are not intuitive, and they do not represent physical reality. Thus, they are only effective in modeling
short hair such as fur. Interestingly, Ebert et al [Ebert et al. 1994] introduced a method which enables the global
shape control of the volumetric texture. We would like to propose a method in the same spirit.

∗hadap@acm.org, This work is done at MIRALab, University of Geneva towards completion of PhD
†thalmann@miralab.unige.ch
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Figure 2: Illuminated Streamlines of Fluid Flow

The strengths of the explicit hair models are their intuitiveness and their ability to control the global hair shape,
which are particularly important in the case of modeling long hair. On the contrary, the volumetric textures give
a nice way of interpreting complexity in nature and they are rich in local details. We notice that the fluid flow
has both the characteristics, which we would like to exploit for hair shape modeling. Some of the flow visualization
images [Cabral and Leedom 1993; Zockler et al. 1996] (except for the choice of the colors) also suggest that there are
similarities between hair shape and fluid flow, see Figure 2. Hence we develop a hair shape modeling method based
on a fluid flow.

In this chapter, we present a novel virtual hairstyling method. The method draws on similarities between static
hair shape and snapshots of fluid flow around an obstacle. Accordingly, the hair shape is modeled as streamlines of a
fluid flow. The model offers an ability to control “overall” hair shape around the head. At the same time, it gives a
possibility of modeling rich “details” such as waves and curls. Moreover, the continuum property of fluid flow gives a
sound heuristics for modeling complex hair-hair interaction while hairstyling. The model leads to the development of
a fast, intuitive and easy-to-use hair styler. A designer can create intricate hairstyles quickly, without worrying about
hair-body and hair-hair interactions. However, as it will be discussed in the concluding section, one needs to develop
an insight into the use of the modeling paradigm. The following section dwells on the similarities of hair shape and
fluid flow. We choose ideal flow as a fluid model and in Section 2, we develop the hair shape modeling method based
on ideal flow. Section 3 describes the implementation issues and extends the methodology to a practical hair shape
modeler. Fluid definition being volumetric in nature, we can use many of the volumetric texture techniques to add
realism. Section 4 discusses about enhancing realism.

1 Hair and Streamlines of Fluid Flow

Figure 3: Modeling Hair as Streamlines of a Fluid Flow

Hair has many properties that are similar to a fluid flow. The comparison is only limited to static hair shape with
the snapshot of a fluid flow, rather than comparing their dynamics. Figure 3 illustrates how we can think of hair as
selective streamlines of a well set up fluid flow. Probably the first thing to notice is that the long hair has an overall
tendency to go down under gravitational influence. This is similar to the free stream flow condition [Anderson 1991]
– flow away from an obstacle has a constant velocity, downward in this case.

The hair-hair interaction is too prominent an issue to be ignored. Consequently, though hair is thin in geometry,
collectively it has a volume. Hair strands tend to keep themselves apart and almost keep themeselves parallel
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with respect to their neighbors. The hair-hair interaction is very similar to the continuum property of fluid – no
two streamlines of a fluid flow intersect, however close they may get, with an exception of flow singularities. This
observation is significant and gives sound heuristics to hair-hair interaction phenomenon.

Further, hair-body collision avoidance is the same as a flow around an obstacle. Flow component normal to an
obstacle boundary is zero as the flow does not penetrate the obstacle. As depicted in Figure 3, near the neck and
the shoulder, the hair follows a similar pattern. It is tangential to the body except from where it originates, e.g. on
the scalp.

Hair strand tends to stand out on the scalp as it originates. This situation is different from the hair-body collision
avoidance. In the flow context, we can visualize it as a secondary flow forcefully oozing out from within an obstacle
boundary that is having fine holes. So the velocity component normal to the boundary is non-zero and constant.
Greater the normal velocity component, more the streamlines will stand out.

Apart from this, hair shape has some other similarities with fluid flow such as hair curls being analogous to
vorticity and hair waviness being analogous to the turbulence in the flow. Even the hair parting line appears as the
flow stagnation point [Anderson 1991] in a flow around an obstacle. Observe in Figure 3 how the streamlines follow
opposite directions at the stagnation point that is the top of the scalp.

In spite of the similarities discussed above, we would stress that, hair is not precisely like a fluid flow. For example,
hair tends to form clumps, which is not true in the case of flow streamlines. In fact, some hair care products try to
bring more streamline like order to one’s hair, by reducing the clumpiness. Furthermore, though overall hair shape
follows a fluid flow like structure, individual hair strand has perturbations as they “flow” and may even completely
break away from the flow to become a stray hair strand. Section 5 discusses these issues in more details. First, in
the next section, we develop a hair shape model based on the observations made so far.

2 Hair Shape Model

Choice of the fluid model for the purpose of modeling hair can be debatable. As we try to equate only a snapshot of
fluid flow to hair, the natural choice would be to consider a stable flow. Stable flow is the flow that does not change
over time. A good example of this kind of flow is the flow around a thin body in a very stable wind tunnel. We
further choose the flow to be ideal flow [Wejchert and Haumann 1991] which is inviscid, hence stable, irrotational
and incompressible. We find that this model is simple, fast and adequate. The ideal flow is governed by the following
Laplace equation

∇2Φ = 0
~V = ~∇Φ (1)

where ~V is the velocity of the flow, a gradient of a scalar potential Φ.
As the equation 1 is a linear partial differential equation, the sum of the particular solutions is also a solution of

the equation. There are a few interesting particular solutions that we would like to utilize.

Stream Sorce Vortex

Figure 4: Ideal Flow Elements

Figure 4 illustrates these solutions of Laplace equation – the ideal flow elements. We briefly discuss them, and
give an analytic formula for the velocity field induced by each element. For the detailed discussion on the ideal flow
elements we refer to [Anderson 1991; Wejchert and Haumann 1991].

2.1 Stream

The velocity ~Vstream at any point p̄ due to a stream is given by

~Vstream(p̄) = Γr̂ (2)
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where Γ is the strength of the stream and r̂ is the unit vector in the direction of the stream. Thus the stream induces
a constant velocity throughout the flow.

2.2 Source

The velocity ~Vsource at any point p̄ due to a source of strength Γ is given by

~Vsource(p̄) = Γ
r̂

4πr2
(3)

where r̂ is unit vector in the direction from the source location to the point p̄. r is the distance between the source
location and the point p̄. Thus, the magnitude of the velocity follows an inverse square law and is always pointed
away from the position of the source. The source essentially emits the flow from its position, whereas the negative
source, also called as sink, sucks the flow towards its position point.

2.3 Vortex

A vortex swirls the flow around its position. The vortex for our purpose is actually a 3D vortex filament defined by
the points p̄1 and p̄2 as shown in Figure 5.

r
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p

p
2

p
1

r

r

1

2

Figure 5: 3D Vortex Filament

The velocity ~Vvortex induced at point p̄ by such a vortex filament [Ling et al. 1996] is given by

~r1 = p̄− p̄1

~r2 = p̄− p̄2

~r0 = p̄2 − p̄1

~Vvortex(p̄) = Γ
(~r0 · ~r1/ |~r1| −~r0 · ~r2/ |~r2|)

4π |~r1×~r2|2
~r1×~r2 (4)

where Γ is the strength of the vortex.
There are few other interesting ideal flow elements such as source-sink pair i.e. doublet and horse-shoe vortex.

However, these can be realized by using combination of the basic ideal flow elements.

Figure 6: Linear Combination of Ideal Flow Elements
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Figure 6 illustrates a typical complex flow by combination of the flow elements. Let the velocity induced at a point
p̄ in the flow by a user defined ideal flow element be ~Vuser(p̄). Thus the linear combination of flow elements is given
by

~V (p̄) =
∑

~Vuser(p̄) (5)

We propose to model hair as streamlines of such a complex flow setup. Though there are numerous possibilities
for the user to combine these elements, in order to get close to a hair shape we would design a flow setup taking
the observations stated in Section 1 into consideration. First we put a stream to give the flow an overall downward
direction.Then we may place a few other elements such as a source and a vortex as shown in figure 3. Note that the
hair-hair interaction, is intrinsic to the fluid flow property hence it is always ensured. The streamlines are almost
parallel and they never cross each other.

Figure 7: Placing Number of Sources under the Boundary

As depicted in Figure 7, a source in the flow has a property of generating an obstacle to the flow. Still, as shown
in the figure, the streamlines penetrates the body. Inserting few more sources into the flow to achieve the obstacle
avoidance is arbitrarily difficult. Instead, we setup a small number of sources along the the boundary to ensure
that the flow does not penetrate the body. We find this setup to be adequate for the obstacle avoidance and allows
fast interaction with the flow. Consider the obstacle, the body, placed in the flow field as shown in Figure 7. Let
us approximate the boundary by descritizing it into a number of planar segments, namely panels. There are many
variations of the method based on the choice of flow elements to be placed at each panel center. We choose simple
source panel method [Anderson 1991; Ling et al. 1996]. We place one source per panel, slightly away from the center
of the panel along the inward normal. Note that the source has a singularity at its center. The user can vary the
panel source offset to achieve desired numerical accuracy. If the user places the source far away from the panel, the
obstacle avoidance will not be accurate. However, if the user place the panel too close to the panel, she will induces
large numerical inaccuracy because of the flow singularity. Also the gap between the two sources will allow some of
the streamlines to escape into the boundary.

The panel source strengths are unknown. For N such panels, let the source strengths be λ1, λ2, . . . , λN . We
incorporate the panel sources into the equation 5.

~V (p̄) =
∑

~Vuser(p̄) +
N∑

j=1

λj
~Sj(p̄) (6)

where ~Sj(p̄) is velocity induced by a unit source positioned near the panel j and is given by Equation 3. In order to
solve for these unknown strengths, let us sample the flow at N panel centers and set up a boundary condition. The
velocity at the ith panel center p̄i is

~V (p̄i) =
∑

~Vuser(p̄i) +
N∑

j=1

λj
~Sj(p̄i) (7)
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Figure 8: Source Panel Method for Obstacle Avoidance

For an inviscid flow, the velocity at the boundary can be non-zero. However, the velocity vector must be tangent
to the surface, as the flow cannot penetrate the boundary surface. This ensures that the streamline will be parallel
to the boundary surface. This is the typical situation of long hair rolling over the neck and shoulders. However, as
stated in Section 1, we would also like to accommodate the cases where the streamline should ooze out from the
boundary, just like the hair originating from the scalp. Both the cases are addressed by stating the wall boundary
condition in terms of the velocity component normal to the boundary. If n̂i is unit normal to the boundary surface
at panel center i the wall boundary condition is

~V (p̄i) · n̂i = bi

(
∑

~Vuser(p̄i) +
N∑

j=1

λj
~Sj(p̄i)) · n̂i = bi

N∑
j=1

((~Sj(p̄i) · n̂i)λj) = bi − (
∑

~Vuser(p̄i)) · n̂i (8)

N∑
j=1

S(i, j)λj = bi − (
∑

~Vuser(p̄i)) · n̂i (9)

where bi is the user specified magnitude of the normal velocity.

In Equation 9, the quantity ~Sj(p̄i) · n̂i represents the velocity induced by a unit panel source near jth panel on
the center of the ith panel. This is constant for a given geometry and a particular setup of the panel sources for
that geometry. We call it the flow boundary form and denote it by S(i, j). To solve the system of linear equation
(Equation 9), in N unknowns (λj), we use LU decomposition followed by a back substitution. For a given constant
flow boundary form matrix and its LU decomposition the computation takes of the order of minute. However, once
the LU decomposed boundary form matrix is computed, one can quickly get a set of λj for the boundary condition
bi and variation of the complex user flow setup by back-substitution. This is particularly important for fast user
interaction.

Figure 8 shows how the streamlines avoid the obstacle after setting appropriate panel source strengths. There are
new streamlines standing out from the scalp as a result of the non-zero normal velocity specified on the scalp region.
Elsewhere the streamlines go parallel to the body. By selecting the appropriate streamlines (the ones which ooze out
from the scalp) we thus have a hairstyle, as shown in Figure 9.
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Figure 9: Hair as Streamlines of Fluid Flow

We carry out hair rendering by drawing individual hair strands. Even the dynamic hair model, discussed in the
chapter – “Modeling Dynamic Hair as a Continuum”, is based on the explicit hair model. This requires that we
compute a large number of streamlines. We approximate a streamline by a polyline and we compute it by space
marching the velocity field using small constant steps. Typically, we use 20,000 to 50,000 hair strands. Observing
Equation 7, computation of velocity at each point, as we compute the streamline, involves the contribution of a large
number of panel sources. We typically use 1000 to 2000 panels. This is numerically expensive considering a few ten
thousand hair strands to be computed. To address this problem, we use subdivision scheme for fluid flow introduced
recently [Weimer and Warren 1999]. The user defines a basic flow resolution as shown in Figure 10. We compute the
flow field at each point of the coarse grid. We then use the subdivision flow in order to compute the flow at any point
in the field. Thus we have reduced the computation of the flow at any point, resulting from a large fluid elements,
to the computation of contributions by only few neighboring points on the coarse grid. For the detailed discussion
on the subdivision flow we refer to [Weimer and Warren 1999].

Figure 10: Subdivision Scheme for Ideal Flow

3 Interactive Hair Styler

Figure 11: Polygon Reduced Geometry to Define Panels
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In this section, we describe an interactive hair styler based on the theme “hair as a fluid flow”. Here we only give a
brief overview of the user interface to put the theory in perspective. For the complete details of the implementation,
we refer to [Hadap 2003].

As described in Section 2, the flow computation with an boundary is done by the source panel method, which
involves solving of a large, fully dense system of linear equations. To keep the computation within acceptable limits,
the user starts modeling hair on a coarse mesh model as shown in Figure 11. It should be noted that the choice of a
structured mesh is not a requirement for the method.

Figure 12: Hair Growth Map and Normal Velocity Map

The user then defines the overall hair density and paints the hair growth map directly on the model, as shown in
Figure 12. The hair growth values can be varied smoothly by using pressure on the pressure sensitive stylus. From
the density function in the form of the hair growth map, the placement of individual hair strand is pre-computed.
In the white regions of the growth map, the hair number density will be equal to the overall hair density specified by
the user. Whereas, in the gray regions it will be somewhat lower. In the black regions, there will be no hair. Once
the hair growth map is defined, we use the Poisson-disc distribution to populate the hair roots. The Poisson-disk
distribution is a random pattern that satisfies the Poisson-disk criterion – no two samples are closer together than
some distance rp.

Figure 13: Distributing Hair on the scalp

Figure 13 shows a random distribution on the left. The random distribution results into a non-uniform placement
of hair roots, where some hair roots get too close to each. Whereas, the Poisson-disc distribution, shown on the
right in Figure 13 eliminates this defect by maintaining a minimum distance between any two hair roots, thus giving
a more regular distribution. This distribution is close to what is observed on real scalp. In order to achieve the
Poisson-disk distribution we first create a random distribution according to the hair growth map. Then we use a
relaxation strategy described in the classic work by Don Mitchell’s [Mitchell 1987] to smooth out the ill-placed hair
roots. For further practical details on achieving Poisson-disk Distribution we refer to [Glassner 1995]. We then
populate streamlines emerging from these hair roots to realize hairstyle. This will be discussed subsequently.

In order to place the sources corresponding to each panel, the user defines the panel source offset along the inward
normal of the panel. Figure 12 shows the typical 3D configuration of panel sources. The user can finalize the source
panel setup after visual examination. She has to take care that no two panel sources come close to each other to avoid
the singularity. Upon acceptance, the flow boundary form is computed along with its LU decomposition as explained
in Section 2. This typically takes around a minute for one thousand panels (on Pentium II 400MHz, 512MB RAM).
As the geometry of the face remains constant throughout the hairstyling, this needs to be computed only once as
long as the source panel setup does not change.
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Figure 14: Placement of Panel Sources

To define the boundary condition of the flow described in Section 2, the user now paints the normal velocity map.
During this, the hair growth map is also presented for visual feedback along with the display of normal velocity map
being painted. The user will define zero normal velocity everywhere except for the scalp regions, from where the
hair originates. She can control how the hair will stand out from the scalp by varying the magnitude of the normal
velocity. Figure 14 shows the painted normal velocity map. The user even can paint negative velocity map, typically
in the neck region. This would make hair curl-in towards the neck.

Further, the user is provided with 3D ideal flow elements – streams, sources and vortices. She can interactively
place them around the model to define a hairstyle. After the user places a stream (the first fluid element in the
hairstyle) in a downward direction to define the overall direction of the hair, a few hair strands are displayed for the
interaction as shown in Figure 15a. The user can adjust the overall length of the hair. One can use a source from
the toolbox and place it in front of the face to turn the hair away from the face as shown in Figure 15b. The other
alternative is to trim hair on the face by using a trimming tool as shown in Figure 15c.

Figure 15: Simple Hairstyles using few Fluid Elements

The overall hair length along with the hair length map defines the length of individual hair strands. For deciding
the hair length map, which defines the length of each streamline, the user is provided with a trim tool. Though the
definition of the hair length map is similar to that of the hair growth map, it is not intuitive to paint the length map
on the scalp as in the case of the hair growth map. Instead, the user takes any polygonal geometry, after adjusting it
appropriately cutting across the displayed hair, she can trim the hair. The hair length map is recalculated by tracing
back the streamlines, from the point of intersection with the trim tool.

The user can then place a few other fluid elements, mostly vortices, to add further details to the hairstyle. For
every change in the flow setup and for the change in boundary condition, the source panel strengths are evaluated
using the LU decomposed flow form factor. The effects of placing or moving the flow elements are computed in
about a second. The computation speed does not permit the user to interact with the flow in real -time. However,
this interactivity and only a few flow elements are sufficient to model a complex hairstyle. Figure 15d illustrates a
hairstyle which is designed using only 5 fluid elements, 1 stream (not in the frame), 2 sources and 2 vortices. The
user can also adjust the boundary velocity map to change the hairstyle appearance. Figure 15c is typical example of
using negative boundary velocity value to curl-in hair towards the neck.

We present some illustrative hairstyles. Figure 16 is a simple but very realistic hairstyle obtained merely by two
flow elements – one stream in the downward direction and one source to turn away the hair from the face (not
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Figure 16: Hairstyles Involving with Simple Fluid Elements

visible). This set of hairstyle show the strength of the model in obtaining convincing hairstyle even with minimum
effort.

Figure 17: Hairstyles Involving Large Curls

Hairstyles in Figure 17 are result of setting up a complex ideal flow. Observe intricate large scale curls introduced
by the vortices in the flow. Typically, the initial design of a basic hair style takes around an hour or two. It will take
longer time to create a complex hairstyle depending upon the desired complexity.

4 Enhancing Realism

So far we have discussed the basic model for hairstyling using the fluid flow elements. As depicted by the hairstyle in
Figures 16 and 17, the modeling of hair as streamlines of fluid flow followed by appropriate rendering scheme, gives
results close to reality. Nevertheless, we try to break away from the theme and introduce variations inspired from
the volumetric textures [Lewis 1989; Neyret 1998; Perlin and Hoffert 1989]. This will further add realism to hair. As
explained in the Section 1, it is desirable to avoid the synthetic look of the hair, which is the result of a strict order
of the individual streamlines. For this, we add an empirical model. The user defines a volumetric function such as
noise and turbulence to define a volumetric perturbation to the fluid flow. A wide range of out-of-box volumetric
textures such as fractals, waves, turbulence and noise are available for the purpose. However, we choose mainly
two ways of adding perturbations to the synthetic uniformity – waviness and noise. In the case of waviness there is
some underlying structure, whereas the noise is simply random but controlled variation. The straightforward way of
achieving the perturbation is to define a function that adds the perturbation on top of the pre-computed individual
hair strand shape obtained by the fluid flow setup. Following would be the list of parameters of such a function

1. The location where the hair strand originates from scalp
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2. The length wise parameter of the hair strand from root to tip

3. The proximity of the hair strand with respect to its neighbors. After all, even though the perturbations are
applied on per hair strand basis, there should be some inherent structure to the perturbations.

The added perturbation needs to have controllable inherent structure in spite of being random in nature. In the
following of the section, we try to develop a well defined parametric space, which is followed by the perturbation
scheme that is flexible and offers plenty of possibilities. Yet, the scheme will have only a small set of intuitive
parameters. We begin by introducing the curvilinear coordinate system that is defined for each hair strand. We add
the perturbations in the local coordinate space using the curvilinear coordinate system.

4.1 Curvilinear Coordinate System

Figure 18: Curvilinear Coordinate System

The curvilinear coordinate system is illustrated in Figure 18. The y axis of the local coordinate system is aligned
along the tangent of the streamline. The z axis is aligned along the principal normal. The principal normal is the
vector formed by the intersection of the plane normal to the curve and the plane of the priciple curvature. The x
axis is aligned to the bi-normal of the curve. Figure 18 illustrates how the coordinate frame orients as it moves from
the root the tip. Once we establish the curvilinear coordinate system, it is possible to express the perturbations in
the Cartesian coordinates along the x and z axis and apply it to the curve the hair strand shape as shown with
Figure 18.

4.2 Root Variable Map

As described in the previous subsection, we apply the perturbation as a combination of the x perturbation and the z
perturbation along the length. In order to obtain controlled variation (randomness) in the structure of waves as well
as noise across the hairstyle, we introduce a scalar function root variable map defined on the scalp. The function is
unit function defined over texture parameter space [u, v] and is denoted by the following equation:

r = f(u, v) (10)

The user defines the root variable map by painting a grayscale texture directly on the scalp in 3D as shown in
Figure 19.
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Figure 19: Root Variable Map

Alternatively, she can define it by editing the texture image in 2D using standard image editing software such
as Photoshop. In most cases the user would define a smoothly varying random function. In the smoothly varying
random function, the function value varies a lot for the distant [u, v] points, whereas it does not vary that much for
the points lying in the neighborhood. The smoothly varying random function is shown in the central figure of Figure
19, whereas the last figure illustrates some disjoint regions defined over the smoothly varying function to illustrate
the flexibility. We would like to highlight that the root variable map thus defined in terms of an image rather than
defined analytically, offers a lot of possibilities in defining the character of the volumetric perturbation. These gray
scale values of the image affects various parameters of the wave and noise functions, which is defined subsequently.
We also give a few illustrative examples of how a particular definition of the root variable map achieves a particular
effect, such as overall waviness, clumping and stray hair strands.

4.3 Waviness

The waviness can be typically represented by a generalized sine wave, hence we chose the sine function as the basis
of our waviness model. For a point p on the hair strand located at the normalized distance parameter l from the
root, we define waviness in terms of sine wave function, randomly varying across the hairstyle:

Wx(l) = Ax(l) sin(Φx + Tx(l) l)
Wz(l) = Az(l) sin(Φz + Tz(l) l) (11)

The randomness in the wave function per hair strand is achieved by randomly defining the amplitude A, frequencey
T and phase Φ.

In order to define how the amplitude varies along the length of the hair, the user defines the amplitude
characteristics at four distinct points equally spaced from the 1

4

th position to the tip position. The amplitude
of the wave Ax(l), all along the length from root to tip, then gets defined by:

Ax(l) = CR(Ai
x, l) (12)

where CR is a Catmull-Rom interpolation function defined through Ai
x, i = 0, 1, 2, 3, 4 with the length wise parameter

l ∈ [0, 1]. The value of A0
x is set to zero as the perturbation is always zero at the hair strand root.

The user defines the amplitude characteristics Ai
x as distinct stochastic processes using Perlin’s noise function

[Perlin 1985] random, each defined at one of the four hair length positions. We deliberately name the function as
random instead of traditional function name – noise, to avoid the confusion with the noisiness introduced to the
hair strand subsequently. These four stochastic functions have a mean Ax,mean, a variance Ax,var and a scale Ascale

defined by the user. Thus the amplitude characteristics Ai
x are:

Ai
x(r) = Ai

x,mean + Ai
x,var random(r Ai

x,scale) i = 1, 2, 3, 4 (13)

The random function returns a value of the Perlin’s noise function whose randomness is parameterized by its
arguments – r times Ai

x,scale in our case. A high value of Ai
x,scale signifies white noise, whereas a low value attribute

to a smoothly varying random function. As a special case, the value of the function is 0 at 0; random(0) = 0. Az(l)
is defined in the same manner by user defining four Ai

z amplitude characteristics in terms of amplitude, phase and
scale. Even, the same definition is used for the frequency T:

T i
x(r) = T i

x,mean + T i
x,var random(T i

x,scale r) i = 1, 2, 3, 4 (14)

The eight values T i
x(r) and T i

z(r) are defined in a similar manner, and Tx(l) and Tz(l) are interpolated values across
them using Catmull-Rom interpolation. Unlike the amplitude and the frequency, the phase is defined only at the
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root of each hair strand:

Φx = Φx,mean + Φx,var random(r Φx,scale)
Φz = Φz,mean + Φz,var random(r Φz,scale) (15)

Notice the presence of r in all the above equations. This directly links the root variable map variation explained
previously to the variation in amplitude, frequency and phase. The value of r changes from hair strand to hair strand
according to the definition of the root variable map. Based on this variation, user can implicitly define how randomly
the amplitude, the frequency at four distinct regions and the phase at the root gets defined for the individual wave.

Figure 20: Hairstyle using Waviness

Figure 20 shows a hairstyle formed by setting up simple fluid elements followed by the waviness added by the
method described in this section. The corresponding root variable map is also presented. Observe that the root
variable map is smoothly varying, which results in to the wave structure smoothing varying across the hair strands.
Also observe that the overall amplitude and frequency characteristic changes from root to tip. The waves has more
amplitude as well as frequency towards the tip.

Figure 21 illustrates the wave model. As discussed earlier, the mean, the variance and the scale values at four
different positions for both x and z directions gets defined by the user, along with two initial phases. The generated
wave for the hair strand thus will be confined to the amplitude envelop formed by the randomly generated values
having the above defined characteristics, as shown in the figure.

Figure 21: Hairstyle with Waviness

One can use the same wave model to generate curls. In order to generate curl, a helix, a phase difference of π
4

should be maintained between Φx and Φz. In the illustrative example, Figure 21, thus the generated helix is confined
to the amplitude envelop. Notice that the frequency increases towards the tip of the hair. All these characteristics
are randomly varied across the hair strands.
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4.4 Noise

Noise is similar to waviness. Instead of the generalized sine wave perturbation applied to hair strand, in the case of
noise we use Perlin’s noise function along the length parameter l.

Nx(l) = Ax(l) noise(Φx + Tx(l) l)
Nz(l) = Az(l) noise(Φz + Tz(l) l) (16)

Compare this equation to Equation 11. The amplitude, period and phase gets defined in exactly same way as
explained in the previous section but with different set of amplitude, frequency characteristics. Even, the overall
variation is related to a separate root variable map meant specifically for the noise perturbations. That way the user
can have separate control over the waviness and noise and can mix them for desired effect.

Figure 22: Hairstyle using Noise

Figure 22 shows a hairstyles formed by setting up simple fluid elements followed by the application of noise
perturbation. The corresponding root variable map shows the smoothly varying random function. This results in
individual hair following random directions, however while maintaining overall structure. Observe that the amplitude
of the noise increases from root to tip. The increase in the frequency, unlike in the case of waviness, is manifested in
change in the quality of the noise – towards white noise near tip.

4.5 Clumpiness

Fluid like hair may be a dream of everybody. Though in reality, under cohesive/adhesive forces, hair tend to form
clumps – a set of hair strands get close to follow a common path. The clumpiness can be obtained in the same
framework of the volumetric perturbation using the waviness or the noise or the both. The trick is to define distinct
regions having constant value in the root variable map. Figure 23 illustrates such a root variable map.

