CS368: Geometric Algorithms Handout # 5
Design and Analysis
Stanford University Tuesday, 4 May 1999

Solutions for homework #1: Arrangements, zones, straight and topological sweep

¢ The Common Theory Problems

Problem 1. [10 points]

In an arrangement A of n lines in the plane, a single face can have at most n sides. Prove
that any m distinct faces can have at most n + 4(’;) sides altogether. [[This bound is

best possible if 4(7;) < n and is known as Canham’s Lemma; it implies, for instance,
that any /n faces can have a total of only O(n) sides altogether.]]

Solution

We first prove a lemma that bounds the number of times a line can be part of two different
faces.

Claim 1. Let F; and Fy be any two faces in an arrangement of n lines. We claim F}
and F5 share at most four lines.

Proof: If a line ¢ is shared by two faces, it is tangent to both faces (a line is said
tangent to a convex face if it intersects the boundary but not the interior of the face).
The above statement then follows from the well-known fact that any two interior disjoint

convex objects can have at most four bi-tangent lines. O
Now let F be a set of m distinct faces, Fi, Fs, ..., F,,, of the arrangement. For a line
¢, consider the edges on £. Suppose that they are e;,, ..., e; , where e;, is on face Fj;. We

now charge each edge as follows. For j < s, charge e;; to the pair (Fj,, Fi,,); charge e;,
to the line /. It is clear that each edge gets charged to something. For each line, it can
be charged at most once. For each pair of faces, it can be charged at most four times
according to the above claim. Thus, there are at most n + 4(2‘) edges.

Remark The above bound is not tight. The tight bound is ©(m??n?? 4+ n) (refer to
Handouts #11 in the course reader). O

Problem 2. [10 points]

We saw in class that, in an arrangement A of n lines in the plane, the horizon or zone
of another line ¢ has combinatorial complexity O(n). Given as input only the n lines of
the arrangement and ¢ (say by their equations), show how to compute all the faces of A
comprising the zone of ¢, in linear space and O(nlogn) time.



2 (CS368: Handout # 5

lower tree
a . R a0 s
S B
b taanny ' b .:;:%
upper tree upper tree
@ (b)

Figure 1: The face between a and b is the intersection of their bays (a); inserting the line
from a can be charged to the circled points of the lower bay (b).

Solution

We suppose line £ is vertical, and we want to compute the zone of all faces on the right
side of £. We begin by computing the n — 1 intersection points of the other lines with ¢,
and sort them by y-coordinate along £ in O(nlgn) time. The remainder of this algorithm
will run in O(n) time.

We will compute the upper and lower horizon trees of lines to the right of £. Given
the upper and lower horizon trees, we claim that each face adjacent to £ may be traversed
in time linear in its size. If we can show this, then it will follow from the horizon theorem
that we can walk all the faces in O(n) time.

To prove the claim, consider any two consecutive points a and b along ¢ with a above
b, as in figure 1(a). Then the face between a and b is the intersection of the lower horizon
tree bay of a and the upper horizon tree bay of b. To construct the face, we need to walk
up the bays from a and b, being careful not to walk too far in either bay. A sufficient rule
is to visit the points of the two bays in order of increasing x-coordinate; on each step we
need to check if we have crossed the line from the other bay.

Now it suffices to show how to construct the horizon trees in linear time; we will
describe the method for the upper horizon tree. We construct the tree by inserting the
lines in increasing order of their intersections with £. Suppose we have just inserted
the line from point b, and we now want to insert the line from the next higher point
a (figure 1(b)). We simply walk up the bay from b, checking whether the line from a
intersects each edge. Then the time to do insert this line is O(1) plus the number of
vertices passed over in the bay from b. Since such a vertex will thereafter be hidden from
above by the line from a, it will never again be charged, and hence the total charges and
running time are O(n).

It is important that we insert the lines in order of increasing intersection with /: if
we try to insert the lines in increasing or decreasing slope order then there are example
arrangements that will take time ©(n?). However, you can verify that those two different



(US368: Handout # 5 3

-3

M2

Figure 2: Searching for an intersection clockwise: the weights are specified for each edge
of the UHT before ES is performed.

orderings yield the same tree.

Problem 3. [10 points|

Show that the topological sweep that computes the arrangement of n lines in the plane
can be carried through within the same time and space bounds even if the search for
an intersection when propagating a line into a bay of the upper horizon tree is done
by traversing the bay clockwise instead, starting from the other (shortened) edge of the
elementary step.

Solution

We follow the notation and the analysis outlined in the paper “Topologically Sweeping
an Arrangement” by Edelsbrunner and Guibas (page 11).

Number the bays associated with a cut from 0 to n — 1, where the i¢th bay is bounded
above by the line m; of the cut. The bay numbered 0 is not bounded above at all. We
define the weight w(e) of an edge e bounding a bay from below as the index of the bay
immediately above it. Let w(U) be the weight of the upper horizon tree U, defined as
the sum of its edge weights. That is,

w(U) =Y wle).

eeU

The upper horizon tree associated with the leftmost cut has weight O(n?). (We proved
that it can be built in linear time, so it must have O(n) edges, and each edge can have
a weight at most n — 1.)



4 CS368: Handout # 5

Let’s consider what happens to the weight of the UHT when an elementary step is
performed at the intersection of lines m; and m;,; of the cut.

1. The two edges of the processed elementary step are deleted. Their weights are 1 —1
and 7, since they belong to lines m; and m;.; of the cut.