Figure 23: Map Definition for Clumpiness

The root variable map is in fact derived from the previously defined smoothly varying random map. However,
observe that instead of defining a continuously varying map, the image defines distinct small regions or crystals
having a constant values. The value varies from region to region in a smoothly varying random fashion. One can
obtain such a map using out-of-box tools (“crystallize”) supported by the image editing software such as Photoshop.
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Effectively, we are creating a bunch of hair by means of having the same r value for the hair strands belonging to
the same region. Subsequently, the volumetric perturbations applied to all these hair strands will be constant. The
size of such regions can be controlled by the user depending upon the desired size of the clumps. Figure 24 shows
an enlarged view of “crystallized” root variable map. Observe how a set of hair strand roots belong to a particular
region.

hair roots

root variable map

regions

hair clump axis

Figure 24: Forming Clumps

Unfortunately, just by defining bunch of hair strands to follow a common path via common volumetric perturbation
would not suffice. The hair strands need to come close to each other as they flow from root to tip. For that purpose,
we need to explicitly identify a bunch of hair strands. We carry out a Delaunay triangulation of the hair roots in
the texture space [u, v]. Then we follow each edge of the triangulation to observe change in the root variable map.
If the root variable map varies across the edge, we delete that edge. Once we have followed all the edges, we are left
with closed regions in the triangulated mesh. If a particular region is too small this may result in only a single hair
root resulting into a single hair strand belonging to the clump. In this case we are creating a stray hair strand as
discussed in the next section. All the hair strands in one clump follow some what parallel path defined by the fluid
flow. Further, exactly the same perturbation gets added on top of the flow for each of the hair strand belonging to
the clump. This can be visualized as the small region being swept all along the length of the hair clump axis to form
the clump. Figure 24 illustrates how the clump is formed by sweeping the small region along the hair clump axis.
We elect the centroidal [u, v] value as the root of the hair clump axis. Then we compute the geometry of only the
hair clump axis by tracing the streamline in the fluid flow followed by application of the volumetric perturbation.
Then we sweep the clump region from root to tip, in the process we scale the region to create shrinkage in the clump.

Figure 25: Hairstyle with Waviness and Clumpiness

Figure 25 shows such hairstyle as a result of simple fluid flow, waviness and clumpiness. The root variable map
used is as depicted in Figure 23. The user defines the clump dilation characteristics across the hairstyle in the same
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manner by defining mean, variance and scale values for four different sections along the length. Observe that hair
has controlled randomness in amplitudes, frequencies and the scalings in the clumps throughout the hairstyle.

4.6 Stray Hair

Figure 26: Individual Hair Breaking Away From Flow

So far, we have explained a structured perturbation in the hairstyle using a well-defined model of waviness and
clumpiness. However, in the spirit of explicit hair model, we now demonstrate how to add a random noise in the hair
structure. This simply means that the user is able to define certain individual hair strands that break away from
the defined fluid flow and controlled volumetric perturbation, and follow a random path. Figure 26 demonstrates
how few individual stray hair strands break away from overall flow and follow the random directions. The stray hair
strands can be defined by changing the root variable map as shown in the figure. We simply add bright spots on
the root variable map. In this example, the root variable map is uniformly dark, indicating no waviness or noise
everywhere except at the texture positions of the white spots. As a result, the overall hairstyle is very smooth except
for the few stray hair strands whose texture coordinates [u, v] happen to fall on these white spots. We use mix of
waviness and noise to achieve the random directions of the stray hair strands.

5 Hair Animation as Time-varying Fluid Flow

The dynamics of hair is different from the dynamics of a fluid flow. Therefore, for the purpose of hair animation, one
might not be able to extend the static hair shape model based on a snapshot of fluid flow, to the dynamics of the
flow. Nevertheless, in this section we would present an interesting possibility. We discuss how a time varying ideal
flow setup can be used for reasonable animations of simple hair styles. The technique can be used only for simple
hair styles and specific types of animations.

Figure 27: Time-varying Vortex around the Head

The ideal flow is stable. Thus for a given setup of ideal flow elements, the flow does not change over time. We use
the quasi-steady property of the ideal flow for the animation of hair. We set up time varying fluid elements, which
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give (being an ideal flow) a time varying stable fluid. Figure 28 is an animation of a simple hairstyle with the head
movement. The hairstyle is composed of only a stream in a downward direction with a set of panel sources beneath
the head. As the head moves, the inertial forces of hair are simulated by setting up a time varying vortex around
the head, as shown in Figure 27, to give hair a momentum. The strengths of these fluid elements are animated by
key-framing at appropriate times. If there is a vertical head movement in the animation, one could have added even
the bounce to hair by varying the strength of the stream which gives hair the downward direction.

In an another situation, consider hair blown by wind or hair under water. In this class of hair animation,
the external forces such as wind or water dominates the dynamics of hair. In such situation, one can readily
animate hair, hair being streamlines of fluid flow. The hair shape can be altered using time varying volumetric
perturbations [Dischler 1999] as discussed in section 5. One can simulate the turbulent wind fields [Sakas 1993; Stam
and Fiume 1993] as a stochastic process. These being linear in nature we can add the fields to the field defining hair
shape to give a hair animation dominated by wind. The source panel method will ensure the collision avoidance of
hair with body in any complex flow setup. During computing the animation, hair calculations for a frame depend
only on the flow setup for that frame. This is a great merit of the method for parallel computation.

Figure 28: Hair Animation using Time-varying Ideal Flow

Soon we realized that, although interesting, the method has limitations. It can’t represent accurately the stiffness
dynamics and is limited as compared to numerous kind of motions hair undergo. In the chapter – “Modeling Dynamic
Hair as a Continuum”, we develop a detailed dynamic hair model which is essentially inspired from this method.
However, the dynamic hair model has nothing in common with the fluid model presented for hairstyling.

6 Summary

In this chapter we have described a powerful hair shape modeling paradigm, which is implemented as a plugin to
Maya – MIRAHairSimulation. This work is part of doctoral research [Hadap 2003] at MIRALab, University of
Geneva. The highlights of the proposed method are as follows

• Hairstyling – We have developed a powerful interactive hair styler based on the theme – hair as streamlines of
fluid flow. The shape modeling paradigm gives strong heuristics to gravity, hair stiffness, hair-hair interaction
and hair-body collisions, which are otherwise very complex physical phenomena. As the user does not have to
pay a special attention to these qualities, she can interactively shape complex and visually plausible hairstyles
quickly and easily.

• Volumetric Textures – Although strong in adding rich local details, the volumetric textures were not controllable
to achieve the desired global shape. Thus they were unsuitable for modeling of long styled hair, they are great
for modeling of short hair like fur. The volumetric nature of the proposed shape modeling paradigm provides
a structured way of adding overall shape control to the volumetric texture definition. We have merged the two
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approaches, which enables the user with immense possibilities of adding rich local volumetric details such as
noise and turbulence, while she can still controll the overall shape.

Overall, MIRAHairSimulation proves to be a powerful system for achieving convincing hairstyles in the typical
creative environment. Figures 16, 17, 17, 20, 22, 25 and 26 illustrate the effectiveness of the proposed hair shape
modeling methodology based on fluid flow followed by volumetric perturbations, in creating a variety of hairstyles.
We also give results from the usage of MIRAHairSimulation by the animators at MIRALab – University of Geneva.
Figures 29 and 30 are hairstyles by Samuel Kong and Nedjma Kadi. It is inappropriate to quantify the time involved
in creating a hairstyle as the time involved highly depends on the complexity of the hairstyle and desired precision.
The typical efforts involved in designing hairstyle are moderate and it typically take 2-3 hours to define a complex
hairstyle. Apart from the ease of the hairstyle definition, the examples clearly show the possible variety in the
hairstyle shape. Albeit, the hairstyles does not involve knots and braids.

a b

c d

e f

Figure 29: Hairstyles by the student Samuel Kong using MIRAHairSimulation
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a b

c d
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Figure 30: Hairstyles by the animator Nedjma Kadi using MIRAHairSimulation

7 Limitations and Future Work

• The shape modeling paradigm for hairstyling based on fluid flow is both powerful and enjoyable. However, it
might take some time before the user fully grasps the possibilities of the tool. The user has to develop a special
insight into the theme – hairstyle as streamlines of fluid flow.

• Although the editing of the fluid flow for the purpose of hairstyling is fast, it is not real-time. Depending on
the flow complexity, the interactive flow update takes from 0.1 to 4 seconds. This interactivity is sufficient.
However, faster interaction speeds due to ever increasing computing power, would definitely improve the overall
grasp of the shape modeling paradigm.

• The tool does not provide the means of precisely crafting a hairstyle from a real example. The use of explicit
hair models is more suited for this purpose. In the proposed methodology, fluid flow being a global phenomenon,
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one can not introduce local shape changes without affecting the global shape. In using our method, the user
can only capture the essence of the desired example hairstyle and then explore the wide range of possibilities
within the limits.

To this end, we would like to explore the possibility of a computer vision based techniques to acquire the precise
definition of the flow from a real photograph to automatically populate the hairstyle.

• The source panel method used for the boundary avoidance of fluid flow requires that the underlying mesh is
smooth and regular. Currently the animators have to spend extra time to define the boundary mesh that
approximates the detailed face geometry. This is a time consuming task. We would like to implement an
appropriate mesh reduction scheme which gives very smooth and regular mesh.

• It is not possible to model wide range of clips, braids, knots and fashion accessories in hairstyle using the
proposed methodology. The method only offers some primitive possibilities as shown in Figure 30c and 30e.
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Modeling Dynamic Hair as a Continuum
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In computer graphics, there are numerous novel models developed for animation of synthetic and natural objects,
animals, and virtual humans. Many of the models do not reflect the physical reality, but the mere visual resemblance.
For example, a digital actor may not walk in accordance with the accurate dynamics of the body, rather she will
follow the footsteps “key-framed” by the animator. In this particular case, the underlying animation model may
very well be complex. However, it does not reflect the reality. One of the highlights of such an approach is – it
leaves the animator with a complete control of the result. On the other hand, when it comes to animation of fluids,
explosions, solid fracture and hair, computer graphics has opted for “direct numerical simulation”. These models
tend to be more and more physically based. Here the animators are not given the explicit control over the result. The
control is only cursory and by means of setting up boundary conditions and defining external force fields. However,
the models being accurate, they produce very convincing results. Our approach to hair animation is in the same
spirit. For us, the cloth simulation system at MIRALab – University of Geneva and its approach is very inspirational
to this regard.

We have discussed the state-of-the-art in hair simulation in [Hadap 2003; Magnenat-Thalmann et al. 2000]. We
have identified the difficulties in hair dynamics along with previous attempts, their advantages and limitations. To
start with, we take only a quick recap. In this chapter, our focus is mainly the dynamics of long styled hair, as
against fur. In this regard, the explicit hair models (or the wisp models) are most effective. In these models, each and
every hair (or wisp) is explicitly considered for the dynamics. This makes these models intuitive and close to reality.
However, the shape intricacies, the thin geometry and the relatively high stiffness along with the high degree of
damping make dynamics of individual hair strand difficult. Further more, the shear number of hair strands demands
very careful balance between adequate details in the elastic models and the numerical complexity. Anjyo et al [Anjyo
et al. 1992] pioneered and Lee et al [Lee and Ko 2001] developed on their work in which they diligently model hair
inertial and stiffness dynamics as projective two dimensional cantilever dynamics. In our opinion there is plenty
of scope for more complex models considering the current computing power. On the other hand, Rosenblum et al
[Rosenblum et al. 1991] used a mass-spring-hinge model to control the position and the orientation of the hair strand.
Unlike the cantilever models, the spring-mass-hinge models are truly three dimensional. However, they give rise to
stiff differential equations of motion. They are also inappropriate to model the dynamics of non-straight neutral shape
of hair along with the twisting motion. Many of these attempts used approximate collision detection. They replace
the head and body geometry by simple analytic shapes such as ellipsoids. We strongly feel that recent developments
in real-time computer graphics with regard to collision detection and response certainly facilitate accurate hair-body
collision handling. Appreciably, none of the previous attempts considered hair-hair and hair-air interactions - until
very recently. Work by Plante et al [Plante et al. 2001] and Chang et al [Chang et al. 2002] addressed the problem
by considering only interaction between wisps. In these novel propositions, the configuration of the wisps remains
rather constant and hair does not break away from one wisp and join another.

In recent years the computing power has grown many times. Supercomputing power of the past is becoming
increasingly available to the animator’s workstations. There is a need to develop new hair dynamics models in light
of current and future computing advances. In this chapter, we hope to have developed enough “food for computing”
by attempting hair-hair and hair-air interaction with elaborate elastic dynamics of individual hair stand. While
making a paradigm shift, to model hair-hair and hair-air interactions, we propose to consider hair as continuum.
Subsequently, we treat the hair-hair interaction dynamics and hair-air interaction dynamics to be fluid dynamics.
This proves to be a strong as well as viable approach for an otherwise very complex phenomenon. We use smoothed
particle hydrodynamics (SPH) as the numerical model. However, for the realization of the shape memory and the
rendering, we still need to retain the notion of individual hair strand. In that regard, we develop an elaborate
stiffness and inertial dynamics of the individual hair strand. We treat it as a serial rigid multi-body chain. This
being a reduced coordinate formulation, the stiffness dynamics is numerically stable and fast. Finally, we unify the
continuum interaction dynamics and the stiffness dynamics to realize a strong hair animation framework.

The outline of the chapter is as follows. In the next section, we develop the basic continuum hair model. Realizing
the need to retain the individual character of hair, Section 2 gives a detailed model of stiffness dynamics for single
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hair. Section 3 explains the integration of two seemingly disparate approaches, hair volume as a continuum and
dynamics of an individual hair. Section 4 demonstrates how hair-body interactions can be modeled in an unified way
as the fluid boundary condition. We also discuss various details about collision detection and response in the section.
To add hair-air interaction to the model, Section 5 extends the idea of hair as a continuum to a mixture of hair and
air. We outline our scheme for the numerical integration in Section 6. Section 7 address some of the implementation
issues that make proposed hair dynamics viable. Finally we show the results that demonstrate the effectiveness of
the developed hair dynamics model in animating long hair.

1 Hair as a Continuum

Hair has many properties similar to fluid flow. These similarities were identified and exploited in the chapter –
“Modeling Hair Shape as Streamlines of Fluid Flow” for the effective static hair shape modeling. The hair is modeled
as streamlines of well setup ideal flow. Unfortunately, in this novel approach, no analogy could be developed between
fluid flow and the dynamics of hair. We take inspiration from this approach and in this section explore the possibility
of modeling complex hair dynamics as fluid dynamics. We consider if and how we can extend the idea of hair being
streamlines of fluid flow by associating shape memory to streamlines.

Figure 1: Hair as a Continuum

Hair-hair interaction is very important and the most difficult problem in achieving visually pleasing hair animation.
Only recently, Chang et al [Chang et al. 2002] and Plante et al [Plante et al. 2001] developed hair-hair interaction
models based on wisps. They carried out explicit collision detection and response between the wisps of hair. Although
these methods are clever and effective, they have the limitation that hair cannot break away from one wisp and join
another. We would like to model interactions on hair-hair basis. There are many advances in collision detection and
response as compiled by Lin et al [Lin and Gottschalk 1998]. However, they are simply unsuitable for the problem
at hand because of shear number complexity of hair. This problem warrants to take a radical approach – consider
hair as a continuum, see Figure 1. Let us start the discussion by defining the continuum. In the continuum the
physical properties of the medium such as pressure, density and temperature are defined at each and every point
in the specified region. Fluid dynamics regards liquids and gases as a continuum and even elastic theory regards
solids as such, ignoring the fact that they are still composed of individual molecules. Indeed, the assumption is
quite realistic at a certain length scale of the observation but at smaller length scales the assumption may not be
reasonable. While considering hair as a continuum, it can be argued that hair-hair spacing is not at all comparable
to inter molecular distances. However, individual hair-hair interaction is of no interest to us apart from its end
effect. Hence, we treat the size of individual hair and hair-hair distance much smaller than the overall volume of
hair, justifying the continuum assumption. Panton [Panton 1995] gives an interesting discussion on the continuum
assumption. As we develop the model further, it will be apparent that the above assumption is not just about
approximating the complex hair-hair interaction. An individual hair is surrounded by air. As it moves, it generates a
boundary layer of the air. The boundary layer influences many other hair strands in motion. This aerodynamic form
of friction is comparable to mere hair-hair contact friction. In addition, there are electrostatic forces to take part in
the dynamics. It is not feasible to model these complex multiple forms of interactions accurately. This inspires us to
consider interaction of individual hair strand with the other surrounding strands, in a macroscopic manner, through
the continuum assumption. That way, we hope to have a sound model for an otherwise very complex phenomenon.

As we start considering hair as a continuum, we define the properties of such a medium, namely the hair medium.
There are two possibilities – hair medium could be considered as a solid or a liquid. This depends on how it behaves
under shearing forces. Under shearing stresses, the solids deform till they generate counter stresses. If the shearing
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stresses are removed, the solids exhibit ability of retaining their original shape. The liquids are not able to withstand
any shearing stresses. Under the influence of the shearing stresses they continue to deform indefinitely and they
don’t have any shape memory. In case of hair, if we apply a lateral shearing motion it acts like a liquid. At the same
time, length wise, it acts as a solid. They even have bending rigidity. Thus, there is a duality in the behavior of hair
as a continuum.

hair strands
as field lines

particles having
spin like direction

Figure 2: Hair as Field Lines of Oriented Molecules

Interestingly, there are certain liquids that too exhibit this duality – liquid crystals. Liquid crystal molecules
have certain preferred orientations as shown in Figure 2, which form a field. The molecules can no more freely
demonstrate the fluid like motion because of their preferred directions. Inspired from liquid crystals, we tried to
develop a hair dynamics model based on the assumption that each particle of the hair medium will have a spin like
pseudo direction, which defines a field. Then the field lines would be synonymous to individual hair strands. The hair
dynamics can be formulated based on the anisotropy due to particle orientations. Further, we would have associated
some deformation energy to the field lines to simulate the shape memory associated with the hair strand, discussed
earlier in this section. However, we realized that this kind of dynamics mimics hair dynamics only instantaneously.
Although hair can get sheared laterally, this cannot happen indefinitely. Soon the global, lengthwise effects would
come into effect to restrict the lateral motion. Secondly, as the particles of the hair medium move, they form new
field lines hence new hairs. This leads to the problem of frame coherency in the model. This would be visually quite
disturbing in successive frames of animation. Even from mere rendering point of view, we cannot treat hair solely as
a continuum, unless the viewpoint is far enough and individual hair movement is not perceived. Thus, we have to
retain the individual character of hair as well, while considering hair as a continuum. Finally, we realize the model
by splitting hair dynamics into two parts:

• Hair-hair, hair-body and hair-air interactions, which are modeled using continuum dynamics, and more precisely
fluid dynamics

• Individual hair geometry and stiffness, which is modeled using the dynamics of an elastic fiber

Interestingly, this approach even addresses the solid-liquid duality effectively. The model can be visualized as a bunch
of hair strands immersed in a fluid. The hair strands are kinematically linked to fluid particles in their vicinity. The
individual hair has its own stiffness dynamics and it interacts with the environment through the kinematical link
with the fluid. The stiffness dynamics of an individual hair is quite straight forward, which is developed in the next
section.

In order to develop the continuum model further, let us start identifying various physical quantities involved in
fluid dynamics. Density, pressure and temperature are the basic constituents of fluid dynamics. The density of the
hair medium is not precisely the density of individual hair. It is rather associated with the number density of hair
in an elemental volume. In Figure 1, observe that the density of the hair medium is less when the number density
of the hair is less. The density of the hair medium is thus defined as the mass of the hair per unit occupied volume
and is denoted as ρ. The notion of density of the hair medium enables us to express the conservation of mass (it is
rather conservation of the number of hair strands) in terms of the continuity equation [Panton 1995]

1
ρ

dρ

dt
= −∇ · ~v (1)
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where, ~v is the local velocity of the medium. Note that the fluid dynamics equations are in the Langrangian form,
unlike more popular Eulerain form. This is more explained in section 3. The continuity equation states that the
relative rate of change of density ( 1

ρ
dρ
dt ), at any point in the medium, is equal to the negative gradient of the velocity

field at that point (−∇ ·~v). This is the total outflux of the medium at that point. The physical interpretation of the
continuity equation in our case is that, as the hair strands start moving apart, their number density, and hence the
density of the hair medium drops and vice a versa.

The pressure and the viscosity in the hair medium represent all the forces due to various forms of interactions of
hair strands as described previously. If we try to compress a bunch of hair, it develops a pressure such that the
hair strands will tend to move apart. The viscosity would account for various forms of interactions such as hair-hair,
hair-body and hair-air. These are captured in the form of the momentum equation [Panton 1995] of fluid.

ρ
d~v

dt
= ν∇ · (∇~v)−∇p + Fbd (2)

The acceleration of the fluid particles d~v
dt with the spatial pressure variation −∇p would be such that it will tend

to even out the pressure differences and as the fluid particles move, there will be always resistance ν∇ · (∇~v) in the
form of the friction. The body forces Fbd, i.e. the inertial forces and gravitational influence are also accounted for
in the equation.

Temperature considerably affects the properties of hair. However, we do not have to consider it in the dynamics.
We treat the hair dynamics as an isothermal process unless we are trying to simulate a scenario of hair being dried
with a hair dryer. Secondly, the temperature is associated with the internal energy of the fluid, which is due to the
continuous random motion of the fluid molecules. At the length scale of our model i.e. treating hair as a continuum,
there is no such internal energy associated with the hair medium. Subsequently, we drop the energy equation of
fluid, which is associated with the temperature and the internal energy.

hair volume densityρc

c

h
ρ

0

pressure
(p)

K

ρ
(ρ)

Figure 3: Equation of State

The equation of state (EOS) [Panton 1995] binds together all the fluid equations. It gives a relation between
density, pressure and temperature. In our case of hair-hair interaction, the EOS plays a central role along with the
viscous fluid forces. The medium we are modeling is not a real medium such as gas or liquid. Hence, we are free to
“design” EOS to suit our needs. The following equation is our proposition:

p =


0 if ρ < ρ0,
Kc( ρ−ρ0

ρc−ρ0
)n if ρ0 ≤ ρ < ρc,

Kc if ρc < ρ

(3)

We define the hair rest density ρ0 as a density below which statistically there is no hair-hair collisions. In addition,
we define hair close packing density as ρc that represents the state of the hair medium in which hair strands are
packed to the maximum extent. This density is slightly lower than the physical density of hair, ρh. Figure 3 illustrates
the relation between the density and the pressure of the hair medium. In the proposed pressure/density relationship,
notice that there is no pressure built up below the hair rest density ρ0. As one starts squeezing the hair volume,
pressure starts building up. As a consequence, the hair strands are forced apart. At the hair compaction density ρc,
the pressure is maximum. Kc is the interaction constant of the hair volume. The power n refers to the ability of
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hair volume to get compressed. If the hair is well aligned, the power will be high. In this case, as we compress the
hair volume, suddenly the hair strands start to form close packing and build the pressure quickly. On the contrary,
if hair is wavy and not very well aligned, the pressure build up is not abrupt. This will lead to power n towards one.

Instead of modeling the collisions of individual hair strand with the body, we model them, in a unified way, as
a boundary condition of the fluid flow. There are two forms of the fluid boundary conditions a) flow tangency
condition - the fluid flow normal to the obstacle boundary is zero. b) flow slip condition - the boundary exerts
a viscous pressure proportional to the tangential flow velocity. The formulation of the flow boundary condition is
deferred to Section 3, where we will introduce the numerical fluid model. It will be apparent that although we model
the hair-body interactions as fluid boundary condition, after discretization, the model directly falls under traditional
collision detection and response techniques.

Having developed the groundwork for hair-hair and hair-body interactions, in the next section we develop an
elaborate stiffness dynamics of the individual hair strand.

2 Single Hair Dynamics

In the previous section we discussed how we could think of hair-hair interaction as fluid forces by considering hair
volume as a continuum. However, for the reasons explained there, we still need to retain the individual character of
a hair strand. The stiffness dynamics of an individual hair is discussed in this section.

m1 m2 m1 mn-1 mn

�Bending/Torsion �Elastic

Figure 4: Hair Strand as an Oriented Particle System

In the case of single hair dynamics, as discussed in [Hadap 2003; Magnenat-Thalmann et al. 2000], there are
two approaches so far – cantilever dynamics and mass-spring-hinge dynamics. We have seen that the cantilever
dynamics is not truly three dimensional. Thus, we sincerely feel that it has limited potential in the light of current
computational power. We discuss the spring-mass-hinge model and highlight its limitations, which leads to the
development of our model. In a very straightforward manner, one models hair as a set of particles connected by
tensile, bending and torsional springs [Daldegan et al. 1993; Rosenblum et al. 1991], as shown in Figure 4. If the hair
strand is approximated by a set of n particles, then the system has 6n degrees of freedoms (DOFs) attributed to three
translations, two bendings and one twist per particle. Treating each particle as a point mass, we can setup a set of
governing differential equations of motion and try integrating them. Unfortunately this is not a viable solution. Hair
is one of the many interesting materials in nature. It has remarkably high Elastic Modulus of 2-6GPa. Moreover,
being very small in diameter, it has very large tensile strength as compared to its bending and torsional rigidity.
This proves to be more problematic in terms of the numerics. We are forced to choose very small time steps due to
the stiff equations corresponding to the tensile mode of motion, in which we are hardly interested. In fact, the hair
fiber hardly stretches by its own weight and body forces. It just bends and twists.

Hence, it is better to choose one of the following two possibilities. Constrain the differential motion of the particles
that amounts to the stretching using constrained dynamics [Baraff 1996]. Alternatively, reformulate the problem
altogether to remove the DOFs associated with the stretching, namely a reduced coordinate formulation [Featherstone
1987]. Both methods are equally efficient, being linear time. Parameterizing the system DOFs by an exact number of
generalized coordinates may be extremely hard or even impossible for the systems having complex topology. In this
case, a constrained method is preferred for its generality and modularity in modeling complex dynamical systems.
However, for the problem at hand, the reduced coordinate formulation is a better method for the following reasons:

• Reduced coordinates are preferred when in our case the 3n DOFs remaining in the system are comparable to
the 3n DOFs removed by the elastic constraints.

• The system has fixed and simple topology where each object is connected to maximum of two neighbors. We
can take advantage of the simplicity and symbolically reduce the most of the computations.
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• Reduced coordinate formulation directly and accurately facilitates the parametric definition of bending and
torsional stiffness dynamics. The geometry of spring-mass-hinge system is one dimensional and the masses are
point masses. Thus it is difficult to accurately formulate the bending and torsional dynamics as one can not
effectively resolve the orientations that facilitate definition of bending and torsion in three dimensions.

Subsequently we model an individual hair strand as a serial rigid multi-body chain.

2.1 Hair as Serial Rigid Multi-body Chain

Link i-1

Link 0

Link 1

Link i

Joint i

F i-1

F i

X i-1i
(link-link transformation)

cm

Link n

Figure 5: Hair Strand as Rigid multi-body Serial Chain

The first step is to clearly define the serial rigid multi-body system that approximates the motion of individual
hair strand. We divide the strand into n segments of equal length as shown in Figure 5. The advantages of defining
segments of equal length will be made clear, subsequently. The n segments are labeled as link1 to linkn. Each link
is connected to two adjacent links by a three DOF spherical joint forming a single un-branched open-loop kinematic
chain. The joint between linki−1 and linki is labeled jointi. The position where the hair is rooted to scalp is
synonymous to link0 and the joint between head and hair strand is joint1.

Further, we introduce n coordinate frames Fi, each attached to the corresponding linki. The coordinate frame Fi

moves with the linki. The placement of coordinate system is largely irrelevant to the mathematical formulations, but
they do have an important bearing on efficiency of computations, which is discussed subsequently. Having introduced
the link coordinates, we introduce the spatial transformations that enable us to transform spatial entities defined
in the coordinate frame of one link, in terms of the coordinate frame of the adjacent link. iX̂i−1 is an adjacent-
link coordinate spatial transformation which operates on a spatial vector represented in coordinate frame Fi−1 and
produces a representation of the same spatial vector in coordinate frame Fi. For comprehensive discussion on spatial
vector algebra and it’s application to rigid body dynamics along with the peculiar notations, we refer to pioneering
work by Featherstone [Featherstone 1987].

We use the notations introduced by Featherstone. Small case letters such as l denote scalars and bold face letters
such as v denote cartesian vectors. Spatial 6 × 1 vectors and spatial 6 × 6 matrices are denoted by bold face small
and capital letters, respectively, having a hat on top, e.g. v̂. Subscript on an entity denotes the associated link, e.g.
v̂i denote the spatial velocity of the ith link. Entities with dash, e.g. Î′, denote that they are defined in the local
coordinate frame. The spatial transpose operator is denoted by a superscript S, e.g. X̂S .

Figure 5 illustrates the definition of a hair strand as a serial multi-body rigid chain. The spatial transformation
iX̂i−1 is composed of a pure translation, which is constant as the length of the segment is constant, and a pure
orientation which is variable. We use a unit quaternion qi to describe the orientation of each link with respect to
the previous link. Then, we augment the components of n quaternions, one per joint, to form q ∈ <4n, the system
state vector. Note that, additional n unit quaternion constraints, i.e. |qi| = 1, make system have 3n coordinates.
Thus system is optimally represented to have 3n DOFs. Moreover, the angular velocity across the spherical joint is
described by conventional 3× 1 angular velocity vector wi. These form w ∈ <3n, the derivative state vector of the
system. The spatial motion of the rigid body, linki in our case, is fully characterized by its 6 × 1 spatial velocity
v̂i, 6 × 1 spatial acceleration âi and 6 × 6 spatial inertia tensor Îi. In the next subsections, we will formulate the
spatial dynamics of serial rigid multi-body chain in terms of the system state variables q and w and their respective
derivatives q̇ and ẇ, using the physical quantities v̂i, âi and Îi for dynamics.
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2.2 Kinematics of Hair Strand

A 6 × 3 motion sub-space Ŝ relates the angular velocity wi to spatial velocity across the joint, which is the only
allowed motion by the spherical joint. Since the position of the link in its own coordinate frame remains fixed, we
can express the motion sub-space Ŝ as a constant matrix.

Ŝ =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

 (4)

Subsequently, the velocity and acceleration across the spherical joint are given by the following equations:

v̂i = iX̂i−1v̂i−1 + Ŝwi

âi = iX̂i−1âi−1 + v̂i×̂ Ŝwi + Ŝẇi (5)

Given joint angular velocities wi and joint angular accelerations ẇi, Equations 4 and 5 enable us to recursively
compute the link velocities v̂i and the link accelerations âi, with v̂0 and â0 as a starting point. In our case v̂0 and
â0 are the spatial velocity and the spatial acceleration of hair root, i.e. the scalp. We need to successively integrate
the derivative vectors of the system i.e. integrating ẇi into wi and wi into qi. One can notice that the angular
velocity wi can not be integrated directly into joint variables qi. However, the following equation relates the joint
variable rates q̇i expressed as quaternions to the angular velocities wi


q̇0

q̇1

q̇2

q̇3

 = 1/2


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0


w1

w2

w3

 (6)

q2
0 + q2

1 + q2
2 + q2

3 = 1 (7)

Next step is to identify various external forces acting on the links, which induce the joint angular accelerations
and make hair strand bend and move.

2.3 Forward Dynamics of Hair Strand

Before we discuss the dynamics of single hair strand, we tabulate the physical properties of a typical human hair
strand. Especially note the formulas for the moment of area, the polar moment of area, bending spring constant and
torsional spring constant. The detailed discussion on the hair properties is covered in [Hadap 2003].
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Number of hair strands on human
scalp

90-120 thousand, we use 20-40 thousand for animation
purpose which are “data-amplified” to around 50-60
thousand for rendering purpose

Typical diameter (D = 2R) 60-100 µm

Cross section Circular to elliptical, we assume circular

Typical distance between hair on scalp 1mm

Linear density of hair strand 30-100 µgm/cm

Density of hair material 1.2 gm/cm3

Elastic modulus (E) 2-6 GPs

Moment of area (I) πR4/4

Polar moment of area (Ip) πR4/2

Equivalent bending spring constant
(Kb)

EI/l, where l is length of the hair segment

Equivalent torsional spring constant
(Kt)

1
2(1+ν)

EIp

l
, where ν is Poisson ratio

Table 1: Typical Physical Properties of Human Hair

A number of forces act on each link apart from the gravitational influence ĝ. The explicit definition of the point of
action of the spatial force on link is irrelevant as it is embedded in the definition of the spatial force, thus resulting
in a very compact representation.

• The gravitational influence is accommodated by giving the base of the zeroth link representing the root a
fictitious additional negative gravitational acceleration, i.e. by subtracting ĝ from â0.

• The inertial dynamics plays a pivotal role in the case of dynamics of hair strand, even though the hair strand is
thin in geometry. Inertia of the individual segment is indeed small as compared to its stiffness. However, it is
the first and second moments of inertia that govern the dynamics. The serial rigid-multibody chain formulation
facilitates us to accurately account for the inertial dynamics of the hair strand. The spatial momentum of each
link is composed of the spatial velocity v̂i and the spatial inertia Îi, a 6x6 matrix. Since the position of the
link in its own coordinate frame remains fixed, we can express the spatial inertia Îi as a constant. Further, by
proper choice of coordinate system, Îi assumes a rather simple form.

Î =
[
HT M
I H

]
(8)

where M, H and I are the 3x3 matrix representations of zeroth, first and second moments of mass of the link
around the origin of its own frame as described above. Notice that although the mass of the individual link
is small and subsequently the mass matrix M tend to be singular, due to well conditioned H and I, Î is not
singular. Table 1 gives the expressions for moment of area and polar moment of area of the cylindrical hair
segment, which enables us to formulate the second moment of inertia I.

Figure 6: Free-fall of Hair Strand – No Stiffness

8



Figure 6 illustrates the motion of free falling hair strand without stiffness. Thus the motion is solely governed
by the gravity and inertial dynamics of links. This motion is similar to that of a chain. Needless to state that
the elongation constraint is always maintained as the system does not have any corresponding DOF in the
definition. We defer the details of the algorithm that computes the motion till the next section, where we will
have defined all the forms of forces acting on the hair strand.

• In order to account for the bending and torsional rigidity of the hair strand, the jointi exerts an actuator force
Qa

i ∈ <3 on both linki−1 and linki in opposite directions. The actuator force is not a spatial force but rather a
force expressed in joint motion space. The joint actuator force is a function of joint variables qi incorporating
the bending and torsional stiffness constants. To realize the joint actuator force, we uniquely decompose the
joint variable qi into a pure bending component θb

i around the axis bi followed by a pure twist component
θt

i around link axis. We would like to highlight that this unique decomposition is only possible due to the
accurate representation of the orientation of the adjacent links via joint variable qi. Similarly, the neutral hair
strand shape defines a set of neutral orientations q0

i which are decomposed into the neutral bending component
θb0

i around axis b0
i and the pure twist component θt0

i . From θb
i , bi, θb0

i , b0
i , θt

i and θt0
i , given equivalent

bending spring constant and equivalent twist spring constant listed in Table 1 along with respective damping
constants, one can formulate the actuator force Qa

i . The details of the formulation needs the discussion on how
to represent quantities in the joint space, instead we refer to discussion in [Featherstone 1987].

Figure 7: Shape-memory of Hair Strand

Figure 7 illustrates the stiffness dynamics of a hair strand. Under cantilever action, the hair strand bends in
the direction of the gravity. Due to (primarily) bending stiffness, it tries to retain its neutral shape – straight
line in this case.

• Force f̂ci is the interaction spatial force (aggregate of line force and torque) on linki coming from the kinematic
link with the hair medium as discussed in Section 1. The actual form of f̂ci is given in Sections 3, 4 and 5. This
force accounts for all the interaction effects such as hair-hair collision, hair-body collision and hair-air drag.

Given the set of forces acting on the system, we now need to calculate the motion of the hair strand. This evolves
calculation of the induced joint angular accelerations ẇi followed by the integration. This is a forward dynamics
problem involving a rigid multi-body system. We use Articulated-Body Method to solve the hair strand forward
dynamics. This method has a computational complexity of O(n). The detailed discussion of this algorithm is beyond
the scope of this chapter. It is comprehensively covered in [Featherstone 1987; Mirtich 1996]. In the next section we
give a brief outline of the method.

2.4 Articulated-Body Forward Dynamics Algorithm

We use Articulated-Body method to solve the hair strand dynamics stated in the previous section. This method has
a computational complexity if O(n) as compared with O(n3) methods such as Composite-Rigid-Body method. For
the detailed discussion of these algorithm refer to [Featherstone 1987].

A collection of rigid bodies connected by joints is called an articulated body. To define an articulated body inertia,
we single out a particular member of the articulated body, called the handle, and define the articulated inertia as a
relationship between a test force f̂ applied to the handle and the acceleration â of the handle according to

f̂ = ÎAâ + p̂ (9)

ÎA is the articulated-body inertia and p̂ is the bias force, which is the value of the test force that must be applied
to the handle in order to give it zero acceleration. Then, the basic idea of the articulated-body algorithm is to treat
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n-joint multi-body system as a one-joint system whose only moving link is in fact the handle of an articulated body
comprising all the remaining links. Then we find the acceleration of the first joint solving the forward dynamics of
a single joint robot, which is relatively simple. Having solved for acceleration of joint 1, we can treat link 1 as the
(moving) base of an n− 1 joint robot and repeat the process for joint 2, and so on.

The algorithm is a 3 step process.
Common sub-expressions

ĉi = v̂i×̂ Ŝwi (10)

ĥi = ÎA
i Ŝ (11)

di = ŜSĥi (12)

ui = ŜQa
i − ĥS

i ĉi − ŜSp̂i (13)

Step 1

v̂i = iX̂i−1v̂i−1 + Ŝwi (14)

Step 2

p̂v
i = v̂i×̂ Îiv̂i (15)

ÎA
i = Îi +i X̂i+1(ÎA

i+1 −
ĥi+1ĥS

i+1

di+1
)i+1X̂i,

(ÎA
n = În) (16)

p̂i = p̂v
i +i X̂i+1(p̂i+1 + ÎA

i+1ĉi+1 +
ui+1

di+1
ĥi+1),

(p̂n = p̂v
n) (17)

Step 3

ẇi =
ui − ĥS

i iX̂i−1âi−1

di
(18)

âi = iX̂i−1âi−1 + ĉi + Ŝẇi (19)

§1 Start from v̂0, the velocity of the base i.e. that of the hair strand root. Using current value of joint angular
velocities wi, i = 1 . . . n , compute all the link velocities v̂i, i = 1 . . . n from v̂i−1, using equation 14.

§2 Given link spatial inertias Îi, i = 1 . . . n, start from the last link’s articulated-body inertia ÎA
n = În and bias

force p̂n = v̂n×̂ Înv̂n. Compute all the articulated-body inertias ÎA
i , i = n − 1 . . . 1 and the bias forces

p̂i, i = n− 1 . . . 1 from ÎA
i+1 and p̂i+1, using equations in Step 2.

§3 Once we know all the articulated-body inertias and bias forces we start from the link 1. Given all the external
forces acting on links (see Section 2.3), we compute the joint angular accelerations ẇi, i = 1 . . . n using equations
in Step 3. We update the link acceleration âi before we move on to the next link.

The time evolution of the hair strand shape is broken into discrete steps in time. At each time step, we evaluate the
joint angular accelerations ẇi, i = 1 . . . n followed by the numerical integration. The details of numerical integration
are covered in Section 6 after the details of all the forces acting on the hair strand are covered in the subsequent
sections.

3 Fluid Hair Model

In the previous section we described the precise dynamics of individual hair strand. We considered bending and
torsional stiffness of hair along with body forces viz. inertia and gravitational influence. In this section, we develop
on the proposed continuum model for hair-hair interactions. As discussed in Section 1, the density and the pressure of
the hair medium form the basic constituents of the fluid-hair model. The continuity equation (Eq. 1), the momentum
equation (Eq. 2) and the equation of state (Eq. 3) capture the overall dynamics of hair-hair interaction. Establishing
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hair strands

field value
at grid points

field

Figure 8: Fluid Dynamics – Eulerian viewpoint

the kinematical link between the dynamics of the individual hair strand and the dynamics of interactions is a crucial
part of the algorithm, which is addressed in this section.

The conventional fluid dynamics formulation uses Eulerian viewpoint. One way to think of Eulerian method is
to think of an observer watching the fluid properties such as density, temperature and pressure change at a certain
fixed point in space, as fluid passes through this point. In the numerical simulations, the space is discretised using a
rectangular grid or a triangular mesh to define these few observation points for computations, as shown in Figure 8.
Hence using the Eulerian viewpoint, we will ultimately get fluid forces acting at this fixed set of points. We would
like to transfer the fluid force at each of these points onto the individual hair, which is in the vicinity of the point.
There is no trivial correlation between the grid points and the hair strands, unless they coincide. Also the hair
strand will be in the vicinity of new set of grid points every time it moves. This makes it difficult to formulate the
kinematical link between the two. There are methods such as the particle-in-cell method introduced by Hockney et al
[Hockney and Eastwood 1988], which try to do the same. However, we opted for the other, less popular but effective,
Langrangian formulation of fluid dynamics. We explain the benefits subsequently.

In Langrangian formulation, the physical properties are expressed as if the observer is moving with the fluid particle.
Smoothed Particle Hydrodynamics (SPH), invented by Monaghan [Monaghan 1992], is one of the Langrangian
numerical methods, that utilizes space discretisation via number of discrete points that move with the fluid flow.
One of the first applications of SPH in computer animation was done by Gascuel et al [Gascuel et al. 1996]. For a
good overview of SPH, we refer to [Morris 1995].

hair strands

field value A(rb)
at moving points

field A(r)

As(r)

Figure 9: Fluid Dynamics – Langrangian viewpoint

Figure 9 illustrates the concept of smoothed particles. The physical properties are expressed at the center of each
of these smoothed particles. Then the physical property at any point in the medium is defined as a weighted sum of
the properties of all the particles.
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As(r) =
∑

b

Ab
mb

ρb
W (r− rb, h) (20)

The summation interpolant As(r) can be thought of as the smoothed version of the original property function
A(r). The field quantities at particle b are denoted by a subscript b. Thus, the mass associated with particle b is
mb and density at the centre of the particle b is ρb, and the property itself is Ab. We see that the quantity mb

ρb
is

the inverse of the number density (i.e. the specific volume) and is, in some sense, a volume element. The function
W is the weight function referred as interpolating kernel in SPH. Details of the interpolating function are covered
subsequently.

To exemplify, the smoothed version of density at any point of medium is

ρ(r) =
∑

b

mbW (r− rb, h) (21)

Figure 9 illustrates how density is recorded onto each particle, denoted by varying degree of gray scale values of the
dots. The field is defined at each and every point in the region by weighted sum of the field values of the surrounding
particles, which is denoted by the continuous gray tones in the region.

Similarly, it is possible to obtain an estimate of the gradient of the field, provided W is differentiable, simply by
differentiating the summation interpolant

∇As(r) =
∑

b

Ab
mb

ρb
∇W (r− rb, h) (22)

The interpolating kernel W (r− r′, h) has the following properties

∫
W (r− r′, h)dr′ = 1 (23)

lim
h→0

W (r− r′, h) = δ(r− r′) (24)

The choice of the kernel is not important in theory as long as it satisfies the above kernel properties. However, for
practical purposes we need to choose a kernel, which is simple to evaluate and has compact support. The smoothing
length h defines the extent of the kernel. We use the cubic spline interpolating kernel.

W (r, h) =
σ

hν


(1− 3

2s2 + 3
4s3) if 0 ≤ s ≤ 1,

1
4 (2− s)3 if 1 ≤ s ≤ 2,
0 otherwise

(25)

Where s = |r|/h, ν is the number of dimensions and σ is the normalization constant with values 2
3 , 10

7π , or 1
π in

one, two, or three dimensions, respectively. We can see that the kernel has a compact support, i.e. its interactions
are exactly zero at distances |r| > 2h. Evaluating the field at each point involves computation of the contribution
due to all the particles in the region. The compact support, i.e. the kernel has zero value outside the smoothing
length, drastically reduces the computational overhead as we need to consider only the neighboring particles within
the smoothing length in order to evaluate the function at a point. Figure 10 illustrates a typical kernel having a
compact support. We keep the smoothing length h constant throughout the simulation to facilitate a speedy search
of neighborhood of the particles. The nearest neighbor problem is well known in computer graphics. Section 7 gives
the strategy for the linear time neighbor search.

|r|

W

h

Figure 10: SPH Kernel having Compact Support
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There is no underlying grid structure in the SPH method, which makes the scheme suitable for our purpose. We
are free to choose the initial positions of the smoothed particles as long as their distribution reflects the local density
depicted by Equation 21. Eventually the particles will move with the fluid flow. In order to establish the kinematical
link between the individual hair dynamics and the dynamics of interactions, we place the smoothed particles directly
onto the hair strands as illustrated in the Figure 9. We keep the number of smoothed particles per hair segment
constant, just as we have kept the hair segment length constant, for the reasons of computational simplicity. As
the smoothed particles are glued to the hair strand, they can no longer move freely with the fluid flow. They just
exert forces arising from the fluid dynamics onto the corresponding hair segment and move with the hair segment
(in the figure, the hair strand is not discretised to show the segments). Thus, we have incorporated both, the elastic
dynamics of individual hair and the dynamics of interactions into hair dynamics.

Apart from providing the direct kinematical link, the SPH method has other numerical merits when compared to
a grid-based scheme:

• As there is no need for a grid structure, we are not defining a region of interest to which the dynamics must
confine to. This is very useful considering the fact that, in animation the character will move a lot and the
hair should follow it.

• No memory is wasted in defining the field in the region where there is no hair activity, which is not true in the
case of grid-based fluid dynamics.

• As the smoothed particles move with the flow carrying the field information, they optimally represent the
fluctuations of the field. In the case of grid-based scheme, it is necessary to opt for tedious adaptive grid
techniques to achieve similar computational resolution, within given memory footprint.

In the rest of the section, we discuss the SPH versions of the fluid dynamics equations. Each smoothed particle
has a constant mass mb. The mass is equal to the mass of the respective hair segment divided by the number of
smoothed particles on that segment. Each particle carries a variable density ρb, variable pressure pb and has velocity
vb. The velocity vb is actually the Cartesian velocity of the point on the hair segment where the particle is located,
expressed in the global coordinates. rb is the global position of the particle, i.e. the location of the particle on the
hair strand in the global coordinates. Once, initially, we have placed the particles on the hair strands, we compute
the particle densities using Equation 21. Indeed, the number density of hair at a location reflects the local density,
which is consistent with the definition of the density of the hair medium given in Section 1.

For brevity, we introduce the notation Wab = W (ra− rb, h). Similarly, let ∇aWab denote the gradient of Wab with
respect to ra (the coordinates of particle a). The quantities such as va − vb shall be written as vab.

The density of each particle can be always found from Equation 21, but this equation requires an extra loop
over all the particles, which means the heavy processing of nearest neighbour finding, before it can be used in the
calculations. A better formula is obtained from the smoothed version of the continuity equation, Equation 1.

dρi

dt
= ρi

N∑
j=1

mj

ρj
vij · ∇iWij (26)

Using this formula, we now can update the particle density without going through the particles just by integrating
the above equation. However, we would have to correct the densities from time to time using Equation 21, to avoid
the density being drifted due to numerical inaccuracies.

The smoothed version of the momentum equation, Equation 2, without the body forces, is as follows

dvi

dt
= −

N∑
j=1

mj(
pj

ρ2
j

+
pi

ρ2
i

+
∏
ij

)∇iWij (27)

The reason for dropping the body force Fbd is that, the comprehensive inertial and gravitational effects are already
incorporated in the stiffness dynamics of the individual strand. Otherwise, we would be duplicating them.

As the particles are glued to the respective hair segment, they cannot freely attain the acceleration dvi

dt given by the
momentum equation. Instead, we convert the acceleration into a force by multiplying both the sides of Equation 27
with the mass of the particle mi. Thus, instead of particle accelerating according to the governing equations of
motion, they merely apply forces, arising from the fluid dynamics, onto the hair strand. In the previous section, we
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referred this total of all the fluid forces due to each particle on the segment as the interaction force f̂ci. Although,
we need to convert the Cartesian form of the force into the spatial force in order to incorporate it in the spatial
dynamics – this is straightforward.

In Equation 27,
∏

ij is the viscous pressure, which accounts for the frictional interaction between the hair strands.
We are free to design it to suit our purpose, as it is completely artificial, taking inputs from the artificial viscosity
form for SPH proposed by [Morris 1995], we set it to

∏
ij

=

{−cµij

ρ̄ij
if µij < 0

0 if µij ≥ 0

µij = h
vij · rij

|rij |2 + h2/100
ρ̄ij = (ρi + ρj)/2 (28)

Here, the constant c is the speed of sound in the medium. However, in our case, it is just an animation parameter.
We are free to set this to an appropriate value that obtains satisfactory visual results. The term incorporates both
bulk and shear viscosity, and in totality accounts for all the dissipative interactions amongst the hair strands due to
the friction and the boundary layer around the hair strands.

At each step of the integration, first we obtain the density at each particle ρi using Equation 26. To correct
numerical errors from time to time, we use Equation 21. The only unknown quantity so far is the pressure at
each particle pi. Once we know the particle densities ρi, the equation of the state (Equation 3), directly gives the
unknown pressure. This is the central theme of the algorithm. Subsequently, we compute the fluid forces acting on
each particle using the momentum equation (Equation 27). We know now the interaction forces f̂ci for each hair
segment and we are ready to integrate the equation of the motion for individual hair strand, which is covered in
Section 6.

The complete validation of the model remains to be done through systematic virtual experiments, backed by
empirical study. We believe that the model has good scientific potential – we leave this aspect as a future work.
However, the model in the existing form is adequate to capture the hair-hair interactions for the animation purpose.

4 Hair-body Interactions as Fluid Boundary Condition

Figure 11: Hair-obstacle Collision – Interaction with Boundary Particles

As discussed in Section 1, we model hair-body interactions as the fluid boundary condition. It is quite straightforward
to model solid boundaries, either stationary or in motion, using special boundary particles. We place the boundary
particles along the geometry as shown in Figure 11. The boundary particles do not contribute to the density of the
fluid and they are inert to the forces coming from the fluid particles. However, they exert a boundary force onto the
neighboring fluid particles. A typical form of boundary force is as follows and is given by Morris [Morris 1995]. Each
boundary particle has an outward pointing unit normal n and exerts a force

fn = Kn f1(4r · n) P (4r · tr) n

ft = −Kf |fn| /Kn (4v · tv) tv (29)

where, 4r is the position vector from the boundary particle to the colliding fluid particle. The tangent tr is the unit
projection of the position vector 4r onto the tangent plane at the position of the boundary particle. Similarly, the
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tangent tv is the unit projection of the relative approach velocity of the fluid particle 4v, onto the tangent plane
at the position of the boundary particle. Function f1 is any suitable unit function, which will repel the flow particle
away. P is Hamming window, which spreads out the effect of the boundary particle to neighbouring points in the
boundary. That way, we have a continuous boundary defined by discrete set of boundary particles. The coefficient
of friction Kf determines the extent of the tangential flow slip force ft, whereas coifficient Kn determines the extent
of collision force fn. Figure 11 demonstrates that the boundary particles are quite effective in achieving collision
response. As the boundary particle method is within the framework of SPH, one need not use exclusive collision
detection and response for the purpose. However, this method have a significant drawback. The method works
effectively only if the boundary particles are placed uniformly on the obstacle geometry. Secondly, if the separation
between the boundary particles is large, hair will slip into the boundary though the separation. These drawbacks
demand extra work by animators to define a clean uniform geometry as the boundary particles are placed on the
vertices of the geometry. We developed a more detailed collision detection and response technique, although the
theme remains the same – penalize the smoothed particles approaching the boundary with a collision force.

collision normals accurate collision normals

bounding boxes (leaf nodes)

hair segment

obstacle

nearest features
particle positions

Figure 12: Inaccurate vs Accurate Collision Normal and Nearest Feature

Computer graphics has extensive methods for collision detection. For the state-of-the-art in collision detection, we
refer to the nice overview by Lin et al [Lin and Gottschalk 1998]. Choosing a right collision detection strategy for
hair simulation required a lot of deliberation. The large number of hair strands in the simulation (typically 5,000 to
25,000) pose the challenge. We need to detect the collision of the very large number of smoothed particles with large
number of mesh polygons. Many popular collision detection techniques such as AABB Tree and OBB Tree methods
are local in nature. They only may detect the proximity of the particle with a mesh polygon and particularly fail
to give exact collision normal. One can assign the normal of the colliding mesh polygon as the collision normal,
as shown in Figure 12a. However, the collision normal should point away from the nearest feature of the colliding
polygon, as shown in Figure 12b. The accurate collision normal is required for effective computation of the collision
force and particularly the frictional force. The closes feature tracking method [Cohen et al. 1995] gives the accurate
nearest feature of mesh, be it a polygon, an edge or a vertex. However, this method is quite slow for our purpose.

collision normals as gradient of distance field

particle positions

Figure 13: Collision Detection using Distance Field

We use novel adaptively sampled distance field (ADF) method by Frisken et al [Frisken et al. 2000]. Distance field
is the scalar field in a region surrounding the obstacle. Figure 13 illustrates the distance field around the obstacle.
The value of the distance field at any point in the region defines the nearest distance from that point to the obstacle
geometry. We would like to highlight a property of the distance field – the gradient of the distance field at any point
always points away from the obstacle. Whereas, the scalar field value directly determines how close is the point from
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the obstacle. As shown in the figure, once we determine that the particles are colliding by examining the distance
field at the particle positions, the collision normals can be assigned to the gradients of the distance field at those
positions. ADF encodes the distance field in a very memory efficient manner. Further, evaluating ADF at arbitrary
point along with the gradient is very fast. Constructing the ADF is computationally intensive, which we do it for
each time step. However, the overall method of determining collisions of smoothed particles along with collision
normals is very fast and accurate using the ADF. For the numerous details on constructing ADF, we refer to [Frisken
et al. 2000].

For the collision response, we use simple penalty method. The collision force is similar to Equation 29 and is given
by the following equation

fn = Kn f1(r) n

ft = −Kf |fn| /Kn (4v · tv) tv (30)

where, r is the nearest distance from the fluid particle to the boundary, which is directly read from the ADF. n is
the unit collision normal defined as the gradient of the distance field at the fluid particle position. Whereas t is unit
projection of approach velocity of the fluid particle 4v onto the tangent plane. After experimentation with various
forms of the penalty function f1, we found Perlin’s gain function [Perlin 1985] to be most suitable. The following
figure illustrates the gain function

collision penalty

collision distance
r

a1

a2

a3
1

rc

Figure 14: Penalty Function as Perlin’s gain function

The collision penalty is zero for r above the collision distance rc, whereas for r < rc it increases to one. One can
adjust how fast the penalty increases with the decrease in r by varying the gain parameter a.

5 Hair-air, a mixture

We considered hair-hair and hair-body interactions in Sections 3 and 4. In this section, we address the hair-air
interactions. Hair-air interactions are important for the following reasons:

• We would like to animate hair blown by wind.

• As the mass of an individual hair strand is very small compared to the skin friction drag created by its surface,
the air drag is quite significant. Thus, most of the damping in hair dynamics comes from the air drag. The
internal damping pertaining to dissipation in the deformation is quite negligible as compared to the air drag.

• Air plays a major role in hair-hair interaction. As a hair strand moves through air, it generates a boundary
layer, which influences the neighboring hair strand even if the physical contact is minimum.

• Most importantly, hair volume affects the air field. Hair volume is not completely porous. Thus it acts as a
partial obstacle to the wind field, to alter it.
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Figure 15: Cantilever of Hair – Moderate Air Drag

Figure 16: Cantilever of Hair – High Air Drag

Initially we thought of a very simple model for adding wind effects in the hair animation. There are significant
advances in computer graphics for modeling turbulent gaseous fields [Stam 1997]. These models are mostly empirical.
We incorporate the effect of the field by adding extra force to each of the smoothed particles f̂di = µ(v̂wi − v̂i) in
addition to the interaction force f̂ci. Here, v̂wi is the local wind velocity at particle i, expressed as the spatial vector
and v̂i is the velocity of the particle i. µ is the drag coefficient, which is an animation parameter. Figures 15 and
16 illustrate how variation in the drag coefficient affects the motion of hair. For that purpose, we let the bunch
of hair fall under gravity undergoing cantilever action. The two examples illustrate the successive frames of the
animations corresponding to each cycle of the oscillation. Observe that in the first example, the bunch of hair makes
two oscillations before coming to rest, whereas in the second example it makes hardly one oscillation. The air drag
coefficient µ is double in the second example. In both the examples, hair exhibit high degree of damping as seen in
real-life.

However, this strategy is a passive one. As mentioned early in the section, hair volume should also affect the
wind field for more realistic animations, as it is not completely porous. Subsequently, we extend the hair continuum
model. We postulate that the hair medium is a mixture of hair material and air. There are many ways to model a
mixture; we model it in a very straightforward way. Let the two fluids, hair medium and air, have their own fluid
dynamics. We just link the two by adding extra drag force to the momentum equation. Thus, the SPH forms of the
equations for the hair-air mixture are:
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Observe that there are two different sets of smoothed particles corresponding to two constituents of the mixture.
va(rh

i ) is air velocity experienced by the hair particle i, i.e. the velocity estimate of air at point rh
i and vice versa

for the air particle. Thus there is a coupling by the drag coefficient µ between the two fluid dynamics. For zero drag
coefficient, hair and air will move without affecting each other. This model, although computationally expensive,
results in very good animation of hair blown by wind – discussed in Section 8.

6 Numerical Integration

We assume that the reader is already conversant with numerical integration issues. For an extensive discussion on
numerical methods we refer to standard text book – “Numerical Recipes in C: The Art of Scientific Computing”
[Press et al. 1993]. The sole purpose of developing hair stiffness dynamics as dynamics of serial rigid multi-body chain
is to have dynamical equations which are non-stiff. Thus it is quite sufficient to use an explicit numerical integration
scheme. We use fifth order Runge-Kutta integration method with adaptive time stepping via error control [Press
et al. 1993] for the purpose. The higher order integration scheme is not only more accurate, it has even better
stability. So the user can choose large time steps which compensate for the extra computational overheads involved
in higher order schemes. As the animator is readily given visual feedback, she can immediately judge the discrepancy
in the results due to instability. She thus can choose appropriate constant time step. The more technically oriented
animator, can have a more detailed control over the time step by setting appropriate minimum and maximum bounds
on the time step. The adaptive integrator will choose the time step in the user specified range after analyzing the
error estimate arising from the previous time step. Figure 17 illustrates the typical instability in the hair animation.

Figure 17: Instability in Hair Dynamics

Interestingly, we have observed that in the current implementation, where we use floating point precision, the user
can not set the hair segment length l less than one centimeter for earth’s gravity of 980cm/sec2, no matter how small
the time step is. We suspect this is related to numerical precision rather than the stability region of the dynamics.
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However, the choice of explicit integration method has a major drawback. These methods have very narrow stability
region. To achieve non-straight neutral shape of the hair we need to assign considerably high bending and torsional
rigidities. Moreover, hair motion is highly damped demanding high degree of air-drag. Using the explicit integration
methods, the hair simulation is almost always operating near bounds of the stability region. As a result, we are able
to simulate straight to wavy hair, even though the model is able to accommodate the case of very curly hair.

We would like to use implicit integration methods, which we leave it as future work. In the case of chosen
stiffness dynamics model, it is non-trivial to formulate the implicit integration schemes. It is not possible to express
the Jaccobian of the stiffness dynamics using Featherstone’s algorithm. We need to investigate alternative implicit
methods that use only approximate estimation of the Jaccobian. We list this drawback in detail in the concluding
section along with the future research possibilities.

Another source of instability that might occur is due to usage of relatively crude penalty method for the collision
response. If hair moving with high velocity collides the boundary, one needs to apply large penalty force to avoid the
penetration. This would demand smaller time steps to avoid instability. However, we would like to point out that
the collision avoidance is part of the fluid boundary condition. Thus as the hair strand approaches the boundary,
hair-hair interaction “makes the strand aware of the boundary” due to the fluid dynamic forces. Thus the hair-body
collision is never a hard collision. In future we would like to replace the collision response by a more elaborate
method – impulse dynamics. We full heartedly refer to the pioneering work by Brian Mirtich [Mirtich 1996], where
he integrated the rigid-body impulse dynamics into the rigid multi-body dynamics framework.

7 Implementation Issues

The developed models for individual hair dynamics and hair-hair, hair-body, hair-air interactions are quite elaborate.
Naturally, they are computationally intensive. Thus, a meticulous implementation is desired to make the methodology
viable even with today’s ever growing desktop computing power. In this section we discuss some of the implementation
issues.

7.1 Data-parallel Implementation of Single Hair Dynamics

Modeling a hair strand as a rigid multi-body serial chain accurately captures all the relevant modes of motion and
stiffness dynamics. Formulating only the exact number of relevant DOFs, i.e. bending and torsion, we have removed
the source of the stiff equations of motion associated with the high tensile rigidity of the hair strand. Hence, we
obtain an advantage in terms of possible large simulation time steps, even though the dynamics calculations are a
bit involved.

We keep the length of the hair segment per hair strand constant. We also align the hair segment’s local coordinate
system to the principal inertial axis. That way the 6x6 spatial inertia tensor takes a simple form with many zeros
and is constant. Length being constant, the only variable part in the coordinate transformation, from one link to
another, is rotation. Exploiting the special multi-body configuration of hair, we have symbolically reduced most of
the Articulated Rigid Body Dynamics calculations and have fine-tuned it to be most efficient. The time complexity
of algorithm is linear. This puts no restriction on the number of rigid segments we can have per hair strand.

Finally, we parallelize the task of the hair strand computation. We exploit four-way parallel Single Instruction
Multiple Data (SIMD) capability of Pentium III processors. We sort the hair strands by their number of hair
segments. Then we club four hair strands, equal in number of segments, as far as possible or we trim a few. We
then can compute four hair strands at a time on a single processor. Additionally, we assume two to four CPUs
are available to use. Using these strategies, we are able to simulate 10,000 hair strands, having 30 segments on an
average, in less than 2 minutes for each frame.
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7.2 Efficient implementation of Smoothed Particle Hydrodynamics

Figure 18: Hair-obstacle Collision – Use of Octree to Track Particle Interactions

The smoothed particle’s kernel has compact support. The particle influences only its near neighbours, more precisely
the ones that are in the circle of smoothing length. Thus the time complexity of the fluid computation is O(kn),
where n is the total number of particles and k is the typical number of particles coming under influence of one particle.
We still have to ensure that we use an efficient algorithm to locate the neighbours. There are many strategies for
collision detection and neighbour search. For a detailed survey, refer to Lin and Gottschalk [Lin and Gottschalk
1998]. However, smoothed particles being point geometries, we use the Octree space partitioning. Vemuri et al
[Vemuri et al. 1998] used the Octree for granular flow which is very similar to our application.

Figure 19: Approximate geometry, Smoothed particles, Octree

8 Results

We report three short animations using the described methodology. They are in increasing order of scene complexity.
However, they utilize the same underlying models discussed so far. The simplest of the animations highlight a
multitude of the dynamics in minute detail and the more complex ones illustrate the effectiveness of the methodology
in animating real life hair animations. In the end we discuss animating hair for a dance sequence.
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Figure 20: Starting from the initial spread, individual hair strands collapse under gravity. As they get close, the
pressure built up in the “hair fluid” retains the volume (frame 24). In the subsequent frames, the body forces and
hair-air interaction is prominent

In the first animation, from the initial spread, individual hair strands collapse under gravity. Hair strands have
their shape memory working against gravity. Otherwise they would have straightened up at frame 24. Also, as the
hair strands get close, the pressure builds up due to increase in the number density in the ”hair fluid”, which further
retains the volume, throughout the animation, by keeping individual hair apart. The inertial forces and the influence
of air are evident in the oscillatory motion of hair. The air drag is most effective towards the tip of hair strands.
Observe the differential motion between the tips. Hair strands on the periphery experience more air drag than the
interior ones. This is only possible due to the fluid-hair mixture model; the movement of hair does set air in motion
like a porous obstacle.

Figure 21: Free fall of hair – Hair volume, modeled as fluid, falls freely under gravity. However, the individual hair’s
length constraint quickly restricts the free falling motion to give it a bounce. At the same time, “hair fluid” collides
with the body and bursts away sidewise.

The second animation scenario is to illustrate the “fluid” motion of hair without loosing the character of individual
hair. The hair volume starts falling freely under gravity. Quickly, the individual hair’s length constraint and stiffness
restricts the free falling motion to give it a bounce, towards the end of the free fall (frame 53). At the same time,
”hair fluid” collides with the body and bursts away sidewise (frame 70). The air interaction gives an overall damping.
Observe that the hair quickly settles down, even after the sudden jerk in the motion, due to air drag and hair friction
with the body.
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Figure 22: Hair blown by wind – The “fluid hair” model is extended to “hair-air mixture”. Indeed, the complex
hair-hair, hair-air and hair-body interactions are modeled under a single framework.

The third animation in Figure 22 exclusively illustrates the effectiveness of the model in animating hair blown
by wind. Needless to say that there is an influence of airfield on individual hair. More importantly, body and hair
volume acts as a full and partial obstacle to air altering its flow.

Figure 23: Dance Sequence Demonstrating Hair Animation by Nedjma Kadi and Sunil Hadap

22



The animation methodologies are implemented in a Maya plugin – MIRAHairSimulation. We next present a
representative animation sequence which is the result of typical usage of MIRAHairSimulation by animators at
MIRALab, University of Geneva.

Figure 23 is a dance sequence of around 1 minute. The dance is motion captured using Vicon8 optical motion
tracking system. The animators used 3ds max for setting up the body deformations and the Fashionizer, MIRALab’s
flagship cloth simulation system for achieving the cloth animation. The resulting animated mesh sequence was
imported into Maya for adding hair animation. The process of setting up hair animation and computing hair
simulation including hair rendering towards the satisfactory results took around 2 weeks. The dynamic hairstyle has
around 8,000 hair clumps and the total number of polygons for the dress and the body is around 20,000. It took on
an average 243 seconds for computing one frame of the animation, whereas the rendering of the sequence took on an
average 370 seconds per PAL frame. We used RenderMan for rendering of the dance sequence. The simulation was
computed on a workstation having Intel Xeon 2.2MHz processor with 2GB RAM.

9 Summary

We have developed a powerful hair dynamics model.

• Stiffness Dynamics – We have given an elaborate model for the stiffness and inertial dynamics of an individual
hair strand. We treat the hair strand as a serial rigid multi-body system. This reduced coordinate formulation
gives very accurate and effective representation for the dynamics of non-straight (wavy) hair by providing
precise parametric definition of the bending and the torsion in three dimensions. The formulation also partly
eliminates the stiff numerical equations enabling large time-steps, thus faster simulations.

• Interaction Dynamics – The hair-hair, the hair-air interactions and the accurate hair-body collisions were one
of the few unsolved problems in computer graphics – until recently. We have exclusively addressed this problem
by making a paradigm shift and treating hair as a continuum. We model the hair-hair, the hair-body and the
hair-air interactions in a unified way using fluid dynamics. The continuum assumption proves to be a very
strong model for otherwise very complex interaction phenomena.

10 Limitations and Future Work

• We have successfully attempted to capture the detailed dynamics of straight to wavy hair typically found
in moderately complex hairstyles. However the problem of animating complex hairstyles, i.e. the hairstyles
involving curly hair or the hairstyles having intricate geometry, still eludes us. By adopting the reduced
coordinate formulation, we hoped to have completely eliminated the stiff differential equations. However, we
learned that very high bending and torsional rigidity is required to firmly maintain the intricate geometric
definition of the complex hairstyle, under gravity. At the same time the hair motion is highly damped. Both
these problems clearly put the inherent stability of the implicit integration methods in high demand.

Unfortunately, it is not possible to express the Jaccobian of the system using the articulated rigid body dynamics
that we have used. This is due to the iterative nature of the inertial dynamics formulation. In future we would
like to explore the possibility of expressing the approximate Jaccobian that corresponds to the stiff part of the
differential equations and use implicit integration methods based on that.

Another possibility is to follow the constrained dynamics. The constrained dynamics has the best possibilities
of using implicit integration methods. These methods may also provide better collision response possibilities.
However, the constrained dynamics methods severely suffer from the numerical inaccuracies in terms of drift in
the constraints. One needs to use sophisticated numerical methods to avoid the problem associated with the
drift.

The original idea of using the spring-mass-hinge systems still remains to be one of the strong possibilities we
would like to explore. The current advances in the implicit integration methods fade away the limitations
of these methods of being “stiff” in nature due to elongation constraints that are expressed as stiff springs.
However, we would have to investigate the ways of expressing the stiffness dynamics of bending and torsion, in
the framework of the spring-mass-hinge system, which in our primary opinion is complex.
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• We have implemented the collision response which is essentially the penalty method. This method does not
have good stability characteristics. We have barely managed to handle various hair-body collision situations
arising in real-life complex motions such as the dance sequence.

We would like to explore the Brian Mirtich’s work of impulsed based collision response [Mirtich 1996], which
is unconditionally stable, although it is numerically expensive.
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Abstract
This paper presents a framework for animating curly hairs using a sparse set of guide hairs. Before animation, an initial static
sparse hair model is extracted first. It can be effectively interpolated to produce a dense hair model. Random natural or artificial
curliness can then be added to the dense model through a parametric hair offset function with a randomized distribution of
parameters over the scalp.

Hair exhibits strong anisotropic dynamic properties which demand distinct animation techniques for single strands and
hair-hair interactions. While a single strand can be modeled as a multibody open chain expressed in generalized coordinates,
modeling hair-hair interactions is a more difficult problem. A dynamic model for this purpose is proposed based on a sparse set
of guide strands. Long range connections among the strands are modeled as breakable static links formulated as nonreversible
positional springs. Dynamic hair-to-hair collision is solved with the help of auxiliary triangle strips among nearby strands.
Adaptive guide strands can be generated and removed on the fly to dynamically control the accuracy of a simulation.

Fine imagery of the final dense model is rendered by considering both primary scattering and self-shadowing inside the hair
volume which is modeled as being partially translucent.

Index Terms: Hair Modeling, Guide Hairs, Hair Interpolation, Offset Functions, Hair Animation, Hair-Hair Interaction,
Static Links, Collision Detection, Open Chain, Hair Rendering

1 Introduction
Hair is a crucial element of appearance. One of the many challenges in simulating believable virtual humans and animals has
been to produce realistic looking hair. Creating realistic hair presents problems in all aspects of computer graphics technologies,
i.e. shape modeling, dynamics and rendering [14, 29, 19, 36, 1, 6, 10, 38, 16, 11, 21, 12, 9, 20, 18, 28, 40, 4]. Hair rendering and
shape modeling of fur like short hair is becoming increasingly available to animators. However, shape modeling and dynamics
of long hair has been difficult. The difficulties arise from the number of hair strands, their geometric intricacies and associated
complex physical interactions such as collisions, shadowing and static charges. These interactions contribute to both static and
dynamic appearances of hair.

The most important thing in a hairstyle lies in the way hair strands curve and deform. The causes for hair deformation can be
summarized as natural curliness, artificial hairstyling processes and deformation under external forces such as gravity, collision
and static charges. According to [13], the degree of natural curliness is indicated by the curvature of a hair strand when it is
not under any external forces. In an actual hairstyling process, many artificial procedures are provided by a hairdresser, such
as perming, combing, shearing and the application of cosmetics. The effects of perming and cosmetics are most influential to
cause long-term artificial hair deformation. They overcome natural curliness and make hairs hard to model. Lastly, hairs bend
under gravity and collision. These factors should be considered in hair dynamics. Because of artificial hairstyling and external
forces, hair strands do not grow and curve completely randomly in all directions, but follow certain global as well as local flow
patterns. For example, long hair is usually draped down, and nearby strands usually form a cluster and deform in the same way.
However, there is still small amount of randomness that distinguishes strands from each other in the way they curve.

In addition to static modeling, hair also has highly anisotropic dynamic properties, i.e. hair strands are extremely hard
to stretch but free to move laterally and interact with each other irregularly. Strands cannot penetrate each other when they
intersect; yet, each strand does not have a fixed set of neighboring strands. These unique properties inform us that a custom
designed dynamic model is necessary to achieve realistic results. The dynamics of long hair involve three aspects. First, an
individual hair strand can deform and interact with the scalp, cloth and other objects. Second, an initial hairstyle can usually be
recovered after subsequent head movement and the application of external force fields. This means a hairstyle can memorize
its original configuration. Slight movement does not erase this memory. However, radical movement may permanently damage
this memory and no complete recovery is possible. Third, there are dynamic collisions among different strands. A real person

1



can have more than 50,000 hairs. Each hair can be modeled as dozens of hair segments. Directly detecting pairwise collisions
among hair segments is neither necessary nor computationally practical. Therefore, we should model hair collisions at a higher
abstraction level.

In this paper, we present a framework for hair animation. Both modeling and animation start from a sparse set of guide
hairs. The modeling approach can generate realistic wavy hairstyles by editing a basic sheared hair model with a generic offset
function for curliness. The hair dynamics model has the following features: i) an initial hair connection model that allows
hairstyle recovery after minor movement, ii) a hair mutual collision model that considers the hair volume as a collection of
continuous strips, iii) an adaptive hair generation scheme to complement our sparse hair model. Since our framework is based
on sparse guide hairs, designing hairstyles and solving physical interactions among hairs are computationally efficient without
losing much of the quality from a method based on a dense model.

1.1 Related Work
The work we present in this paper has been made possible by previous work on hairs and other related topics. We limit the
overview to the previous work on hair modeling and dynamics, focusing on explicit hair models. In these models, each hair
strand is considered for shape and dynamics. They are more realistic and especially suitable for long hair.

There are a few methods for hair modeling. Due to effects of adhesive forces, hairs tend to form clumps. Watanabe
introduced the wisp model in [36]. Yan et al [38] modeled the wisps as generalized cylinders. The wisp model is also used in
[5]. Daldegan et al proposed to define a few characteristic hair strands in 3D and then populate the hairstyle based on them.
Hadap and Magnenat-Thalmann [11] model hairs as streamlines of an ideal fluid flow. The user can set up a few flow elements
around an object to design a hairstyle. Other researchers also tried to model and constrain hair using a single thin shell or
multiple head hull layers [16, 20].

There has also been a number of proposed methods for hair animation. Rosenblum et al [29] and Daldegan et al [6] used a
mass-spring-hinge model to control the position and orientation of hair strands. Anjyo et al [1] modeled hair with a simplified
cantilever beam and used one-dimensional projective differential equation of angular momentum to animate hair strand. None
of these previous attempts considered hair-hair interactions and hairstyle recovery after minor movement. Recently, Hadap and
Magnenat-Thalmann [12] proposed a novel approach to model dense dynamic hair as continuum by using a fluid model for lat-
eral hair movement. Hair-hair collision is approximated by the pressure term in fluid mechanics while friction is approximated
by viscosity. This work presented an elegant and promising model for hair interactions using a dense set of strands. Plante et
al proposed a wisps model for simulating interactions inside long hair [28]. Hair strands are clustered into wisps consisting of
a skeleton and a deformable envelope. Collision forces among wisps follow an anisotropic formulation. This model is suitable
for hairstyles with independently clustered wisps. Koh and Huang presented an approach by explicitly modeling hair as a set of
2D strips [18]. Collisions between hair strips are handled to create more realistic motion. Nonetheless, the volumetric aspect
of the hair is not captured.

Recently, there has been a few feature films, such as Final Fantasy and Monsters Incorporated, with realistic hair simulations
as well as some commercial software packages, such as Shave[33] and Shag[32]. Shave is considered as the best commercial
hair modeling and simulation software in the industry. However, its single strand dynamics does not look realistic, and it does
not have hair-hair collision. Final Fantasy is the film with the best simulations for long human hair. From the press releases,
Aki’s hair was modeled as a whole deformable exterior surface and some of the simulations were done using the Maya cloth
plugin. That means hairs are constrained around the surface to enable very good hairstyle recovery, but much of the lateral
freedom has been lost. In some situations, the hair flows like a piece of cloth instead of a set of individual stiff strands. On the
other hand, Monsters Incorporated has long fur simulation [9]. Each hair is considered as particles linked in a chain by a set
of stiff springs. A builder or a small snippet of code is used to generate the inbetween hairs. Hair-hair collision has not been
considered.

1.2 Overview
Let us first clarify the types of hair models used in our system. We use both sparse and dense hair models. A sparse hair model
has from dozens to hundreds of guide hairs. A dense hair model has around 50,000 strands which is close to the number of hairs
human beings have. A hair model can also be static or dynamic. A static model does not change its geometric configuration
over time. Hairs in a dynamic model change their positions and velocities over time when forces are present. Thus, we have
four combinations of hair models as shown in Fig. 1(a).

Given a geometric model of a synthetic head, our system first generate a static sparse hair model Hss using interactively
defined vector fields and splines. A Hss can be interpolated to generate a static dense hair model Hsd which can be further
edited to have curliness. The dense curly hair model thus obtained can be rendered to produce final synthetic images (Fig. 1(b)).

A Hss can also go through a different path in the system to produce hair animations. It can be the input to our simulation
subsystem. Each guide hair from the Hss is initially represented as a polyline with multiple vertices. The Hss is then equipped
with structural elements needed for dynamic simulation. For example, each vertex is considered as a rotational joint with
a hinge. Connections and triangular meshes among guide hairs are then built for simulating hair-hair interactions. Such an
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Figure 1: (a) Four types of hair models used in this paper; (b) a diagram of our hair modeling and animation system with various
data flow paths.

enhanced model is then ready for dynamic simulation. Note that these enhanced structures are ”invisible”, which means
they are never visualized during hair rendering although the effects they produce are incorporated into hair motion. Once an
animation sequence of the sparse model is generated, we obtain a dynamic sparse hair model Hds at each frame. A Hds can
then be interpolated to produce a dynamic dense model Hdd which can be rendered to produce a synthetic image corresponding
to a specific frame in an animation sequence. Curliness can certainly be added before rendering as in the static case.

In the rendering stage, we consider both diffuse and specular reflection as well as partial translucency of each strand by
integrating volume density rendering with a modified version of the opacity shadow buffer algorithm [17].

Fig. 1(b) shows the various paths in our system. Note that for curly hair, we have two levels of details. The sparse or
interpolated hair model only has large-scale deformations without fine curly details. Each strand in these models serves as the
spine of its corresponding curly strand. Curliness is added onto the interpolated dense hair model before rendering.

The organization of the rest of the paper is as follows. In the next section, we describe various aspects of hair modeling.
Section 3 presents techniques for hair animation. Hair rendering is briefly discussed in Section 4. Section 5 presents our results
and comparisons. And Section 6 provides conclusions.

2 Hair Modeling
Previous approaches either model individual hairs explicitly [1, 36, 29, 6, 5] or model all hairs collectively as a volume with
a density at each point [14, 27]. We take the explicit approach here, considering the enormous variations of hairstyles. The
input to our method is a polygonal model of a head including the scalp and face. Our overall virtual hairstyling process has the
following multiple steps:

1. select a region on the scalp for hair growth, and specify a length distribution for hairs growing from the region (shearing);

2. model the polylines for a sparse set of guide hairs using a set of interactively defined vector fields, transform the polylines
for the guide hairs into spline curves, and further adjust their deformations using their control points;

3. generate a dense hair model from the guide hairs through interpolation;

4. edit each strand in the dense model using an offset function to produce random curliness;

5. pull together nearby hairs to form clusters;

2.1 Shearing
We first need to define the region on the scalp where hair should be grown (Fig. 2(a)). The contour of this region is generated
by linearly interpolating the 2D polar coordinates of a few points, which have been interactively selected in a flattened map of
the scalp. The center of this map aligns with the top center of the scalp (Fig. 3(c)). Once specified, the same region can be
repeatedly used for multiple hairstyles.

Shearing is the starting point of hairdressing. Every hairstyle needs a corresponding hair length distribution. The length of
a particular strand is determined by the location of its root on the scalp. We use the vector between the root of the strand and
the centroid of the scalp to define this location in a 3D polar coordinate system. Hairdressers sometimes cut hair with respect
to some reference planes[39, 31]. For example, they would cut lower part of the hair to a horizontal plane at the bottom of the
neck, and pull upper part of the hair straight up and cut it to a horizontal plane on top (Fig. 2(b)). At other times, the hair would
be cut to have a smoothly varying length[39, 31].
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According to these two shearing styles. We designed two representations for hair length distributions. The first one is based
on a BSP tree (Fig. 2(b)). The plane defined for an intermediate node of the BSP divides a region on the scalp into two smaller
ones. The plane at a leaf node of the BSP actually defines a reference plane for hair-cutting. All hairs rooted in the region
corresponding to that leaf node should be cut to the reference plane given at the same leaf. This is done by setting the length of
a strand to be the length of the shortest path outside the scalp between its root and that reference plane. So part of the shortest
path may be curved and lying on the scalp. We actually use a sphere to approximate the shape of the scalp to accelerate this
calculation. Based on the second shearing style, the second representation is a linear interpolation model based on the length
specified at a few key locations on the scalp.

(a) (b)

Figure 2: (a) A polygonal head model and the selected region on scalp for hair growth; (b) a length distribution represented
with a BSP tree. Orange lines represent intermediate dividing planes; dark green lines represent reference planes at the leaf
nodes.

(a) (b) (c)

Figure 3: (a) A visualization of a vector field generated from two field primitives. One of the primitives is a vortex in front
of the forehead. The orientation at each point is pseudo-colored with brightness indicating field strength; (b) the initial static
sparse hair model extracted from the vector field in (a); (c) a user interface for the 2D flattened map of the scalp. The green
dots represent the roots of the sparse guide hairs shown in (b).

2.2 Modeling Sparse Guide Hairs
To generate a detailed hair model with around 50,000 strands, we start with a sparse set of guide hairs uniformly distributed over
the scalp. Each guide hair is initially represented as a polyline which is obtained by tracing a trajectory through an interactively
defined global vector field [34]. To perform the tracing, we start from the root of the guide hair on the scalp. At every step, we
generate a new segment of the polyline along the current direction of the vector field. This is repeated until the guide hair has
reached its predefined length.

The global vector field is actually a superposition of multiple vector field primitives with local influence. Since this approach
is similar to the scheme in [11] which makes use of ideal fluid flow fields, we briefly introduce the concept and our adaptations
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(a) (b) (c)

Figure 4: (a) As shown here, a thin ellipsoidal vector field primitive can be used for dividing hairs; (b) the magnetic field
induced by a linear or arc current can be used as a perming roller to wrap hair around; (c) a field primitive that can generate a
volumetric wave in the hair.

below. A vector field primitive is a simple vector field with a rigid transformation between the world coordinate system and its
local coordinate system. The rigid transformation can be interactively edited to change the position and orientation of the local
coordinate system. Each field primitive is responsible for one large feature in the hair flows. For example, we can use one field
primitive to bend hairs towards the back of the head; or make the hairs on the forehead curve differently from those on the back
of the head.

The orientation and strength of a vector field primitive at a certain point are provided by two separate (procedurally defined)
functions. To achieve local influence, the strength of a field is actually a product of the inherent field strength and a spatial
term that diminishes with increasing distance from a reference point in the field. In practice, we have used three common
functions for the spatial term, namely, uniform, inverse power and a smoothly decreasing function connecting two constants. It
is straightforward to define the first two functions. The smoothly decreasing function is defined as

SD(r) =




s0, r ≤ r0;
0.5(s0 + s1) + 0.5(s0 − s1) cos( r−r0

r1−r0
π), r0 < r < r1;

s1, r ≥ r1

(1)

where a cosine function connects two constant parameters s0 and s1. Either s0 or s1 can be set to zero. Local influence can
be achieved by setting s1 to zero. Fig. 3 shows a sparse hair model extracted from a superposed vector field. Some of the field
primitives we have used in practice are shown in Fig. 4.

The locality of a vector field primitive can also be specified on the scalp. We can associate a list of local regions on the scalp
with a field primitive so that only hair strands growing from these regions can be affected by this field primitive. The union of
these local regions is called the domain of the field primitive.

The guide hairs are represented as polylines so far. The smoothness of the polylines can be improved by Hermite spline
interpolation. The tangent at each vertex required by a Hermite spline can be obtained by averaging the directions of the two
line segments sharing the same vertex. We can also further edit the guide hairs by transforming Hermite splines into B-splines
and interactively adjusting the positions of their control points.

Note that during this guide hair modeling stage, we can interactively make changes to the vector fields and B-splines in
real-time since the rendering time for a small number of splines in addition to the synthetic face model is minimal. This is the
reason why we choose to model sparse guide hairs first.

2.3 Hair Interpolation
Since we eventually need a dense hair model for rendering, the remaining hair strands in the dense set are interpolated from the
guide hairs. Intuitively, one could imagine a simple procedure by averaging the position of the neighboring strands. However,
this approach tends to group strands together into unnatural clusters. We adopt a more sophisticated method that produces better
interpolation results. It requires an approach for defining a local coordinate system at each potential hair root. A typical scheme
for this uses a global UP vector, such as the vertical direction, and the local normal orientation. Our interpolation procedure
works as follows:

• Find the nearest root of a guide hair and transform the segments of that guide hair from the world coordinates to its local
coordinates. Name this transformation M1.

• Take these segments in the local coordinates and transform them back to the world coordinate using the local-to-world
coordinate transformation defined at the root of the interpolated strand. Name this transformation M−1

2 .
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M−1
2 M1p (2)

The procedure is summarized as equation (2), where p is the location of the guide hair in the world coordinate, M1 and M2

are the two transformations described previously. More than one nearby guide hairs can be used together to achieve smoother
results by merging the multiple transformed guide hairs with some averaging scheme. Local clustering effects can be removed
by interpolation from multiple guide hairs. However, when discontinuities caused by vector fields like the one in Fig. 4(a) are
present, the guide hairs for interpolation should be chosen carefully so that they fall on the same side of any divider.

In summary, our procedure generates better results by taking into account the round shape of the scalp and considering both
rotation and translation between local coordinate systems.

2.4 Generating Random Curliness with an Offset Function
Given the interpolated dense model from the previous section, we still need to add natural curliness of hair strands and even
some local randomness in the sweep of each strand to create an overall natural appearance. To achieve this, we first define a
specific offset function for hair strands in a canonical coordinate system, then reconstruct curly hairs by modulating the hair
sweeps from vector fields with this function.

2.4.1 Offset Function

X

Y

Z

Figure 5: The canonical coordinate system for the hair offset function.

We assume that the underlying hair strand is a straight half line coincident with the positive z-axis of the canonical coordi-
nate system for the offset function, and the origin is at the root of this strand. The offset function is a two-component function
that returns the offsets along both x− and y− axes given a z value(Fig. 5).

According to [23], there are three primary types of natural hair waves, namely, a uniplanar wave, a dished wave and a helix.
A uniplanar wave looks very much like a planar sinusoidal wave, while a dished wave looks like a sinusoidal wave which has
been mapped onto half of a cylindrical surface with the axis of the wave lengthwise along the cylinder. [23] further presented
the author’s research results on the main reason for the formation of these waves, which is the sequence of periodical contraction
and relaxation of small-scale muscles that are in control of the various follicle configurations. Please note that an artificial helix
can also be shaped with a hair roller during perming[39] by first wrapping hairs around the roller and then removing the roller
along its symmetric axis.

We can see that all three types of hair waves can be easily represented with our offset function although we do not have to
be restricted to these types when synthesizing wavy hairs. The uniplanar wave can be represented with a sinusoidal offset for
the x-axis and a zero offset for the y-axis. A helix can be represented with a sinusoidal offset for the x-axis and a cosinoidal
offset for the y-axis. The dished wave can be represented with a sinusoidal offset for the x-axis, but the wave for the y-axis is
a more complicated function which always returns a positive offset value and whose period is at most half of the period of the
wave for the x-axis.

Although a variety of parametric or procedurally defined functions can be used, we designed a specific class of offset
functions with a fixed number of parameters as follows.

Wave(t) = Mag(t) sin(2π(Rt + P0)t + φ0) + Bias (3)

where t is the function variable; R, P0, φ0, and Bias are constant parameters; and

Mag(t) = A + Bt exp(−αt) + C(1 − exp(−βt) + D exp(γ(t − t0)) (4)

where A, B, C, D, α, β, γ, and t0 are all constant parameters. We can see this is basically a sinusoidal wave with variable
period whose initial value is P0, and with variable magnitude whose initial value is A. If R > 0, the period of the wave becomes
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smaller as we move closer to the tip of the hair, which is a common phenomenon exhibited by real wavy hairs. The last three
terms in Eq.(4) allow us to vary offset magnitude at different parts of a hair strand. The second term reaches a maximum at
t = 1/α; the third term becomes close to C with sufficiently large t; and the last term increases exponentially especially when
t > t0 which can be used to model curly features at the end of a strand. With two sets of different parameters, this function can
model offsets along both x- and y-axes. All the examples shown in this paper use this parameterization of the offset function.

2.4.2 Editing Hair Sweeps with the Offset Function
To modulate a hair sweep from vector fields with the above offset function, we need to consider the hair sweep as the parametric
axis for the variable t in the offset function. For a certain point p on the sweep, its corresponding t value is the accumulated arc
length between p and the root of the sweep. Thus, we can obtain a pair of offset values for each point on the sweep.

We still need to define a local coordinate system at each point on the sweep to impose the offsets. The z-axis of the local
system at a point p is always the tangential direction of the sweep at p. We use the vector between the point p and the centroid
of the scalp as an UP vector for the local system. Then both x- and y- axes can be derived from the UP vector and the z-axis.
So p is originally at the origin of this local system. Its new location is always on the local xy-plane and is determined by the
pair of offsets returned from the offset function. [30] presents a similar idea to edit details of a 2D curve.

The same editing operation can still be applied even when the hair sweep has dynamics which makes it deform from
frame to frame. However, every local coordinate system, once initialized as above, should follow the same transforms that its
corresponding point on the sweep undergoes.

2.4.3 Random Curliness
To achieve natural appearance, obviously we should not edit all hair sweeps with the same set of offset parameters. On the
other hand, random hair curliness is far from white noise. The author of [23] observed smoothly spatially varying initial phase,
φ0 in Eq.(3), in hair waves. During perming, usually a local cluster of hair is wrapped around a roller, which also suggests that
hair waves from that cluster share similar shapes. In practice, we set up a multi-scale grid over the scalp in a polar coordinate
system, and generate smoothly varying random parameters for the offset function using Perlin’s noise[26] given the mean and
standard deviation of each parameter for each scale.

2.5 Hair Clustering
Because of cosmetics and static charges, nearby hairs tend to form clusters. This effect is partially dealt with in Section 2.4.3
when multiscale noise is synthesized. Hairs growing from the same cell in the highest resolution grid have the same parameters
for the offset function, therefore tend to be close to each other. Here we introduce an additional offset to further reinforce
this effect when the previous treatment is not sufficient. One hair is chosen to be the representative of the hairs growing from
the same cell in the grid. Each vertex on other hairs from the same cell is forced to move by a certain distance towards its
corresponding vertex on the representative hair. Hair clusters become obvious after this step.

Fig. 6(a) shows the interpolation result. Fig. 6(b)-(c) shows the difference the offset function can make on hair appearance.
Fig. 6(d) demonstrates the effectiveness of the hair clustering step.

(a) (b) (c) (d)

Figure 6: (a) A static dense hair model interpolated from the sparse model shown in Fig. 3(b); (b) an improved version after
modulating the intial model in (a) with random offset functions at a fine scale; (c) another version by modulating the model in
(a) with random offset functions at a coarse scale. (b) and (c) look quite different because of different offset functions; (d) the
appearance of the model in (b) is improved by further clustering nearby hairs;
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3 Hair Animation
The modeling approach in the previous section only generates static hair models. To elaborate hair animation techniques, let us
begin with single hair dynamics. Then, a sparse model for hair-hair interactions will be introduced.

3.1 Single Hair Strand Dynamics
There are few techniques developed on modeling single hair strand dynamics [29, 1, 6, 12]. Some of the previous work
[29, 6] models a single strand as particles connected with rigid springs. Each particle has 3 degrees of freedom, namely one
translation and two angular rotations. This method is simple and easy to implement. However, individual hair strand has
very large tensile strength, and hardly stretches by its own weight and body forces. This property leads to stiff equations
which tend to cause numerical instability unless very small time steps are used. We model each hair strand as a serial rigid
multibody chain. There is a rotational joint between two adjacent segments, and translational motion is prohibited. A single
chain can be considered as a simple articulated body with joint constraints. Dynamic formulations of articulated bodies are
addressed in robotics [7, 25] as well as graphics literature [37]. Both constrained dynamics with Lagrange Multipliers [2]
and generalized(or reduced) coordinate formulation [7] can be used equally efficiently. The dynamics of a serial multibody
chain and its generalized coordinate formulation have recently been applied to single hair simulation in [12]. Since our main
contributions in hair animation concern hair-hair interactions, we describe the formulation of the serial multibody chain and
our adaptations briefly in this section.

3.1.1 Kinematic Equations
In our model, we assume that the twisting of a hair strand along its axis is prohibited. This reduces each rotational joint in
a strand to have two degrees of freedom. A rotational joint can be decomposed into two cascading one-dimensional revolute
joints each of which has a fixed rotation axis [25]. The rotation angles at the 1D revolute joints represent the set of generalized
coordinates in a multibody chain system. If a 1D revolute joint has a rotation axis ω along with a point q on the axis, the matrix

transformation corresponding to a rotation around ω by an angle θ can be given by the exponential map eξ̂θ [25] where

ξ̂ =
[

ω̂ v
0 0

]
, ω̂ =


 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 ,

and v = −ω × q. Suppose a hair segment has n preceding 1D revolute joints in the chain and a local frame is defined at
the segment. Assume the local-to-world transformation for this frame when all preceding joint angles are zero is gst(0). The
updated local-to-world transformation after a series of rotations at the n joints becomes

gst(Θ) = eξ̂1θ1eξ̂2θ2 · · · eξ̂nθngst(0) (5)

Thus, given an arbitrary series of joint angles, the position of every vertex in the chain can be obtained using this product
of exponentials of its preceding joints. The exponential map actually is just another way of formulating a 4 × 4 homogeneous
matrix. It can be calculated in constant time [25]. Therefore, the whole chain can be evaluated in linear time.

3.1.2 Dynamics of Hair Strand
Given the mapping in Eq. 5 which is from the set of generalized coordinates (joint angles) to real 3D world coordinates, hair
strand simulation can be solved by integrating joint angular velocities and accelerations. Forward dynamics of a single strand
in terms of joint angular velocities and accelerations can be solved using Featherstone’s algorithm [7] or Lagrange’s equations
for generalized coordinates [25]. The former method is more efficient with a linear time complexity. Detailed formulations of
these methods can be found in [7, 25]. In practice, we adopt an implementation of Featherstone’s algorithm by Kuffner and
Mirtich [24] for the stable simulation of cascading 1D revolute joints.

Both external and internal forces are indispensable for single hair dynamics. In this paper, hair-hair interactions are formu-
lated as external forces in addition to gravity. The actual form of these external forces will be discussed in Section 3.2. At each
joint of the hair chain, there is also an internal actuator force to account for the bending and torsional rigidity of the strand.
We model the actuator force as a hinge with a damping term as in [29]. Since the hairs from our modeling stage may have
deformations even when there are no external forces, we define a nonzero resting position for each hinge. Any deviation from
the resting position results in a nonzero actuator force trying to reduce the amount of deviation. This setup helps a strand to
recover its original shape after subsequent movement.

3.1.3 Strand-Body Collision
In order to simulate inelastic collision between the hair and human body, there is no repelling forces introduced by the human
body. Once a hair vertex becomes sufficiently close to the scalp or torso, it is simply stopped by setting its own velocity to be the
same as the velocity of the human body while all the following vertices in the multibody chain are still allowed to move freely.
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Any acceleration towards the human body is also prohibited at the stopped vertices which, however, are allowed to move away
from or slide over the human body. Frictional forces are added as well to those vertices touching the human body. Collision
detection is handled explicitly by checking penetration of hair strand particles with the triangle mesh of the body parts.

This scheme cannot guarantee that the hair vertices do not penetrate other colliding surfaces in the middle of a time step.
If penetration does occur, we need to move the part of the penetrating strand outside the surface in the same time step so that
no penetration can be actually observed. It is desirable that the tip of the hair, if outside the surface, remains unchanged during
this adjustment in order to introduce minimal visual artifacts. To achieve this goal, inverse kinematics [25] can be applied
to adjust the positions of the intermediate vertices between the tip and the adjusted locations of the penetrating vertices. In
our implementation we opt for a simpler method using iterative local displacements. Starting from the root, we move the first
penetrated vertex p1 to its nearest valid location p′1, and then propagate this displacement by moving the subsequent vertices.
More specifically, assume the following vertex of p1 is p2, we compute the vector v′ = ||p2 − p1|| v

|v| , where v = p2 − p′1. The
new location for p2 after the adjustment is p′2 = p′1 + v′. We repeat this for all the vertices following p1 until reaching the tip.

3.2 A Sparse Model for Hair-Hair Interaction
We devise a novel scheme to simulate only a sparse set of guide hairs for complex hair-hair interactions. A guide hair essentially
represents a local hair wisp. Therefore, it should have the mass of a whole wisp instead of a single hair. We first introduce
an elastic model to preserve the relative positions of the hair strands. The static links model the interaction of the hair due to
interweaving, static charges and hairstyling. Second, the hair-hair collision and friction is simulated using the guide hairs and
a collection of auxiliary triangle strips. Last, we provide an adaptive hair generation technique to complement our sparse hair
model. The proposed method models the hair dynamics efficiently with good visual realism.

3.2.1 Static Links
It is evident that the hair strands tend to bond together with other strands in their vicinity because of cosmetics, static charges
and the interweaving of curly hairs. As a result, the movement of each strand is on most part depended on the motion of other
strands. These interactions can have relatively long range effects besides clustering in a small neighborhood. While hair local
clustering is modeled by default using our sparse model, longer range interaction is not. Furthermore, slight head movements or
external forces exerted on the hair do not change a hairstyle radically. This is partly because each hair strand has its internal joint
forces and resting configuration. However, an individual hair’s recovery capability is quite limited especially for long hairs.
The bonding effect among hairs plays an important role. Dramatic movements can break the bonds created by hairstyling, static
charges or interweaving.

To effectively model the bonding effect, we may view the hair as one elastically deformable volume. Traditional models
for deformable bodies include 3D mass-spring lattice, finite difference, and finite element method [35, 41]. These models
approximate the deviation of a continuum body from its resting shape in terms of displacements at a finite number of points
called nodal points. Although the vertices of hair strands may serve as the nodal points inside this hair volume, directly applying
traditional models is not appropriate for the following reasons. We are only interested in an elastic model for hair’s lateral
motion. Under strong external forces, the continuum hair volume may break into pieces which may have global transformations
among them. Therefore, using one body coordinate system for the whole hair volume is inadequate.

We propose to build breakable connections, called static links, among hair strands to simulate their elastic lateral motion
and enable hairstyle recovery. These connections are selected initially to represent bonds specific to a hairstyle since different
hairstyles have different hair adjacency configuration. The static links enforce these adjacency constraints by exerting external
forces onto the hair strands. Intuitively, one can use tensile, bending and torsional springs as bonds to preserve the relative
positions of the hair strands. In practice, we opt for a simpler and more efficient method using local coordinates.

We introduce a local coordinate system to each segment of the hair strands. For each segment, we find a number of closest
points on nearby strands as its reference points. To improve the performance, an octree can be used to store the hair segments
for faster searching. We transform these points, which are in the world coordinates, to the segment’s local coordinates ( Fig. 7a).
The initial local coordinates of these reference points are stored as part of the initialization process. Once strands have relative
motion, the local coordinates of the reference points change and external forces are exerted onto these strands to recover their
original relative positions (Fig. 7b). We model these external forces as spring forces with zero resting length. One advantage
of using the local coordinates is that it eliminates the need for bending and torsional springs.

Let us consider a single hair segment h with m reference points. The initial local coordinates of these reference points are
represented as po

h,i, i = 1, ..., m, while their new local coordinates are represented as pn
h,i, i = 1, ..., m. The accumulated force

this segment receives due to static links can be formulated as

fh =
∑

i

[
ks

h,i|li| − kd vi · li
|li|

]
li
|li| (6)

We compute the spring force using the Hook’s law in (6), where ks
h,i is the spring constant for the i-th reference point of
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segment h, and kd is the universal damping constant. Since the resting length in our case is zero, |li = pn
h,i − po

h,i| is multiplied
by ks

h,i directly. vi is the time derivative of li.

b) c)a)

Figure 7: Each hair segment has its own local coordinate system where the forces from all static links (dashed lines) are
calculated.

Similar to the bonds of stylized hair, static links can be broken upon excessive forces. We set a threshold for each static
link. If the length change of a static link is greater than the threshold, the static link breaks (Fig. 7c). Once a link is broken,
the damage is permanent; the link will remain broken until the end of the simulation. To be more precise, we model the spring
constant ks

h,i as shown in Fig. 8. As |li| increases beyond δ1, the spring constant begins to decrease gradually and eventually
becomes zero at δ2 as the spring snaps. The spring constant will not recover even when |li| shrinks below δ1 again. This
nonreversible spring model would make the motion of the hair look less like a collection of rigid springs.

When external forces recede, the original hairstyle may not be completely recovered if some of the static links have been
broken. New static links may form for the new hairstyle with updated neighborhood structures.

δ 1 δ 2

k s

l

Figure 8: Spring constant ks
h,i vs displacement graph.

3.2.2 Dynamic Interactions
Elastic deformation only introduces one type of hair-hair interactions. Hairs also interact with each other in the form of collision.
To effectively simulate hair-hair collision and friction using a sparse hair model, we need to have a dynamic model that imagines
the space in between the set of sparse hairs as being filled with dense hairs. Collision detection among the guide hairs only is
much less accurate. Let us consider a pair of nearby guide hairs. The space between them may be filled with some hairs in a
dense model so another strand cannot pass through there without receiving any resistance. To model this effect, we can either
consider the guide hairs as two generalized cylinders with sufficiently large radii to fill up the gap between them, or build an
auxiliary triangle strip as a layer of dense hair between them by connecting corresponding vertices. The triangular mesh can
automatically resize as the guide hairs move, but it is trickier to resize the generalized cylinders. Therefore, we propose to
construct auxiliary triangle strips between pairs of guide hairs to approximate a dense hair distribution. If we consider the set
of dense hairs collectively as a volume, a triangle strip represents a narrow cross section of the volume. A number of such cross
sections can reasonably approximate the density distribution of the original hair volume.

Since the distance between a pair of vertices from two hairs may change all the time during simulation, we decide to use
the distance among hair roots. A triangle strip is allowed as long as two guide hairs have nearby hair roots. Each triangle only
connects vertices from two guide hairs, therefore is almost parallel to them. Note that the triangle strips may intersect with
each other. This does not complicate things because each triangle is treated as an independent patch of hair during collision
detection. The triangles are only used for helping collision detection, not considered as part of the real hair geometry during
final rendering. They do not have any other dynamic elements to influence hair movement. However, some triangles may
have nearby static links which can help them resist deformation. The triangle edges are not directly constructed as static links
because static links only connect nearby hair segments while not all the segments connected by triangles are close to each other.
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As in standard surface collision detection, two different kinds of collision are considered, namely, the collision between
two hair segments and the collision between a hair vertex and a triangular face. Since each guide hair represents a local hair
cluster with a certain thickness, a collision is detected as long as the distance between two hair elements falls below a nonzero
threshold. Once a collision is detected, a strongly damped spring force is dynamically generated to push the pair of elements
away from each other [3]. Meanwhile, a frictional force is also generated to resist tangential motion. A triangle redistributes
the forces it receives to its vertices as their additional external forces. Both the spring and frictional forces disappear when the
distance between the two colliding elements becomes larger than the threshold. The spring force in effect keeps other hairs
from penetrating a layer corresponding to a triangle strip. An octree is used for fast collision detection. All the moving hair
segments and triangles are dynamically deposited into the octree at each time step. An octree node has a list of segments and
triangles it intersects with.

Hair also exhibits strong anisotropic dynamical properties. Depending on the orientation of the penetrating hair vertex and
the triangular face, the repelling spring force might vary. For example, hair segments of similar orientation with the triangle
strip should experience weaker forces. We scale the repelling spring force according to the following formula.

fr = λ(1 − |a · b|)fs (7)

The original spring force fs is scaled in Eq. (7), where a is the normalized tangential vector of the hair at the penetrating
vertex, b is the interpolated hair orientation on the triangular face from its guide hair segments, and λ is a scale factor. When a
and b are perfectly aligned, the scaled force fs becomes zero. On the contrary, when they are perpendicular, the spring force is
maximized. The collision force between two hair segments can be defined likewise.

The hair density on each hair strip is also modeled as a continuum. It can be dynamically adjusted during a simulation. If
there is insufficient hair on a strip, the strip can be broken. This would allow other hair strands to go through broken pieces of a
hair strip more easily. This is reasonable because sometimes there is no hair between two hair clusters while at the other times,
there may be a dense hair distribution. In our current implementation, the length of the triangle edges serves as the indicator
for when the hair density on a strip should be adjusted. If a triangle becomes too elongated, it is labeled as broken. If a triangle
is not broken, the magnitude of the collision force in Eq. (7) is made adaptive by adjusting the scale factor λ according to the
local width of the triangle strip to account for the change of hair density on the triangle. Unlike the static links, this process
is reversible. Once the two guide hairs of a strip move closer to each other again, indicating the hair density between them
is increasing, the generated collision force should also be increased, and the triangle strip should be recovered if it has been
broken. If every triangle strip in our method is modeled as broken from the beginning, our collision model becomes similar to
the wisp model in [28] since every guide hair in our method actually represents a wisp.

(a) (b)

Figure 9: (a) For a brush, triangle strips can be inserted between horizontally and vertically adjacent guide hairs. (b) For a
human scalp, triangle strips are inserted only between horizontally adjacent guide hairs

It may not be necessary to build triangle strips among all pairs of nearby strands. For a simple brush in Fig. 9a, we can only
insert triangle strips between horizontally and vertically adjacent guide hairs. For human hair, we sometimes find it practically
good enough to build triangle strips between guide hairs with horizontally adjacent hair roots (Fig. 9b). This is because hairs
drape down due to gravity, and the thickness of the hair volume is usually much smaller than the dimensions of the exterior
surface of the hair volume. In such a situation, using triangles to fill the horizontal gaps among guide hairs becomes more
important.

3.2.3 Adaptive Guide Hair Generation
Initially, we select the guide hairs uniformly on the scalp. However, it is not always ideal to pick the guide hairs uniformly.
During a run of the simulation, some part of the hair may be more active than the other parts. For example, when the wind is
blowing on one side of the hair, the other side of the hair appears to be less active. As a result, some computation is wasted
for not so active regions. For not so active regions, fewer guide hairs combined with interpolation is sufficient. However, for
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more active regions, it is desirable to use more guide hairs and less interpolation for better results. We design an adaptive hair
generation method to complement our sparse hair model.

We generate additional guide strands adaptively during the simulation to cover the over interpolated regions. The distribu-
tion and the initial number of guide strands are determined before the simulation. However, as the simulation proceeds, more
hair strands can be added. The hair model may become more and more computationally intensive if hairs can only be inserted.
We notice that the inserted hairs may become inactive again later in the same simulation. Therefore, we also allow them to be
deleted if necessary. To keep our hair strands relatively sparse, we may also set a limit on how many adaptive hair strands can
exist at the same time. Picking the right place to generate adaptive guide hair is important.

We use a simple technique to detect where to add and remove adaptive guide hairs. For each pair of guide strands, we
compute the distance between all pairs of corresponding vertices of the strands. If any pair of vertices become farther away
than a threshold, it indicates that the hair in between these two guide strands is relying too much on the interpolation. We then
add an adaptive guide hair half-way between these two strands. At the same time, we exam the adaptive guide hairs from the
last step of the simulation. If some of the guide strands are no longer needed (when the two neighboring strands are sufficiently
close), we remove those strands and save them for future hair generation. When an adaptive hair is generated, its initial vertex
positions and velocities are obtained by interpolating from those of the two initiating guide hairs. If there was a triangle strip
between these two initiating hairs, it should be updated to two strips with the new hair in the middle. The new adaptive hair
then follows its own dynamics from the next time step, colliding with nearby strands and triangle strips. To avoid discontinuous
motion on the rest of the hairs, a new adaptive hair does not spawn static links with other strands.

3.2.4 Adaptations for Curly Hair
In our approach (Fig. 1(b)), curliness is modeled in the last step before rendering. Guide hairs of a curly hair model are actually
quite straight except for large-scale deformations. They represent the spines of curly hairs. However, the mutual interactions
among the guide hairs should reflect the features in the final dense hair model since the motion part of the guide hairs is still
going to be used for rendering even after hair curliness has been changed. In the case of a dense curly hair model, there should
be stronger static links because curly hairs have more interweaving effects, and weaker hair-hair collisions because curliness
generates a soft cushion effect among hairs. In practice, we follow these intuitions to set up the strength of mutual interactions.

3.3 Dynamic Dense Hair Modeling
Hair animations are generated in two passes in our system. In the first pass, the set of guide hairs are simulated from frame to
frame with all the external forces and hair-hair interactions described in Section 3.2. During the simulation of each individual
guide hair as described in Section 3.1, forces due to hair-hair interactions are treated as additional external forces. Hair-object
collisions are also detected during this simulation. By the end of the first pass, we have obtained the positions and velocities of
each guide hair at each frame.

In the second pass, we generate a dense hair model for each frame according to the guide hair positions. Curliness modeled
using our offset function in Section 2.4 can also be added if necessary. To maintain the consistency from frame to frame, each
hair in the dense model is assigned a fixed offset function throughout the whole sequence. Therefore, at each frame, we merely
modulate the same offset function onto the underlying deforming spine to produce the desired curly strand. However, the offset
function may still vary from strand to strand.

Since small objects may miss all the guide hairs, but still hit some of the strands in the dense model, we decide to run
hair-object collision detection for each (curly) hair in the dense model. Although this involves a certain amount of computation,
the computing power available nowadays on a single processor workstation has already become sufficient to perform this task
in a very short amount of time. If a hair penetrates an object, a scheme similar to the one described in Section 3.1.3 is used to
adjust the hair.

4 Hair Rendering
Although the primary focus of this paper is on hair modeling and animation, we will discuss briefly our approach to rendering
realistic hair. The kind of physical interaction considered here includes self-shadowing and light scattering. Hair strands are
not completely opaque. Therefore, the interaction between light and hair leads to both reflection and transmission. When a
dense set of hairs is present, light gets bounced off or transmitted through strands multiple times to create the final exquisite
appearance. Basically, we can view a dense hair as a volume density function with distinct density and structures everywhere.
The hair density is related to the local light attenuation coefficient while the structures, including the local hair orientation, are
related to the phase function during scattering. In this section, we discuss how to efficiently render animated sequences of hair
with high visual quality by considering the above factors.

While secondary scattering can improve the rendering quality, primary scattering and self-shadowing are considered much
more important. Since the rendering performance is our serious concern when generating hair animations, we decide to simulate
the latter two effects only. This is equivalent to solving the following volume rendering equation [15],
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L(x, �ω) =
∫ x

x0

τ (x′, x)σ(x′)
∑

l

f(x′, �ωl, �ω)Il(x′)dx′ (8)

where L(x, �ω) represents the final radiance at x along direction �ω, f(x′, �ωl, �ω) is the normalized phase function for scattering,
Il(x′) is the attenuated light intensity from the l-th light source, and τ (x′, x) = exp(− ∫ x

x′(α(ξ) + σ(ξ))dξ where α(x) is
the absorption coefficient and σ(x) is the scattering coefficient. As in volume rendering, the final color of a pixel can be
approximated as the alpha-blending of the colors at a few sample points along the eye ray going through that pixel. To perform
alpha-blending correctly, the sample points need to be depth-sorted. In terms of hair, the sample points can be the set of
intersections between the eye ray and the hair segments. Note that the input to the rendering stage is a large number of hair
segments resulted from the discretization of the spline interpolated dense hairs. In order to obtain the set of intersections at each
pixel efficiently, scan conversion is applied to the segments and a segment is added into the depth-sorted list of intersections at
a pixel once it passes that pixel. Antialiasing by supersampling each pixel can help produce smoother results.

To finish rendering, we still need a color for alpha-blending at each of the intersections. It should be the reflected color
at the intersection. The reflectance model we use is from [10]. It is a modified version of the hair shading model in [14] by
considering partial translucency of hair strands. Since other hairs between the light source and the considered hair segment
can block part of the incident light, the amount of attenuation is calculated using the opacity shadow maps [17] which can
be obtained more efficiently than the deep shadow maps [22]. Basically, the algorithm in [17] selects a discrete set of planar
(opacity) maps perpendicular to the lighting direction. These maps are distributed uniformly across the volume being rendered.
Each map contains an approximate transmittance function of the partial volume in front of the map. Thus, the approximate
transmittance of the volume at any point can be obtained by interpolating the transmittance at corresponding points on the two
nearest opacity maps. In our implementation, exponential interpolation has been used since the attenuation of light through a
volume is exponential. The exponential interpolation can be written as

exp(−α1
d2

d1 + d2
− α2

d1

d1 + d2
)

where exp(−α1) and exp(−α2) are the attenuation at the two nearest maps, and d1, d2 are the distance from the point to the
two maps, respectively.

When the hair is rendered together with other solid objects, such as the head and cloth, which we assume to be completely
opaque, the color of the solid objects needs to be blended together with the hair’s during volume rendering. The solid objects
also have their separate shadow buffer for each light source. Anything in the shadow of the solids receives no light while those
solids in the shadow of the hair may still receive attenuated light.

5 Results

5.1 Hair Modeling
We have applied our modeling technique to a variety of hairstyles with different degrees of curliness, and obtained satisfactory
results. Some of the hairstyles are shown in Fig. 10. They look natural and realistic. Vector field primitives can either be
interactively adjusted by the user or be randomly generated. Typically, we need around ten vector field primitives to interactively
model a hairstyle. The time for user interaction is usually between one and two hours. On the other hand, Fig. 10(d) uses 273
field primitives randomly generated and distributed over the scalp.

For each local cluster of hairs, the parameters in Eq. (3) are randomly generated. The mean and standard deviation of each
parameter at each scale are fixed for all hairs, and are specified by the user. For the results shown here, we use two levels of
scales to generate the random parameters. The final hair waves in Fig. 10(a) and in Fig. 6(d) actually have the same average
magnitude, 5mm. However, hair waves in Fig. 6(d) look more random because they have a much shorter period and a much
larger standard deviation for the initial phases of the waves. The hairs in Fig. 10(c) have an average magnitude of 1mm to give
a smoother look.

5.2 Hair Animation
We have also successfully tested our hair dynamic model in a few animations. In our experiments, we used around 200 initial
guide hairs during the animation of the sparse model with 15 segments for each strand. During each time step, a strand is
interpolated with a Hermite spline and discretized into around 50 smaller segments. Based on this set of resampled sparse hairs,
a dense hair model with 50,000 strands is generated on the fly at each frame for the final rendering. The guide hair animation
stage takes about one second per frame on a Pentium III 800MHz processor. Hair interpolation, hair-object collision detection
and antialiased rendering takes another 20 seconds per frame on a Pentium 4 2GHz processor. Fig. 11(a)-(b) show a sparse
hair model with static links and the dense interpolated model. Static links can prevent excessive changes to a hairstyle during
motion (Fig. 11(c)-(d)) as well as provide hairstyle recovery after motion. Fig. 12 shows two synthetic renderings of animated
hair.
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(a) (b) (c) (d)

Figure 10: Four hairstyles produced from our techniques. These hairstyles have different length distributions and different
levels of curliness.

(a) (b)

(c) (d)

Figure 11: (a) A sparse hair model displayed with static links, (b) a rendered image of the interpolated dense model, (c)-(d) a
comparison between hairs with and without static links. The image in (c) has static links, while the one in (d) does not.

5.2.1 Comparison with Ground Truth
A synthetic head shaking sequence is compared with a real reference sequence in Fig. 13. The hair strands in the real sequence
obviously have mutual connections since they move together. We use relatively strong static links to simulate this effect. The
head motion in the synthetic sequence was manually produced to approximate the real motion. Nonetheless, the synthetic hair
motion reasonably matches the real one.

5.2.2 Dynamic Collision
To demonstrate the effectiveness of our hair collision strategy, we built a simple braided hair model and let it unfold under
gravity. There are basically two sets of guide hairs in the model, and static links and triangle strips are only built among hairs
from the same set. Therefore, the two sets can move away from each other. A comparison is given between images from two
synthetic sequences in Fig. 14, one with collision detection and the other without. In the simulation without collision detection,
hairs go through each other. But in the sequence with collision detection, hairs unfold correctly in a spiral motion.

5.2.3 Hair-Air Interaction
Hair-air interaction is traditionally modeled as air drag which only considers the force exerted on the hair from the air. However,
the velocity field of the air is also influenced by the hair. The method in [12] can be adapted to our model for hair-air interaction.
That is, the air is simulated as a fluid and it generates a velocity field. Each hair vertex receives an additional external force
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from the air. This force can be modeled as a damping force using the difference between the velocity of the air at the vertex
and the velocity of the hair vertex itself. The force exerted from the hair back to the air can be modeled similarly. If the air
is simulated using a voxel grid [8], the velocity of the hair at each grid point can be approximated using the velocities of the
nearby hair vertices and auxiliary triangles.

Fig. 15(top) shows images from a hair animation with a wind. The wind velocity field is driven by an artificial force field
with a changing magnitude and direction. The head and torso are considered as hard boundaries in the wind field while the
wind can go through hairs with a certain amount of attenuation.

5.2.4 Brush Simulation
In addition to human hair interactions, we simulate the dynamics of brushes. Fig. 16 shows images from a sequence with
a sphere colliding with a synthetic brush. The mutual interactions are weak when only a small number of hairs drape down
behind the sphere. However, when more and more hairs drape down, they stabilize much faster because of the collisions.

5.3 Hair Rendering
An artistic flavor can also be added to the images by rendering the hair with increased translucency and specularity. Fig.
15(bottom) shows some re-rendered images from one of the wind blowing sequences with higher specularity. Fig. 17 shows a
comparison between normally rendered hair and hair with high translucency.

Figure 12: Two synthetic renderings of animated hair.
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Figure 13: A comparison between a simulated hair animation and a real video. The hair motion is caused by the underlying
head motion. Top row: images from the simulated hair motion sequence. Bottom row: images from the real video. The
simulated hair motion approximately matches the real hair motion in the video.

Figure 14: A comparison between two hair animations with and without collision detection. Top row: braided hair unfolds
correctly in a spiral motion because of the collision detection. Bottom row: hairs penetrate each other when there is no collision
detection.
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6 Discussions and Conclusions
In this paper, we presented a unified framework for hair modeling and animation. Both modeling and animation start from a
sparse set of guide hairs. The proposed modeling approach can generate realistic wavy hairstyles by editing a basic sheared hair
model with a generic offset function for curliness. we also presented an integrated model for hair animation. Specifically, the
dynamic model can perform the following functions: the static links and the joint actuator forces enable hairstyle recovery; hair-
hair collision becomes more accurate by inserting auxiliary triangle strips and performing collision detection among strands as
well as between strands and triangle strips; stable simulation of individual strands is provided by the formulation for multibody
open chains. Although our model is not originally designed for hairs without obvious clustering effects, with our multiple hair
interpolation scheme, visual results for this kind of hair turned out quite reasonable.
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Figure 15: Top row: short hair in a changing wind. Bottom row: hair rendering with increased translucency and specularity to
convey an artistic flavor.

Figure 16: Two images from a sequence with a sphere colliding with a brush.

Figure 17: Two synthetic renderings of animated hair. The hair in the right image has much higher translucency.
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In this talk, I will discuss issues related to hair rendering and introduce practical 
algorithms for hardware accelerated hair rendering.  More specifically, I will 
introduce a simple antialiasing algorithm amenable for hardware accelerated hair 
drawing, the opacity shadow maps algorithm for hair self-shadow computation, and a 
programmable shader implementation of Kajyia-Kay hair shading model.  All the 
examples are shown in an OpenGL-fashion, but it should be straightforward to adapt 
these algorithms to other standard APIs such as Direct3D.   

Topics covered are 

• Issues in rendering hair with graphics hardware 
• A brief overview of self-shadow computation algorithms (shadow buffer, deep 

shadow maps, and opacity shadow maps) 
• Self-shadows generation with graphics hardware (opacity shadow maps) 
• Bin sort based visibility ordering for antialiased hair drawing 
• Local shading computation with programmable graphics hardware  

 
Additional Materials 
1. Tae-Yong Kim and Ulrich Neumann, Opacity Shadow Maps, Eurographics 
Rendering Workshop 2001 (reprinted in the course note). 
2. Tae-Yong Kim, Modeling, Rendering, and Animating Human Hair, Ph. D. 
Dissertation, University of Southern California, 2002 (available at 
http://graphics.usc.edu/~taeyong) 
 
 



1. Introduction 
 

Hair is considered one of the most time-consuming objects to render.  There are many 
reasons why hair rendering becomes such a time-consuming task. 

First of all, when rendering hair, we deal with a very complex geometry.  The number 
of hair strands often ranges from 100,000 (for the case of human hair) to some 
millions (animal fur).  Moreover, each hair strand can have geometrically non-trivial 
shape.  For example, let’s assume that each hair strand is drawn with 20 triangles.  A 
simple multiplication says that we’d be dealing with a large geometry consisting of 
several or tens of million triangles!  This geometric intricacy complicates any task 
related to hair rendering.   

Second issue is the unique nature of the hair geometry.  A hair strand is extremely 
thin in diameter (~0.1 mm), but can be as long as it grows.  This property causes a 
severe undersampling problem, aliasing.  The sampling theorem dictates that the 
number of samples to reconstruct a signal (in our case, hair geometry) should be 
higher than the maximum frequency of the signal.   Assume that we draw a hair strand 
as thin triangle strips.  According to the sampling theory, the size of a pixel1 should be 
smaller than half the thickness of the thinnest hair.  In practice, this is equivalent to 
having an image resolution of 10,000 by 10,000 pixels when the entire screen is 
approximately covered by somebody’s hair.  Moreover, when hairs are far away, the 
required sampling rate should increase!  The current display devices hardly reach this 
limit, and are not likely to reach this limit in the near future.  Thus, correct sampling 
becomes a fundamental issue for any practical hair rendering algorithms. 

Third issue is the optical property of hair fibers.  A hair fiber not only blocks, but also 
transmits and scatters the incoming light.  As an aggregated form, hairs affect the 
amount of lighting onto each other.  For example, a hair fiber can cast shadows onto 
other hairs as well as receive lights transmitted through other hairs.  Due to the unique 
geometric shape of hair, the amount of light a hair fiber reflects and scatters varies 
depending on the relationship between hair growth direction, light direction, and eye 
position.  This effect is known as anistropic reflectance, and defines one of the most 
prominent characteristics of a hair image  (you can easily notice that the direction of 
the highlight is always perpendicular to the direction of hair growth). 

All these issues (number of hairs, sampling issues, and complexity of lighting) make 
hair rendering a computationally demanding task.  In a naïve form, a software 
renderer 2  (that is not parallelized, and does not utilize any graphics hardware 
capability) will demand significant computation time.  Fortunately, recent progresses 
in graphics hardware shed some lights.  The fastest GPUs at the time of this writing 
(march, 2003) can now render up to 80 million triangles per second, or 2 ~ 3 million 
triangles per frame (30 fps).  More promisingly, the raw performance of current GPUs 
increases at a faster rate than that of the general purpose CPUs.  So, it seems natural 
to consider hardware acceleration methods for hair rendering.  However, one should 
                                                 
1 A pixel is essentially a point sample.  The extent of a sampling region and the pixel sample (color, 
depth…) should be differentiated.  For convenience, we let the size of a pixel denote that of the 
sampling region. 
2 Here a ‘software renderer’ refers to a rendering program that is solely dependent on general purpose 
CPUs.   In contrast, a ‘hardware renderer’ refers to a rendering program that utilizes specialized 
graphics hardware (such as OpenGL API).  In the note, the term ‘hardware’ will not really mean a 
dedicated hardware for hair rendering although there is no reason why there can’t be such hardware!  



keep in mind that most existing graphics cards are not designed for small objects such 
as hairs.  These create a number of difficulties when we use graphics hardware for 
hair rendering.  

2. Tiny, tiny triangles 

A hair fiber is naturally represented with a curved cylinder.  Thus, it is tempting to 
draw a hair as some tessellated version of a cylinder (Figure 1).   

This model is totally valid if we were living in a microscopic world where we see just 
a few hairs in our view.  In practice, we deal with so many hairs that this naïve 
method would generate too many triangles.  Moreover, a hair is so thin that the curved 
shape of the cylinder will be rarely noticeable.  Alternatively, we can approximate 
hair as a flat ribbon that always faces towards the camera (Figure2).  In practice, this 
model approximates hair very well since variation of color along hair’s thickness is 
often ignorable.  

We can further simplify the geometry and draw hair as a connected line strips (Figure 

Figure 1. A hair as tessellated cylinder. 

Figure 2. Hair as a flat ribbon. 



3). Although mathematically a line should be infinitesimally thin, a line in this case is 
associated with some artificial thickness value (often a pixel’s width).   

For the convenience of discussion, I will use the line strip as our hair representation, 
but discussions and algorithms here equally apply to the polygonal ribbon 
representation.  Let’s assume that a hair strand is approximated with a number of 
points p0, p1,… pn-1 and its associated colors c0,c1,…cn-1.  The following code will 
draw a hair as a connected line strip. 

 
 DrawHair(p0,p1,..,pn-1,c0,c1,….cn-1) 

 { 

  glBegin(GL_LINE_STRIP) 

  glColor3fv(c0); 

  glVertex3fv(p0); 

  glColor3fv(c1); 

  glVertex3fv(p1); 

  … 

        glColor3fv(cn-1); 

  glVertex(pn-1); 

  glEnd()  

} 

Routine1. DrawHair 

 
Optimistically, by calling this function repeatedly, you might think that we will able 
to draw as many hairs as we want.  Unfortunately, it is not that simple… 

Figure 3. Hair as a line strip. 
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When many lines are drawn, the approach will suffer from severe aliasing artifacts as 
shown in the image above (without antialiasing).  Current graphics hardware almost 
always relies on the Z-buffer algorithm to determine whether a pixel’s color should be 
overwritten.  The z-buffer algorithm is a point sampling algorithm.  A pixel’s color 
(or depth) is determined entirely by a limited number of point samples (the default 
setting being just one sample per pixel).   

See Figure 5.  Assume that three lines cover a pixel and each line’s color is red, green, 
and blue, respectively.  If each line covers exactly one third of the pixel’s extent, the 
correct color sample of the pixel should be an averaged color of the three colors - gray.  
Unfortunately, a single point sample will cause the pixel to change in color to either 
of the three.  So, instead of gray (a true sample), the pixel’s color will alternate in red, 
blue, and green, depending on the point sample’s position.   

Point samples

Computed sample color
True sample

Figure 5. Consequence of point samplingFigure 5. Consequence of point sampling

 



Now we are aware that the Z-buffer, the most common sampling algorithm in many 
graphics hardware, is not designed for small objects such as hair.  In a point sample-
based algorithm such as Z-buffering, the number of point samples determines the 
quality of the final image.  The required number of samples is closely related to the 
complexity of the scene.  The rule of thumb is that there should be at least as many 
samples as the number of objects that fit in a pixel.  That’s why we often don’t see 
much aliasing when we draw relatively large triangles, but in hair.  There are ways to 
increase the number of samples.  The most common method is the accumulation 
buffer.  In this method, the number of samples per pixel corresponds to the number of 
accumulation steps performed.   However, accumulation buffers tend to be slow in 
many OpenGL implementations and the accumulation steps must be performed at 
every frame.   

The thickness of a hair is often much smaller than the size of a pixel.  So, it seems 
natural to draw a line with small alpha value and the attempt will prove fine for one 
line.  However, as more lines (hairs) are drawn, we will encounter a similar problem 
we had before.  The alpha blending in OpenGL requires that the scene should be 
sorted by the distance from the camera.  Otherwise, the image will not look right – 
you will see through the pixels (Figure 6).   

Correct Wrong

Figure 6. Alpha blending needs correct visibility 
ordering
Figure 6. Alpha blending needs correct visibility 
ordering

 
In short, we need to 1) sample each hair correctly, 2) draw each hair with the correct 
thickness, and 3) blend the colors of all the hairs correctly.  Many current graphics 
hardware offer decent, if not perfect, hardware accelerated antialiased line drawing 
features.  To draw each hair with correct sampling, we can exploit the feature.  To 
draw each hair with the correct thickness, we set the alpha value of each line to a 
small (<1.0) value.  To blend the colors correctly, we use the alpha blending with the 
correct visibility order.  Both hardware line antialiasing and alpha blending require a 
correct visibility order.  So, we will do the visibility ordering by ourselves, departing 
from the troublesome Z-buffering.   



2.1 Further Readings 
For rigorous discussions on issues with point sampling, refer to the following papers. 

• D. Mitchell, Consequences of stratified sampling in graphics, SIGGRAPH 
Proceedings, 1996, 277-280 

• T. Lokovic and E. Veach. Deep shadow maps, SIGGRAPH Proceedings, 2000, 
385-392 

• A. R. Smith. A Pixel is Not A Little Square, A Pixel is Not A Little Square, A 
Pixel is Not A Little Square! (And a Voxel is Not a Little Cube), Tech Memo 
6, Microsoft, Jul 1995 

 

3. Visibility ordering for antialiased hair drawing 
For correct visibility computation, we need to draw hair far to near (or near-to-far as 
long as it is consistent).  Assume that each hair is broken into line segments, and we 
draw a large number of such line segments for the entire hair model.  Antialiasing can 
be performed in two steps.  First, the visibility order of a given hair model is 
determined based on the distance to the camera (Figure 7).  The bounding box of all 
the segments is sliced with planes perpendicular to the camera.  Each bin, a volume 
bounded by a pair of adjacent planes (drawn as a colored bar in Figure 7), stores 
indices of segments whose farthest end point is contained by the bin.  After other 
objects (e.g., a head mesh) are drawn, the depth buffer update is disabled.  Then, the 
segments are drawn as antialiased lines such that the ones indexed by the farthest bin 
are drawn first. 

Figure 7. Bin-based Visibility OrderingFigure 7. Bin-based Visibility Ordering
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The end points of line segments are grouped into a set of bins that slice the entire 
volume (Figure 7).  The bin enclosing each point is found by 
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, where i is the index for the bin and N is the number of bins.  D is the distance from 
the point to the image plane.  Dmin and Dmax are minimum and maximum of such 
distances, respectively.  ε is a constant such that  

N
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<ε . 

Given a point pr  and the camera positioned at cr  looking in direction of d
r , the 

distance to the image plane is computed by 
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Precise visibility ordering of lines is difficult to obtain by depth sorting alone.  When 
lines are nearly parallel to the image plane, the errors are small, provided the spacing 
between bins is dense enough.  However, when line segments extend over many bins, 
the visibility order cannot be determined either by maximum depth or minimum depth.  
Such lines could be further subdivided.  However, on the other hand, the pixel 
coverage of such a line tends to be small.  For example, when a line is perpendicular 
to the image plane, the pixel coverage of the line is at most a single pixel.  In practice, 
using maximum depth for every line produces good results. 

In the drawing pass, each bin is accessed from the farthest to the closest.   For each 
bin, the line segments whose farther points belong to the bin are drawn.  Each line 
segment is drawn with hardware antialiasing.  The color of each line segment is 
accumulated using  

glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA) 

The bin-based visibility ordering algorithm can be summarized as follows. 

 
Visibility ordering pass: 

For every line segment,  

1. compute the depth of the end points.   

2. using the larger depth, compute the bin location 

3. add the index of the line to the bin. 

Drawing pass: 

1. Enable the depth buffer 

2. Draw all the other scene objects 

3. Disable the depth buffer 

4. For each bin, from the farthest bin to the nearest, 

 Draw all the line segments whose indices are stored in the bin 

 

Note that since the line segments are drawn in a correct order, all the hardware 
features can be now happily exploited (antialiased line drawing, alpha blending).  
Although simple, the method is fast and converges to exact ordering as hair strands 
are drawn with more segments.  The visibility-ordering algorithm runs at about 
700,000 lines per second on a Pentium III 700Mhz CPU.  Another benefit is that we 
can separate the visibility ordering pass from the actual drawing pass.  For example, 
during interactive modeling, the viewpoint does not change much from frame to 
frame.  This coherence enables performing the visibility ordering periodically and 
reusing the computed order for subsequent frames.  In Figure 8, the image in the 



middle was drawn with a previously computed visibility order where the head model 
was rotated by 30 degree along the y-axis.  Although the difference image shows that 
there’s some discrepancy against the correct order (left image), visual degradation is 
not so objectionable.  In contrast, depth buffer based super-sampling methods (e.g., 
accumulation buffer) must compute visibility at every frame.   

Figure 8. Coherence of Visibility OrderFigure 8. Coherence of Visibility Order
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In addition, the alpha values of line segments can control the perceived thickness of 
hair strands.  As hair strands become thinner, super-sampling methods would require 
more samples while alpha value changes suffice in the visibility-ordered hair model 
(Figure 9).   

 

Figure 9. Thickness Change Figure 9. Thickness Change 
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4. Self-shadows 
Hairs cast shadows onto each other, as well as receive and cast shadows from/to other 
objects in the scene.  Especially, self-shadows create crucial patterns that distinguish 
one hairstyle from others.  Without self-shadows, the underlying structure of a hair 
model cannot be correctly visualized (Figure10).  This section introduces an efficient 
shadow generation algorithm that makes full use of graphics hardware accelerator. 

No shadowsNo shadows With shadowsWith shadows

Figure 10. Self-shadows are crucial for volumetric hairFigure 10. SelfFigure 10. Self--shadows are crucial for volumetric hairshadows are crucial for volumetric hair

 
There are mainly two issues with self-shadows in hair rendering – the thin geometry 
of the hair fiber and the translucency.  The thin geometry of hair causes serious 
aliasing artifacts in shadow computation in a very similar way as in the previous 
section.  This is not surprising if we note that the shadow computation is just one 
instance of the more general visibility computation problem.  For hair drawing, we 
computed the visibility of each hair from the camera.  For shadow computation, we 
need to compute the visibility of each hair from the light source.  If the hair sees more 
lights, it will receive more illumination from the source, and if the hair can’t see the 
light, it will be left dark (or shadowed).   

 

Another important aspect in hair self-shadowing is that a hair fiber often does not 
completely block the incoming light.  It not only reflects and scatters the incoming 
illumination, but often lets the light pass through.  This unique property of the hair 
fiber is the most clearly observable in the ‘back lighting’ situation where the 
silhouette shines brightly when the light is put behind (Figure 11).  



Figure 11.  Translucency of hairFigure 11.  Translucency of hair
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In the previous section, we discussed the problems in using Z-buffer for hair 
rendering.  When the Z-buffer is used for shadow computation, it is called ‘shadow 
map’.  In this depth-based shadow map (DBSM), the scene is rendered from the 
light’s point of view and the depth values are stored.  Each point to be shadowed is 
projected to the light’s camera and the point’s depth is checked against the depth in 
the shadow map.   

One attractive feature of the traditional shadow map is that the shadow map can be 
generated with hardware by rendering the scene from the light’s point of view and 
storing the resulting depth buffer.  However, severe aliasing artifacts can occur with 
small semi-transparent objects.  As discussed in the previous section, in a dense 
volume made of small primitives, depths can vary radically over small changes in 
image space.  The discrete nature of depth sampling limits DBSM in handling such 
objects.  The binary decision in depth testing inherently precludes any translucency.  
Thus, DBSM is unsuited for volumetric objects such as hairs.   

The transmittance τ(p) of a light to a point p can be written as   

 )exp()( Ω−=pτ ,  where ∫=Ω l
t dll0 ')'(σ          (1) 

In (1), l is the length of a path from the light to the point, σt is the extinction (or a 
density) function along the path.  Ω is the opacity value at the point.   

The deep shadow maps (DSM) algorithm originally presented at SIGGRAPH 2000 
proposed that each pixel stores a piecewise linear approximation of the transmittance 
function instead of a single depth, yielding more precise shadow computation than 
DBSM.  Deep shadow maps account for the two important properties of hair shadows.     

 



Partial visibility:  In the context of shadow maps, the transmittance function can be 
viewed as a partial visibility function from the light’s point of view.  If more hairs are 
seen along the path from the light, the light will be more attenuated (occluded), 
resulting in less illumination (shadow).  As noted earlier (recall Figure 5), visibility 
can change drastically over the pixel’s extent.  The transmittance function handles this 
partial visibility problem by correctly integrating and filtering all the contributions 
from the underlying geometry.    

Translucency: a hair fiber not only reflects, but also scatters and transmits the 
incoming light.  Assuming that the hair fiber transmits the incoming light only in a 
forward direction, the translucency is also handled by the transmittance function.   

Despite the compactness and quality, however, due to the underlying data structure 
(linked list), a hardware implementation becomes tricky with deep shadow maps.       

The Opacity Shadow Maps (or OSM) was originally designed as a fast alternative to 
DSM for computing the transmittance function.  Opacity shadow maps (or OSM) 
algorithm uses a set of parallel opacity maps oriented perpendicular to the light’s 
direction (Figure 12).   
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Figure 12. Opacity Shadow MapsFigure 12. Opacity Shadow Maps

 
By approximating the transmittance function with discrete planar maps, opacity maps 
can be efficiently generated with graphics hardware.  On each opacity map, the hair 
model is rendered from the light’s point of view, clipped by the map’s depth (Figure 
13).  Instead of storing depth values, each pixel stores Ω, the line integral of densities 
along the path from the light to the pixel.  The opacity values from adjacent maps are 
then sampled and interpolated during rendering.   
 



Di
Figure 13. Opacity MapsFigure 13. Opacity Maps

 
 

 

 

4.1 Basic Algorithm  
Opacity shadow maps heavily rely on graphics hardware and operate on any bounded 
volumes represented by standard primitives such as points, lines and polygons. (In our 
context, hairs are represented as a cluster of lines.)  The hair volume is sliced with a 
set of opacity map planes perpendicular to the light’s direction.  The scene is rendered 
to the alpha buffer, clipped by each map’s depth.  Each primitive contributes its 
associated alpha value.  The alpha value is a user-controllable parameter that depends 
on the size (thickness) and the optical property of hair.  It also depends on the 
resolution of the opacity maps.  Each pixel in the map stores an alpha value that 
approximates the opacity relative to the light at the pixel’s position.  The opacity 
values of adjacent maps are sampled and linearly interpolated at the position of each 
shadow computation point, to be used in a shadowed shading calculation.    

 

The pseudo code in Routine 2 uses the following notation.  P is the set of all the 
shadow computation sample points (or simply shadow samples).  N is the number of 
maps and M is the number of shadow samples.  Di is the distance from the opacity 
map plane to the light (1 ≤ i ≤ N).  Pi is a set of shadow samples that reside between 
Di and Di-1.  pj is jth shadow sample (1 ≤ j ≤ M).  Depth(p) returns a distance from p to 
the light.  Ω(pj) stores the opacity at pj.  τ(pj) is the transmittance at pj.  Bprev and 
Bcurrent are the previous and current opacity map buffers. 



Routine 2.  Opacity Shadow Maps 
1. D0 = Min (Depth(pj)) for all pj in P (1 ≤ j ≤ M) 
2. for (1 ≤ i ≤ N)      (Loop 1)      
3.     Determine the opacity map’s depth Di from the light  
4. for each shadow sample point pj in P (1 ≤ j ≤ M)   (Loop 2)   
5.      Find i such that Di-1≤  Depth(pj) < Di   
6.         Add the point pj  to Pi.                
7. Clear the alpha buffer and the opacity maps Bprev, Bcurrent.     
8. for (1 ≤ i ≤ N)      (Loop 3)   
9.     Swap Bprev and Bcurrent.        
10.     Render the scene clipping it with Di-1 and Di. 
11.     Read back the alpha buffer to Bcurrent. 
12.      for each shadow sample point pk in Pi   (Loop 4) 
13.          Ω prev = sample(Bprev , pk)      
14.        Ω current = sample(Bcurrent , pk)      
15.           Ω = interpolate (Depth(pk), Di-1, Di, Ω prev, Ω current)  
16.           τ(pk) = e-κΩ      
 
In loop 1, the depth of each map is determined.  Uniform slice spacing is reasonable 
for evenly distributed volumes.  Prior to shadow computation, shadow samples are 
prepared.  In our hair representation, the primitives (line segments) tend to be very 
small and thus the end points of lines often suffice.  Thus, for each hair strand, we 
choose the endpoints of line segments as shadow samples.  More samples can be 
taken if needed.  When many samples are required for each primitive, it may be useful 
to pre-compute the visibility and use only the visible points as shadow samples.   
Loop 2 prepares a list of shadow samples that belong to each buffer.  Note that this 
procedure is exactly the same as the bin-based visibility sorting method in section 3.  
Thus, the same code can be reused here.   

Each pixel in the map stores the opacity value, which is a summation that produces 
the integral term Ω in equation (1).  Thus each line segment can be rendered 
antialiased with full hardware support in any order (the order can be arbitrary due to 
the commutative nature of integration).  The alpha buffer is accumulated each time 
the volume is drawn with the OpenGL blend mode glBlendFunc(GL_ONE,GL_ONE).  
The depth buffer is disabled.  Clipping in line 10 ensures correct contribution of alpha 
values from the primitives and culls most primitives, speeding up the algorithm.  

As loop 3 and 4 use only two opacity map buffers at a time, the memory requirement 
is independent of the total number of opacity maps computed.  In loop 4, the shadow 
is computed only once for each sample.  So, the amortized cost of the algorithm is 
linear in the number of samples.  The overall complexity is O(NM) since the scene is 
rendered for each map, but the rendering cost is low with hardware acceleration.   

The sample function in loop 4 can be any standard pixel sampling function such as a 
box filter, or higher-order filters such as Bartlett filter and Gaussian filter.  For the 
examples shown here, a 3x3 averaging kernel is used.  Such filtering is possible 
because alpha values are stored instead of depths.  The sampled opacity values Ω prev, 
Ω current are linearly interpolated for each point pk (Figure 14).     
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Figure 14. Interpolating the opacity valuesFigure 14. Interpolating the opacity values

 
A higher order interpolation may be used.  For example, four buffers can be used for a 
cubic-spline interpolation.   

A volume turns opaque as the opacity Ω reaches infinity.  The quantization in the 
alpha channel limits the maximum amount of opacity that a pixel can represent.  A 
constant κ in line 15 controls the scaling of opacity values such that e-κ = 2-d, where d 
is the number of bits per pixel (for example, κ is about 5.56 for 8 bit alpha buffer).  
Thus, an opacity value of 1.0 represents a complete opaqueness.   
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Figure 15. Scaling the opacityFigure 15. Scaling the opacity
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4.2 Additional Clipping  
A simple modification can yield a significant speedup in the basic algorithm.  When 
shadow sample points coincide with the end points of the line segments, we can 
exploit the fact that the line segments are depth-sorted.  At each opacity map 
generation step, we can check if the line segments reside in the current depth range 
(Di-1 and Di).  The line 10 in Routine 2 (shown below) 
10.      Render the scene clipping it with Di-1 and Di.  

can be augmented as  
10.a          For each line segment (p1,p2) , compute Depth(p1) and Depth (p2). 

10.b          Draw the line only if Di-1 <.Depth(p1) < Di  or Di-1 <.Depth(p2) < Di 

With this additional scene culling scheme, the observed time complexity becomes 
close to O(N). 

4.3 Examples 

Figure 16 illustrates a test scene where the number of maps (N) was varied.  Note that 
the tradeoff between speed and image quality can be achieved by varying the number 
of maps.  The rendering time is linear in the number of maps when the basic 
algorithm was used.  With the modification in section 4.2, the rendering time becomes 
sub-linear in the number of maps (about 12 secs for N = 500) since the number of 
primitives drawn to each map decreases as the number of maps increases. 

N = 7(5secs) N = 15(7secs) N = 30(10secs)

N = 60(16secs) N = 100(25secs) N = 200(46secs) N = 500(109secs)

No shadow

Figure 16. ResultsFigure 16. Results

 



4.4 Further Readings 
More details of the original deep shadow maps algorithm as well as an excellent 
discussion on aliasing in hair shadows can be found in 

• T. Lokovic and E. Veach. Deep shadow maps, SIGGRAPH Proceedings, 2000, 
385-392 

For more discussions and results for the Opacity Shadow Maps algorithm, refer to 
• Tae-Yong Kim and Ulrich Neumann, Opacity Shadow Maps, Eurographics 

Rendering Workshop 2001 (reprinted in the course note). 

A modification on the transmittance function computation in OSM is suggested in  

• Johnny Chang, Jingyi Jin, Yizhou Yu, A Practical Model for Mutual Hair 
Interactions, ACM SIGGRAPH Symposium on Computer Animation, July 
2002 (reprinted in the course note). 



5. Shading Model 
A shading model describes how much a hair fiber reflects or transmits in a given 
direction when the hair fiber is fully lit.  Since global aspects such as shadows are not 
accounted for, the term local shading model is often used.  It is often assumed that the 
shape of a hair strand on its local neighborhood is a straight cylinder (Figure 17).  A 
hair shading model is often constructed the function of three vectors, L, the light’s 
direction, V, the viewing direction, and T, the tangent vector.   

Figure 17.  Hair shading geometry
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The most commonly used shading model is the one originally developed by Kajiya 
and Kay.  The model is composed of a Lambertian diffuse component and an 
anistropic specular component.  In the Kajiya-Kay model, a Lambertian cosine falloff 
function is used for diffuse lighting.  The closer the light is to the normal, the more 
illumination is received.   

),sin( LTK dDiffuse =Ψ         

, where Kd is a scaling parameter for the diffuse illumination and (V1,V2) denotes the 
angle between two vectors V1,V2.  

A non-diffuse (specular) illumination is computed using the viewing vector V.  The 
specular illumination becomes the biggest when the half vector H = (L + T) / 2 
becomes perpendicular to the tangent vector.  The Kajiya-Kay model computes  

p
sSpecular VTLTVTLTK )],sin(),sin())([( +⋅⋅=Ψ        

Thus, the amount of light a hair fiber scatters in the direction of V can be written as 
p
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Multiplying the transmittance function τ computed from section 4, the (shadowed) 
color of a point on the hair fiber can be expressed as  

)( SpecularDiffuseHair ΨΨτΨ +=         

To be accurate, the transmittance function and shading model should be computed at 
every pixel sample.  However, the colors tend to smoothly vary along hair’s length.  
In practice, computing the shaded color only at the end points of line segments often 
yield good results (analogous to the Gouraud shading for polygons).   

5.1 Further Readings 
Improvements on the original Kajiya-Kay model were introduced by Banks [1994] 
and Goldmann [1997].  Read the following papers for more details. 

 
• J. Kajiya and T. Kay, Rendering fur with three-dimensional textures, 

SIGGRAPH Proceedings, Vol. 23, pp. 271-280, 1989. 
• D. C. Banks, Illumination in diverse codimensions, SIGGRAPH Proceedings, 

pp. 327-334, 1994 
• D. Goldman, Fake Fur Rendering, SIGGRAPH Proceedings, pp. 127-134, 

1997. 

6. Data structure 

Since shadows are view-independent, it is often convenient to precompute the shadow 
values at the end points of each line segment and reuse the shadow values during the 
viewpoint change.  For each line segment, we use the following data structure. 
 

 
The position of each end point comes from the hair model.  The tangent vectors are 
derived from the position.  With these position and tangent vectors, the (unshadowed) 
colors are computed with the shading model.  The shadow values are computed with 
the opacity shadow maps algorithm. 

Then, the entire procedure of hair rendering using graphics hardware can be 
summarized as 

Routine 3 

Setup pass: 
 Compute the visibility order  

 Compute shadow values 

Drawing pass 
 For each line segment Li ordered due to the visibility order 

Shadow2 Color2 Tangent2Pos2 

Shadow1 Color1 Tangent1Pos1 



  Set thickness (alpha value) 

 Compute the shaded color (Li.color1) 

 Compute the shaded color (Li.color2) 
C1 = Li.color1 * Li.shadow1 

C2 = Li.color2 * Li.shadow2 

glBegin(GL_LINES) 

  glColor3fv(C1) 

  glVertex3fv(Li.Pos1) 

  glColor3fv(C2) 

  glVertex3fv(Li.Pos2) 

  glEnd()  

Since line segments are connected, all the information shown above is duplicated.  A 
more efficient implementation is thus to store all the position, color, tangent 
information in a vertex table and let each line be represented by indices to the table, as 
shown in Figure 18. 

..........

..........

..........

ShadowNColorNTangentNPosNN

..........

Shadow4Color4Tangent4Pos44

Shadow3Color3Tangent3Pos33

Shadow2Color2Tangent2Pos22

1

Index

Shadow1Color1Tangent1Pos1

ShadowColorTangentPos

Vertex table

N-1
..
..
4
3
2
1

V1

NM
....
....
54
43
32
21

V2Index

Line table

Figure 18.  Data structures

 

7. Hair shading with Programmable Vertex Shader 

The computation of shaded color can be further accelerated with the use of 
programmable vertex shader.  In this case, the color field will be computed on the fly 
inside the vertex shader.  Routine 3 will change as follows.   

Routine 4 

Setup pass: 
 Compute the visibility order  

 Compute shadow values 



Drawing pass: 
 For each line segment Li ordered due to the visibility order 

  Set thickness (alpha value) 

  Draw Li with programmable shader 

The inputs to the vertex shader are the camera position, the light position, shading 
parameters, position, tangent vector, and shadow values for each vertex.  An example 
implementation of a hair shader is given in Figure 19 as nVidia CG program. 

 
 
 

Figure 19. cg program for Kajiya-Kay shading model 



Figure 20.  Hair shaded in realtime

 
7.1 Further Readings 
For more details on the CG compiler, refer to CG manual that can be downloaded 
from http://www.nvidia.com 
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Abstract 
 
 
We have implemented a practical pipeline for the digital creation 
of hair and fur which has been used in productions like “Stuart 
Little”, “Stuart Little 2”, “Hollowman”, “Harry Potter”, and “The 
ChubbChubbs”. Our approach combines geometrical, animation 
and rendering techniques in order to provide a flexible, robust and 
efficient method to generate realistic looking animal fur or human 
hair. Rather than modeling tens of thousands of individual hairs, 
we define a smaller number of “control” hairs from which the 
final dense fur coat or hair is generated. The main calculations are 
divided up into determining the static features (instancing) and the 
animated features (interpolating) of each final hair. We have been 
able to achieve convincing looks of dry and wet fur coats as well 
as different styles of human hair. The approach also produces 
seamless hair/fur across the underlying NURBS skin patches. 
 
This paper describes the original fur pipeline implemented for the 
first “Stuart Little” movie. We have since optimized,  extended 
and adjusted our approach in several ways, mainly to facilitate the 
creation of human hair. Some of these extension are briefly 
addressed at the end of this paper and in the presentation. 
 
Keywords: Computer animation, hair, fur, natural phenomena, 
animals. 
 
1 Introduction 
 
One of the many challenges in modeling, animating and rendering 
believable mammals in computer graphics has been to produce 
realistic-looking fur. A real fur coat is made up of hundreds of 
thousand of individual, cylindrical hairs covering the skin, and 
fulfills vital functions such as protection against cold and 
predators. Between animals as well as across the body of 
individual animals, the look and structure of these hairs vary 
greatly with respect to length, thickness, shape, color, orientation 
and under/overcoat composition. Fur is closely related to human 
hair, except that the latter is often longer and restricted to certain 
regions of the body. 
Generating convincing hair/fur in computer graphics requires 
dedicated solutions to a number of problems. First, it is infeasible 
to individually model and animate all of the huge number of hairs 
of a fur coat. Real hair also interacts with light in many intricate 
ways, and due to simplified models of hairs, special shading 
methods are necessary to account for effects like reflection, 
opacity, self-shadowing or radiosity. Other problems which can 
arise are aliasing of hairs and collision of hairs, both between 
neighboring hairs and between hairs and the underlying surface. 
Finally, hair is not static, but moves and breaks up as a result of 
the motion of the underlying skin and muscles, as well as due to 
external influences, such as wind and water. 
We have developed a practical hair/fur pipeline to address some 
of the above problems. Our goals have been to provide a tool 
which generates realistic, life-like fur, which is flexible (easy to 
modify and add new effects), robust (reliable to push lots of 
frames through), efficient (as inexpensive as possible, in time and 
storage), and easy to use by animators. 

With these goals in mind, we take a brief look at other approaches 
to this problem in section 2. Our basic hair/fur pipeline is 
discussed in section 3 along with hair modeling, instancing and 
interpolating. Section 4 addresses some special effects we 
implemented into the current pipeline, such as clumping and 
special shaders we have developed for hair. In section 5, we 
discuss some improvements we have made since the first 
implementation. Finally, section 6 concludes our approach. 
 
2 Related Work 
 
Approaches to generating hair and fur can traditionally be divided 
into two basic categories: modeling [2, 3, 5, 7, 12, 13, 14, 15, 20] 
and rendering techniques [8, 11, 16, 17]. In the former case, 
individual hair primitives are geometrically defined, which can 
produce good close-up hair looks, but requires enormous 
computational and storage expenses. In the latter case, the geome-
try of hairs is “faked” through special rendering techniques to 
create the illusion of fur. These approaches address the anisotropic 
surface characteristics of a fur coat, and can result in convincing 
distant hair or fur shots, but lack close-up hair detail, and don’t 
provide a means for animating hairs. Because of the particular 
geometry of hairs, most modeling approaches also address some 
of the special shading requirements indicated in the previous 
section. The most recent approach for human hair [12] solves 
some of these issues, and introduces some effective multi-level 
hair styling tools. 
There are also a number of proprietary solutions to generating hair 
and fur used for effects in motion pictures, but little detail has 
been published. DreamQuest Images is said to have developed fur 
software for “Mighty Joe Young”, Pixar has produced techniques 
for Hannah in “Toy Story” and Geri in the animation short “Geri’s 
Game”. Most recently, they have developed a convincing system 
used in “Monsters, Inc.” [9]. As described in the next section, we 
have incorporated some of Pixar’s available technology into our 
fur pipeline, namely RenderMan’s1 3.7 Curve and Procedural 
primitives. Rhythm & Hues has developed proprietary software 
for “Mouse Hunt”, the Polar Bear commercials and “Babe” to 
generate fur. Industrial Light & Magic (ILM) has applied a 
published “fake fur” method [8] for “101 Dalmations”. Their 
probabilistic rendering algorithm with special illumination and 
opacity functions generates believable short-fur distance shots. 
ILM also developed software for the movie “Jumanji”. Santa 
Barbara Studios implemented their own hair pipeline for 
“American Werwolf in Paris” and was able to produce striking 
dry and wet hair effects. Finally, Digital Domain developed 
special hair shaders for the mice men in “The Island of Dr. 
Moreau”. 
 
Most 3D animation systems today also include some hair/fur 
module, such as Alias|Wavefront’s Maya2 and 3D Studio MAX 
from Discreet. Finally, Joe Alter [1] has been implementing a 
comprehensive and powerful system for hair modeling, animation 
and rendering. 
 

                                                 
1RenderMan is a registered trademark of Pixar. 
2 Based on the system first developed at Santa Barbara Studios. 



Despite all these successful hair/fur generation techniques, we 
decided to implement our own method for several reasons. First, 
back in 1997 when we started production on the first Stuart Little 
movie, there were no real off-the-shelf fur packages available. 
Second, by  taking our own approach, we have been able to more 
easily integrate the software into our production pipeline to 
generate the required hair/fur effects, and to achieve the goals 
mentioned in the previous section. Also, some of the existing 
research techniques and commercially available packages didn’t 
seem to be flexible, powerful and robust enough for our purposes. 
For example, the Maya fur tool lacks the necessary controls for 
long hair, hair clumping, and is tied into the Maya renderer (while 
we have been using RenderMan in our production pipelines). Of 
course, we have incorporated several ideas from existing 
techniques, such as texture maps for static hair features, or using a 
combination of modeling and rendering procedures. 
 
3 Basic Approach 
 
Our hair/fur implementation is characterized by the following 
key-features, which are an integral part of the pipeline (Figure 1): 
 
- all the hairs are “grown” on NURBS surface patches, since 

our characters are modeled this way. For example, for the 
mouse in our examples, we have approximately 120 patches 
for head, chest, back, arms, hands and tail with fur on them. 
Our fur algorithm therefore needs to incorporate continuity 
across NURBS patch boundaries (see section 3.2). 

- we don’t model each individual hair, but only some “control” 
hairs, from which the final fur coat is determined (on the 
order of 1 control hair for every few hundred final hairs; see 
section 3.2). This simplifies combing and animation of hairs, 
and reduced file sizes and computation times throughout the 
pipeline. 

- the fur calculations are divided into a static (once per shot; 
see instancing, section 3.3) and an animated part (once per 
frame; see interpolating. section 3.4). This provides effi-
ciency: static hair features are pre-calculated after modeling, 
and frame-changing features are determined at render time. 

- delay fur calculations as much as possible throughout the 
modeling-animation-rendering pipeline. This way, we 
minimize the amount which needs to be specified and carried 
along at each step. 

- use of texture maps to specify static hair features (e.g. length, 
density, width of hairs; see section 3.3). This improves 
flexibility and efficiency, since maps provide fine-control 
and can be swapped for a different look without complete 
recalculation. 

- all of the hair files (control hairs, instanced hairs, texture 
maps) throughout the pipeline are NURBS patch-based, e.g. 
there is one hair length map for each patch which has hair on 
it. This provides consistency and ease of adding new 
features. 

- use of the RenderMan [19] 3.7 RiCurves primitives and 
RiProcedural dynamic shared object (DSO) feature for 
rendering hairs (see section 3.4). Since each NURBS patch 
and all the hairs on it are procedurally generated at render 
time, the file sizes of the RenderMan .rib files are reduced, 
and we achieve greater flexibility in tweaking hair 
parameters. Also, the RiCurves procedure renders the hairs 
efficiently, and our custom hair shaders (see section 4.4) 
provide subtle hair-effects. 

- effects like clumping (static and animated), breaking of hair 
(this feature is not discussed here; please refer to [4] for more 
detail), or wind effects are seamlessly integrated into the 

pipeline and can be turned on and off without recalculation 
of all of the hair files (see section 4.2 and 4.3). 

 
3.1 Pipeline 
 
Figure 1 illustrates the major components of our fur pipeline, 
which is activated once our models (e.g. the mouse) are fully 
defined, physiqued and animated in the 3D animation system. 
Please note that for clarity, this is a simplified picture of our 
complete pipeline, which doesn’t show some other fur-specific 
software such as file translators and versioning, as well as our 
proprietary front-end system to RenderMan. 
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Figure 1: Hair/Fur pipeline. 

The first step is the definition of the control hairs, which is done 
through scripts and plugins to the 3D animation system (see 
section3.2 below). At the same time, the model is exported into 
the 3D paint system, where the static feature maps for the hairs 
are painted directly onto the model. Some of these maps are 
described in more detail in section 3.3. Three primary sets of files 
are then output from the 3D animation system: the NURBS 
patches of the model, the control hairs and the RenderMan .rib 
files. The NURBS patch and control hair files are used by the 
instancer, which calculates the static (frame-independent) features 
of each final hair (see section 3.3), and produces a set of instanced 
hair files. These instanced hair files, together with the NURBS 
patch and control hair files, are read in by the interpolater, which 
calculates the final hairs for each frame of an animation (see sec-
tion 3.4). This interpolater is implemented as a DSO to 
RenderMan and called at render-time for each frame. The 
generation and processing of the optional files and feature maps 
for hair clumping is described in sections 4.2. Special hair shaders 
have also been implemented to create a realistic hair look (section 
4.4). 



 
3.2 Control Hairs 
 
Control hairs are the modeled and animated hairs which determine 
the geometry of the final fur, i.e. all the rendered hairs. They are 
created as NURBS curves in the 3D animation system, attached to 
follicles (points-on-surfaces) of the underlying NURBS patches. 
The ratio of the number of control hairs to “real” finals hairs is 
usually 1 to a few hundred or even thousands (e.g. about 1 control 
hair per 800 hairs on the head of the mouse). If the control hairs 
vary little in their orientation, much fewer are necessary. As a 
minimum, we need 4 control hairs in each corner of a NURBS 
patch. We have developed scripts and plugins for conveniently 
placing, adjusting, combing and animating control hairs, which is 
described in the following paragraphs. 
 
Placement of control hairs is possible in several different ways. 
The simplest algorithm places x hairs in the u and y hairs in the v-
direction of the selected NURBS patches (x and y are specified by 
the user), equally spaced in parametric space. A slightly more 
expensive option is to place x and y hairs equally by arc-length, 
which results in a more uniform distribution across a patch. This 
algorithm, however, does not achieve a balanced distribution of 
control hairs across patches of different size: x and y hairs are 
placed on all selected patches, large or small. We therefore 
developed a second method to place control hairs, which takes the 
area of a NURBS patch into account to determine x and y for each 
patch (the user now specifies z hairs per square area). This is 
illustrated in Figure 2, where z was set to 10, which resulted, for 
instance, in 4 by 3 hairs for the left-mid-face patch (dark-gray) to 
achieve a balanced placement of hairs across all of the 34 face 
patches. The hairs were generated with the equal arc-length 
option. Each control hair, by default, is defined by 4 control points 
(see insert in Figure 2), and points along the surface normal. 
Control hairs can also be placed individually or along curves-on-
surfaces for more fine control. For instance, we usually place 
extra control hairs along the sharp rim of the ears to ensure proper 
alignment of the final fur in this area.  

 

Figure 2: Control hairs on NURBS patches. 

Since control hairs are placed per NURBS patch, there is a 
problem: boundary control hairs (hairs which lie on either 
U_MIN, U_MAX, V_MIN or V_MAX) on one patch might not 
line up with the ones on a neighboring patch, which can lead to 
discontinuities of the final hairs along patch boundaries. To solve 
this, we implemented a control hair adjustment routine, which 
consists of two steps: a seam generator, and an alignment/dupli-

cation for boundary control hairs. The seam generator3 takes all 
the NURBS patches and constructs all seams between these 
patches (either whole-edge, T-junctions, or corners). The 
alignment/duplication module then traverses all the boundary 
control hairs of a patch, and if there is a corresponding control 
hair on the neighboring patch (within a small delta), the 
neighboring hair is aligned (snapped together) with the first hair. 
If the neighboring patch does not have a corresponding control 
hair, then one gets inserted (actually instanced from the existing 
hair) first before alignment. For example, the top-left corner 
control hair for the left-mid-face patch in Figure 2 is aligned with 
its three neighboring corner control hairs (four patches share this 
corner). No insertion is necessary here since the neighboring 
patches already have a control hair in the common corner (as 
mentioned above, there is always a control hair placed at each cor-
ner of a patch). The control hair to the right of that corner hair on 
patch left-mid-face would first be duplicated at the same location 
on the neighboring patch left-nose and then aligned, since there is 
no corresponding control hair yet on the latter patch. 
The result of combing the control hairs in Figure 2 is illustrated in 
Figure 3. Our combing algorithm works on selected control hairs, 
and allows for specifications such as global combing direction 
curves (white curve above the head), degree of bending and 
curvature of the hair, and region of influence with a falloff for 
each direction curve. Combing also provides a simple hair/surface 
collision mode, in which control hairs which intersect with the 
underlying NURBS surface are pushed back up. This iterative 
algorithm uses a intersection check, where the line segments are 
defined by two successive control vertices of the NURBS curve 
control hair; if a control vertex c goes below the surface, the hair 
is rotated back towards the surface normal from the previous non-
intersecting vertex just enough for c to clear the surface. 

 

Figure 3: Control hairs after combing. 

Placement and adjustment of control hairs are usually only 
performed once per model and are reused in each shot, whereas 
some shots might require different combing to produce, for 
instance, a groomed look versus a slightly messy look of the fur. 
The combing module can also be used to animate control hairs by 
key-framing the combing parameters, and executing the combing 
node at each frame during playback. We have also experimented 
with a different technique for animating control hairs in the 3D 
animation system, by turning each control vertex of a hair into a 
particle, dynamic effects like gravity and external forces can be 
applied. However, this approach is computationally expensive, 

                                                 
3 This module is also utilized in our routine for stitching NURBS 
surfaces. 



and more difficult to control. Also, additional code is required to 
enforce the length of each hair. 
After placing, adjusting, combing and possibly animating the 
control hairs, they are written out into control hair files. We write 
out the (u,v) position of each control hair on a patch, plus the 
position of each control vertex in [normal,du,cross(normal,du)] 
coordinates as shown in Figure 4; this way, we only need one 
control hair file per patch for non-animated control hairs (even if 
the underlying NURBS patch is animated/deformed). For 
animated control hairs, one file per patch per frame is written out. 
 

u

v

du

N x du

hair
hair cv

surfacehair root
(on surface)

N

 

Figure 4: Hair coordinate system. 

3.3 Instancer 
 
The instancer calculates the static, frame-independent features of 
the final fur, based on the control hairs and the hair feature maps. 
It reads in one frame of the NURBS patch and the control hair 
file, and writes out a set of instanced hair files, one per NURBS 
patch. Although we use all the hair feature maps listed in Figure 1 
in production, they are optional to provide fine control. For 
instance, one required input to the instancer is the length of the 
final hairs4, which is taken absolute if no hair length feature map 
for the current patch is found, or it is multiplied for a particular 
final hair at (u,v) on the patch with the corresponding normalized 
(s,t) value in the feature map. 
The three most important calculations of the instancer are: the 
(u,v) positions of each final hair from the density value and 
optional density map; the enclosing three control hairs for each 
final hair; and the weights of each of these three control hairs with 
respect to the final hair. How we compute these values -- which 
are used later at render-time by the interpolater (see section 3.4) to 
determine the orientation of each final hair -- is described next. 
The (u,v) positions of each final hair are computed from an 
overall (global to all patches) density input value (number of hairs 
per square unit area) and an optional density feature map per 
patch. The two main problems which needed to be resolved were 
to make the number of final hairs independent of the feature map 
resolution and independent of the NURBS patch size to provide 
seamless density across patches of different scale. As a solution, 
we implemented the following algorithm: assume that the 
specified density value (dmax) is 10 hairs/unit square area, and the 
density feature map resolution is 128x128 pixels and 8-bit/pixels 
(0-255 values).The first step now is to calculate 128x128 equally- 
spaced (in arc-length) points in (u,v) on the patch5, and assign a 
density value to each of these points, by multiplying dmax with 

                                                 
4 There is also an optional length noise parameter to produce 
random variations on each hair length. 
5 We used nlib, a NURBS library from GeomWare, for all our 
NURBS calculations. 

the corresponding normalized (s,t) value in the density map. We 
then traverse these equally spaced points as illustrated in Figure 5: 
assume that the looked-up density values of the current four 
neighboring points are 4, 5, 6 and 6 hairs, respectively, per unit 
square area. We approximate the area in (u,v) between these 
neighboring points by the area of the two triangles a1 and a2, and 
average the number of hairs/square unit area for each triangle 
from the values at its vertices, which results in (4+5+6)/3=5 and 
(4+6+6)/3=5.333 hairs/square unit area for the top left and bottom 
right triangle, respectively. If we assume a value of 0.4 for area a1 
and 0.3 for area a2, we now have 0.4*5+0.3*5.333=3.5999 total 
hairs to place in subpatch (ui,vi), (ui,vi+1), (ui+1,vi+1), (ui+1, vi). 
Since we can’t place fractional hairs, we place either 3 or 4 hairs 
depending whether a uniformly generated random number in [0,1] 
is bigger or smaller than the fractional part (0.5999). We then 
place the 3 or 4 hairs randomly in u [ui,ui+1] and randomly in v 
[vi,vi+1], and proceed to the next four equally spaced points. 

(ui, vi) (ui+1, vi)

(ui+1, vi+1)(ui, vi+1)

u

v

0.6

0.4

0.5
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Figure 5: Equally-spaced points on NURBS patch. 

Having calculated the (u,v) positions, we now determined the 
three enclosing control hairs for each final hair. For this purpose, 
a 2-dimensional Delaunay triangulation [10, 18] is constructed of 
the (u,v) positions of the control hairs for each patch. This 
triangulation was chosen because it creates “well-proportioned” 
triangles, by minimizing the circumcircle and maximizing the 
minimal angles of the triangles. Once the Delaunay triangulation 
is constructed, we look up the triangle which each final hair falls 
into, and assign the indices (in the control hair file) of the three 
control hairs which form this triangle to that hair.  
Finally, we calculate the weights (w1,w2,w3) which each of the 
three control hairs (c1,c2,c3) has on the final hair (h). This is done 
using barycentrc coordinates [10], and is illustrated in Figure 6, 
where “A” is the area of triangle (c1,c2,c3). These weights are 
used for interpolating the final hair from the control hairs (next 
section). 
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Figure 6: Calculation of control hair weights. 



Figure 7 shows the result of applying a density and a length map 
(left) to a single patch after rendering (see next section) the hair 
(right). In this case, the same map was used both for density and 
length, which produces denser and longer hair in lighter areas of 
the map.The hair is also brighter where it is denser and longer 
because it reflects more light. 
 

 

Figure 7: Density/length maps and furry patch. 

Besides the density and length6 feature maps, we also employ 
maps for the width of the hairs, the waviness, opacity, clumping 
(see section4.2), and hair color. We also have on/off maps which, 
if present, get combined in the instancer with the density maps to 
quickly turn off areas on patches which don’t need hairs; for 
instance, areas of the body which are covered by clothes in certain 
shots. Values of all these maps are assigned to each final hair, and 
written out into the instanced hairs files together with the 
information calculated above. Again, the reason for pre-
calculating all the static, frame-independent features before 
rendering is efficiency. 
 
3.4 Interpolator 
 
The interpolater reads in the instanced, control hair and NURBS 
patch files, and is executed at each frame during rendering to 
calculate the geometry of each final hair and add attributes to the 
geometry which are used in the shading process. We implemented 
this module as a DSO to RenderMan, which has several 
advantages: it reduced the size of the RenderMan .rib files, since 
there is only one call per NURBS patch with all its hair on it. 
Also, the final hair and patch geometry is procedurally generated 
at render time (RiCurves and RiNuPatch) on the fly, which makes 
the pipeline more efficient and allows for last-minute tweaking of 
hair parameters (e.g. add randomness, or change the waviness, 
width, etc., of the hairs7). 
Recall that the control hair files contain the (u,v) position of each 
control hair plus its control vertices in 
[normal,du,cross(normal,du)] space. For each final hair (h), the 
interpolater now (see Figure 8): 
 
1. converts the corresponding three control hairs (c1,c2,c3) into 

patch space; 

                                                 
6 As not previously mentioned, we also import the length maps 
into the 3D animation system to draw the control hairs at their 
proper length. 
7 The interpolator also randomly turns a small percentage of hairs 
into “guard” hairs (longer and thicker). 

2. calculates control hair vectors, e.g. (v11,v12,v13), between 
control vertices; 

3. normalizes control hair vectors; e.g. (nv11,nv12,nv13); 
4. interpolates corresponding control hair vectors of the three 

control hairs multiplied by the three weights;  
  e.g. iv1= nv11*w1+nv21*w2+nv31*w3; 
5. scales resulting vectors to final hair length (siv1,siv2,siv3); 
6. calculates control vertices of final hair from scaled resulting 

vectors; 
7. issues an RiCurves call for each hair8. 
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Figure 8: Interpolation of final hair (h) from control hairs 
(c1,c2,c3). 

As an option, each hair can also be individually motion-blurred by 
issuing two RiCurves calls per final hair. Figure 9 shows the 
rendered fur, generated from the combed control hairs and model 
of Figure 39 and consisting of about 450,000 individual hairs10. 
 

 

Figure 9: Snapshot of a rendered sequence. 

                                                 
8 We have improved efficiency by packing several hairs (on the 
order of hundreds) into one RiCurves call. 
9 The whiskers are modeled, animated and rendered through a 
separate branch of the pipeline. 
10 In this model, about 30% of all the hairs are located on the ears, 
which have very a short, dense coat. 



 
4  Special Effects 
 
4.1 UnderCoat/Overcoat 
 
The coat of most furred animals is composed of a fuzzier, thinner 
and shorter layer of hairs called undercoat, plus an overcoat of 
longer and thicker hairs. We can simulate this phenomenon in our 
pipeline as a two-(or multiple-)pass process, whereby the 
instancer is executed more than once with different feature maps, 
producing a different set of instanced hair files at each pass. The 
interpolater then processes all the layers (i.e. sets of instanced hair 
files) at render-time. A simple example of combining an 
undercoat with an overcoat this way is shown in Figure 10. We 
have also applied this multi-pass feature for human hair when 
both long and short hair are present and can be treated 
independently. 
 
4.2 Hair Clumping 
 
Clumping of hairs can occur when the fur gets wet due to the 
surface tension or cohesion of water. The effect is that the tips of 
neighboring hairs (a bunch of hairs) tend to gravitate towards the 
same point, creating a kind of cone-shaped “super-hair”, or 
circular clump. We have implemented two kinds of clumping 
techniques: static area clumping and animated area clumping. 
The former generates hair clumps in fixed predefined areas on the 
model, whereas the latter allows for clumping areas to move on 
the model. In both cases, we provide parameters which can be 
animated to achieve various degrees of dry-to-wet fur looks. We 
have also used this approach for dry fur clumping by breaking up 
the combed look of dry fur, as well as for human hair. 
 
4.2.1 Static Area Clumping 
 
Static area clumping is processed by the instancer to define 
clumps, and the interpolater to differently interpolate hairs which 
are members of clumps. We are also developing a special shader 
for wet hair (see section 4.4).  
We call the center hair of each clump the clump-center hair, and 
all the other member hairs of that clump, which are attracted to 
this clump-center hair, clump hairs. There are four required 
clumping input parameters to the instancer, which can be 
supplemented by corresponding feature maps to provide local 
control: clump-density, clump-size, clump-percent and clump-rate. 
Similar to the hair-density parameter, clump-density specifies how 
many clumps should be generated per square area. The instancer 
translates this density into an actual number of clumps, i.e. clump-
center hairs, depending on the size of each NURBS patch. As a 
result, some of the instanced, final hairs are turned into clump- 
center hairs. Clump-size defines the area of a clump in world 
space. Clump-density takes priority over clump-size, in that if 
there are many clumps, such that most of them overlap, the size 
can not be maintained, since a clump hair can only be a member 
of one clump. If both clump-density and size are small, many final 
hairs between the clumps will not be clumped. To determine 
clump membership of each final hair, the instancer first converts 
the specified clump-size into a u-radius and v-radius component 
in parametric patch space at each clump-center hair location. It 
then checks for each final hair, whether it falls within the radii of 
a clump-center hair; if so, that clump-center hair’s index is stored 
with the final hair; if not, the final hair is not part of any clump, 
i.e. is not a clump hair, and thus will be interpolated “normally” 
by the interpolater as described in section 3.4. Similar to hair 
length, the instancer also has an optional clump-size noise 

parameter to produce random variations in the size of the clumps. 
Also, a clump-area feature map can be provided to limit clumping 
to specified areas on NURBS patches rather than the whole 
model. 
 

 

Figure 10: Undercoat (top) + overcoat (middle) = final 
coat (bottom). 

Finally, the instancer also assigns a clump-percent and clump-rate 
value to each clump hair. The values for both range between [0,1], 
and are used by the interpolater as illustrated in Figure 11 and 
described below. Clump-percent specifies the degree of clumping 
for a clump hair: a value of zero means that the hair is not 
clumped at all, i.e. it is interpolated like a “dry” hair; a value of 
one means that the hair is fully attracted to its clump-center hair, 
i.e. the tip of this hair (its distant control vertex) is in the same 
location as the tip of the clump-center hair. Clump-rate defines 
how tightly a clump hair clumps with its clump-center hair. A 
value of zero means that the clump hair is linearly increasingly 



attracted to its clump-center hair, from the root to the tip; a value 
closer to one means that the hair’s control vertices closer to the 
root are proportionally more attracted to their corresponding 
clump-center hair vertices than those closer to the tip, which 
results in tighter clumps. 
 

clump−center hair

surface

clump boundary

clump hair

clump−percent = 0;
clump−rate = 0;

clump−percent = 1;
clump−rate = 0;

clump−percent = 1;
clump−rate = 0.5;

clump−percent = 0.5;
clump−rate = 0;  

Figure 11: Clump percent and clump rate. 

The clumping information is written out into the instanced hair 
files, and processed by the interpolater. In a first pass, all the final 
hairs are interpolated normally as described in section 3.4. In a 
second pass, the control vertices of each clump hair (except the 
root vertex) are displaced towards the their corresponding clump-
center hair vertices from their position after the first pass as 
follows11, where the default value for numberOfCVs is 3 (4 minus 
the root vertex), and the index for the current control vertex, i, 
ranges from 1-3: 
 
fract = i / numberOfCVs; 
delta = clumpPercent ( fract + clumpRate ( 1 - fract ) ); 
clumpHairCV [i] = clumpHairCV [i] +  
 delta ( clumpCenterHairCV [i] - clumpHairCV [i] ); 
 
The interpolater also accepts a global clump-off switch, which 
allows the generation of non-clumped fur even if the instanced 
hair files contain clumping information. Also, both clump-percent 
and clump-rate can be overwritten at render-time, and simple 
animation expressions for both can be specified. This is illustrated 
in Figure 12, which shows three frames from an animated clump-
percent and clump-rate sequence for the same fur as in Figure 9 
(where clump percent and rate are both zero). In the top image, 
clump percent is 0.7 and clump rate is 0, which results in a 
slightly wet look. For the middle, clump percent is 1.0 and clump 
rate is 0.3, which results in a wet look. In the bottom image, 
clump percent and rate are both 1.0, which produces a very wet 
look. 
 
4.2.2 Animated Area Clumping 
 
Animated clumping areas are desirable if we want to simulate 
spouts of water or raindrops hitting the fur and making it 
increasingly wet. We have developed tools within the 3D ani-
mation system to generate these animated clumping areas, and 
adjusted our interpolater to process this frame-to-frame 
information from the animated area clumping files. 

                                                 
11 It is noted that both rate and percent operations change the 
lengths of clump hairs, but we have not observed any visual 
artifacts even if these values are animated. 

 

Figure 12: Three frames of a static clumping sequence. 

Animated clumping areas in the 3D animation system are defined 
through particles hitting NURBS patches. These particles 
originate from one or more emitters, whose attributes determine, 
for instance, the rate and spread of the particles. Once a particle 
hits a NURBS patch, a circular clumping area is created on the 
patch at that (u,v) location, with clump-percent, clump-rate and 
radius determined by a creation expression. Similar to static 
clump-size, this radius is converted into a corresponding u-radius 
and v-radius. Runtime expressions then define clump percent and 
rate, to determine how quickly and how much the fur “gets” wet. 
Figure 13 shows a snapshot of animated clumping areas, where 
each area is visualized as a cone (the most recent cone is 
highlighted). In this case, one particle emitter is used and has been 
animated to follow the curve above the head. Once the animation 
and parameters are satisfactory, the areas are written out into 
animated area clumping files, one per patch per frame. 
In order for animated area clumping to work, the instancer is 
executed just like in the static area clumping case, with clump-
area turned off, so that the whole model is clumped. The 
interpolater then restricts clumping to the animated clumping 
areas at each frame, so that final hairs of clumps outside clumping 
areas are normally interpolated as “dry” hairs. Also, the values for 
clump-percent and clump-rate for each clump within a clumping 
area are replaced with the corresponding values from the animated 
area clumping files at each frame. Clumping areas are usually 
much bigger than a clump, thus containing several individual 
clumps. To determine whether a clump falls within a clumping 
area, the interpolater checks at each frame whether the (u,v) 
distance between the clump-center hair of the clump and the 
center of the clumping area is within the (u,v) radii of the 
clumping area. For clumps in overlapping clumping areas, the 
values for clump percent and rate are added to generate wetter fur. 
The same frame as in the animated clumping area specification 
sequence of Figure 13 is shown rendered in Figure 14. 



 

Figure 13: Animated clumping areas. 

 

 

Figure 14: Frame of an animated area clumping 
sequence. 

One problem with animated clumping areas has not been 
addressed yet: they can straddle NURBS patch boundaries as 
shown in Figure 15, which shows a top view of a clumping area 
(light-colored cone): the center of this clumping area (black dot) is 
on patch P1, but the area straddles onto patch P2 and P3 (across a 
T-junction; seams are shown as bold lines). Since our clumping 
areas are written out from the 3D animation system per patch (the 
patch which contains the (u.v) of the center, i.e. the position 
where the particle hit), portions of a clumping area straddling 
neighboring patches are ignored. This would lead to 
discontinuities in clumping of the final fur, as illustrated in Figure 
16, top. 
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Figure 15: Clumping area straddling a T-junction. 

The solution we implemented again utilizes our NURBS seam and 
topology generator module: whenever a new particle hits a 
surface, we check whether the (u,v) radii exceed the boundaries of 
the patch; if so, we calculate the (u,v) center and new (u,v) radii of 
this clumping area with respect to the affected neighboring 
patches12, and write this information into animated area files for 
those patches. Figure 16, bottom, shows the result of this 
algorithm after the interpolater has automatically processed the 
two additional files of the affected patches. 

 

Figure 16: Straddling clumping area: fur without (top) 
and with (bottom) special treatment. 

                                                 
12 The fact that the (u,v) clumping area centers of the affected 
patches actually lie outside their (u,v) bounds is irrelevant, since 
the interpolater does not evaluate the patches, but computes 
distances in (u,v) space. 



4.3 Wind Effects 
 
For wind effects, we apply a noise function with a user-specified 
wind amplitude, wind direction and frequency directly to the 
control points of a hair. These computations are applied at render 
time in the interpolator after step 6 in section 3.4. 
 
4.4 Hair Shaders 
 
In order to render large amounts of hair quickly and efficiently, 
the geometric model of each hair needs to be simplified. As 
previously mentioned, we use the RenderMan RiCurves primitive 
to render the final hairs. This primitive consists of many small 
micro-polygons falling along a specified curve with their normals 
pointing directly towards the camera. In comparison to long tubes, 
these primitives render extremely efficiently. However, we still 
need to solve the problem of how to properly shade these 
primitives as if they were thin hairs. 
Kajiya and Kay [11] present an approach to this problem. Their 
approach is similar in concept to the idea of phases of the moon, 
where the percentage of the light hitting a hair segment depends 
on the light’s orientation to that hair segment’s direction. They 
also assume that each hair has a width approximately equal to or 
less then one pixel and then calculate the average amount of light 
reflecting off each segment of the hair. Based on this idea they 
develop a diffuse and a specular model for the hair. These models 
provide a great starting point for lighting the hair. However, in 
practice we have encountered several difficulties. The biggest 
problem is the model’s tendency to produce darker hair as the 
tangents of the hairs point more towards the light. This results in 
dark hairs closer to the light and brighter hairs towards the edges 
of the model. If we also included radiosity calculations within our 
model, that is if we calculated light hitting the skin and adjacent 
hairs and bouncing off, the shading model would provide a good 
solution. However, this is extremely expensive to calculate. 
Another problem with this approach is that it does not present a 
very intuitive method for users to light the fur. For these reasons, 
we have implemented a more ad hoc approach. 
In order to obtain a shading normal at the current point on the 
hair, we mix the surface normal vector at the base of the hair with 
the normal vector at the current point on the hair. The amount 
with which each of these vectors contributes to the mix is based 
on the angle between the tangent vector at the current point on the 
hair, and the surface normal vector at the base of the hair. The 
smaller this angle, the more the surface normal contributes to the 
shading normal. We then use a Lambertian model to calculated 
the intensity of the hair at that point using this shading normal. 
This has the benefit of allowing the user to light the underlying 
skin surface and then get very predictable results when fur is 
turned on. It also accounts for shading differences between 
individual hairs, and along the length of each hair. 
Hair shadowing presents several problems with white fur13. Since 
we use shadow maps, incorporating the hair into the shadow maps 
generates several unwanted side-effects. One problem is that of 
dark streaking on brightly lit fur because of fur self-shadowing. 
Dark streaks look wrong on brightly light fur because normally 
light bounces off the skin and hair to prevent dark shadows on 
brightly lit fur. In order to get around this we shorten the hair in 
shadow map renders based on certain criteria. For example, the 
length and the density of the hair dictate the percentage to shorten 
the hair. This fixes the hair self shadowing, and still produces a 
broken up shadow on the terminator lines for lights falling on the 
fur. 

                                                 
13 This color was chosen for Stuart Little at the outset. 

Backlighting is achieved in a similar fashion, using a shadow map 
for each light located behind the furred object, and again 
shortening the hair on the basis of density and length in these 
shadow map renders. Our lighting model for hairs also allows 
each light to control its diffuse falloff angles. Thus, lights directly 
behind the furred object can wrap around the object. Using these 
lighting controls together with shadow maps we are able to 
achieve reasonable backlighting effects. Figure 17 illustrates such 
an effect, which is particularly observable on the silhouette hairs 
around the left ear. 
 

 

Figure 17: Backlighting Effect. 

For the wet fur look, we change two aspects of the hair shading. 
First, we increase the amount of specular on the fur. Second, we 
account for clumping in the shading model. Geometrically, as 
explained earlier, we model fur in clumps to simulate what 
actually happens when fur gets wet. In the shading model, for 
each hair, we calculate for each light, what side of the clump the 
hair is on with respect to the light’s position, and then either 
darken or brighten the hair based on this. Thus, hairs on the side 
of a clump facing the light are brighter then hairs on a clump 
farther from the light. 
The shading model also takes into effect individual attributes for 
each hair, such as color, opacity, special treatment of guard hairs 
and ear hairs. In terms of fur look, white is probably one of most 
challenging colors to render. Specular highlights are less 
noticeable to the human eye on white fur. Also, white fur suffers 
from lack of detail in fur renders, which is usually provided by 
color variations between adjacent hairs. In fact, most of the detail 
in white fur comes from fur self-shadowing which is expensive to 
account for. We have achieved some self-shadowing effects with 
respect to dry and wet clumping of fur. 
 
5 Newer Features 
 
Ever since completing the first implementation of our hair/fur 
pipeline used in the production of “Stuart Little”, we have been 
constantly improving, optimizing and adding new features to it. 
We even developed a new, more powerful hair and feather system 
for “Stuart Little 2” [6], which incorporated, among other things, 
an expression language for parameters, node based execution and 
blending between different solutions, additional hair and feather 
placement method based on particle repulsion, and automated 
control hair animation to prevent interpenetration with skin. 
 
However, the original, more lightweight hair pipeline introduced 
here has survived. Besides bug fixes, most of the newly added 
features have been to support the production of (longer) human 



hair in recent productions. For instance, we have developed 
additional combing tools. Whereas the first “curve” combing tool 
(see section 3.2) was appropriate for reference combing of short 
hair/fur, we needed a better, direct manipulation tool for styling 
longer hair and for  shot-specific animation of hair. Two ideas we 
implemented are a “chain” combing tool, where the user defines a 
skeletal chain over a control hair (with as many segments as the 
number of control points of the control hair)  which can influence 
any number of other control hairs and can be directly manipulated 
and animated via forward and inverse kinematics. The other idea 
is a “paint” combing tool similar to the Maya fur approach, where 
the user can paint direction, bend and lay down angle with a 
brush. We have also employed the dynamic animation capabilities 
of the underlying animation system to define some of the motion 
of longer hair. An example is shown in Figure 18. 
 

 

Figure 18: Long digital human hair in motion. 

 
Another area in which we extended the original system has been 
clumping tools. The clumping method introduced in section 4.2 
works well for fur where we do not need control over where 
exactly the clumps are. But for human hair we want to manually 
and interactively place and form clumps, perhaps combined with 
automatically generated clumps. Also, we need more fine control 
over the shape of clumps (besides percent and rate, we now 
provide additional parameters like falloff and taper), as well as 
introduce more “controlled” randomness to the final hair such as 
weave and splay. Figure 19 illustrates the result of applying our 
improved clumping tools to an imaginary character, and Figure 20 
shows clumping and combing applied to match the hair of a real 
human being. 
A last example of how we have been improving our hair/fur 
pipeline has to do with workflow. In the original system we 
combed control hairs, but it wasn’t until we rendered an image 
that we “saw” the final hair/fur. This is time consuming 
particularly during character development, where we would like 
to see immediately at least approximately what the final hair does 
if we tweak  a control hair, manual clump or any geometric hair 
parameter for that matter. Thus, we have been implementing an 
interactive hair viewer in the animation system as shown in Figure 
21 (note that only about 10% of the final hairs are displayed in 
this case for clarity). 
 
 

 

Figure 19: Facial and head hair of a centaur. 

 

 

 

Figure 20: Digital hair to match real hair. 



 

Figure 21: control (white) and final hair (orange) in  our 
interactive hair viewer. 

 
6 Discussion and Conclusions 
 
We have presented our original pipeline for generating hair and 
fur. The system is still evolving today, being optimized and 
extended as new effects are needed. We think that it is a practical 
approach to generate realistic, life-like hair and fur. We also 
believe we have achieved our other goals of providing a flexible, 
robust and easy-to-use tool. With respect to performance and 
efficiency, breaking up the calculations into a static, frame-
independent part and frame-dependent computations has made 
some difference. It has also helped with managing all the files, 
implementing the extra effects like clumping, and being able to 
tweak hair parameters at render-time. However, since we are 
rendering individual hairs, rendering times and memory 
requirements are still a concern. For instance, rendering the close-
ups of Stuart’s head in our examples with about 450,000 hairs 
originally took around thirty minutes per frame and 200 MB 
memory at video resolution on an SGI R10000 processor. At film 
resolution (2048x1556 pixels), the same frames took about one 
hour to render requiring 220 MB of memory on average. By 
moving over to recent Linux boxes, render times have improved 
by at least a factor of two. For human hair where we usually have 
on the order of  tens of thousands rather than hundreds of 
thousands14 of hair strands, render times are not so much of an 
issue. 
Current extension plans for the hair/fur pipeline include 
improving animation and simulation support for the control hairs, 
better procedural techniques to handle interactions of hair/fur with 
external objects (e.g. hand touches hair), cloth/hair interactions, 
and collisions between hairs, which we currently ignore. Finally, 
another project we are currently working on is to utilize the real-
time shading hardware support on our Linux platforms in order to 
generate RenderMan-like images in our  interactive hair viewer . 

                                                 
14 Or millions as for Fluffy, the three-headed dog in Harry Potter. 
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