2. Each edge in the clockwise bay traversal whose intersection test fails becomes part
of a lower numbered bay. In fact, its weight is reduced from 7 + 1 to i.

3. Two new edges of weight ¢ are created. One is the lower edge from the elementary
step that is extended to meet the bay, and the other is created by splitting the edge
of the bay whose intersection test succeeded.

Hence, the net change in w(U) due to an elementary step is 1 — k, where k is the
number of failed intersection tests. That is, each elementary step increases the weight
by one, while each failed intersection decreases the weight by one.

This allows us to bound the total number of failed intersections. The initial UHT
weight is O(n?), and the total increase due to elementary steps is O(n?) as well. Clearly
the weight can never be negative, so total decrease due to failed intersections must also
be O(n?). All the other work for an elementary step takes constant time, so the total
running time is O(n?).

e The Additional Theory Problems

Problem 4. [20 points]

Suppose that we modify the straight-line sweep method for computing a line arrange-
ment so that, when processing an event, the future events corresponding to intersections
for the two newly created adjacencies are added to the priority queue, but the events
corresponding to the two adjacencies just destroyed are not removed. This will still give
a correct algorithm, but now the priority queue size may increase, as each event adds
possibly two new adjacencies but removes only one. Prove that, given any four lines
a,b,z,y in descending slope order, not all three intersections ax, ay,by can be events
present in the priority queue at once. Use this fact to argue that maximum size of the
priority queue now is at most O(nlogn). Give an example showing that this bound is in
fact attainable. (Partial credit will be given for any subquadratic upper bound.)

Solution

(a) Consider the first event that involves a pair of two of the lines among a,b, z,y.
Since their vertical sequence (bottom to top) initially is a, b, z,y, there are three cases:

1. Lines a, b intersect first. The vertical sequence now is b, a, x,y. For by to be in the
queue, b and y have to become adjacent, which means that y has to pass above a,
as a and b cannot intersect twice. However, this means that ay, by cannot be in the
queue at the same time.



(US368: Handout # 5 )

2. Lines b, z intersect first, resulting in the sequence a,z,b,y. Then for ay to be in
the queue, either a has to pass x, or b has to pass y. That is, either by or ax cannot
remain in the queue.

3. Lines x,y intersect first. Similar analysis to the case 1 shows that az, ay cannot be
in the queue at the same time.

The above analysis covers all the cases. Thus, ax, ay,by cannot be in the priority
queue at the same time.

(b) Sort the lines by decreasing slopes, and divide them into two groups at the median
slope. Call the group with the highest slopes “red” and the other group “blue”. At a
given position of the sweep line, the intersections present in the queue are of three types:
red-red, blue-blue, or red-blue. Denote by T'(n) the worst case number of intersections
in the event queue. If we can prove that the number of bichromatic intersections in the
queue is linear, then we can obtain that 7'(n) < 27(n/2) + O(n), which will give us the
O(nlogn) bound.

Let us name the red lines a;, ay,-- -, a,/2, and the blue lines by, by, - - -, b, /2, both in
decreasing slope order. Consider the priority queue at position ¢, and build an n/2 x n/2
matrix M by setting the entry m;; in the matrix to 1 if the intersection a;b; is in the
queue, and 0 otherwise.

Charge all the non-zero elements as follows: if m;; is the first, i.e. the one with the
smallest column index, non-zero element in the i-th row, charge it to line a;; otherwise
charge it to line b;. Obviously, each non-zero element gets charged somewhere, and each
red line is charged at most once. We shall show that each blue line gets charged at most
once as well.

Otherwise, suppose the blue line b; is charged twice by m;; and my;, where ¢ < k.
Since m;; is charged to the blue line b;, there must be a non-zero element, say m;j,
having smaller column index than m;;. Now, consider the lines a;, aj, bjs, b;. They are in
descending slope order, and the intersections a;b;/, a;b;, a;b; are in the queue at the same
time, which contradicts (a). Thus, no blue line can be charged more than once. That is,
the number of non-zero elements in the matrix is at most 2(n/2) = n.

To give a construction for the lower bound, we use a recursive construction: we will
build collections of lines {5, },~,, so that S, has 2" lines and gives rise to a priority queue
of size K, > r2"—1. -

S1 is just two lines intersecting to the right of the sweep line s. For this case K; =1,
as required. Now given that we have already built S, we construct S,,; as follows.
We start by taking two copies of S,, say S} and S?, where S! is just S,, and S? is
S, translated slightly upwards (we will destroy the parallel pairs in a moment). Now
we “shear” upwards the lines in S? at left infinity so that all intersections between the
lines in S! and those in S? that are to the left of s actually occur to the right of any
intersections within S! (and therefore also S?). See figure 3. This guarantees that any
pairs of intersecting lines from within S! or S? that gave rise to an event in the priority



6 (CS368: Handout # 5

/

S

Figure 3: The (nlogn) construction.

queue before will still do so in the combined configuration. But now in addition we’ll have
the 2" intersections between each line in S} and its partner in S?n that lies immediately
above it along s. Thus K, > 2K, +2" > (r + 1) - 2", as asserted.

Remark For additional details and extensions of these results to the case of line seg-
ments, we refer the reader to [1]. We note that the proof just given is simpler than the
original one in [1].

Problem 5. [5 points]

Show that the topological sweep that computes the arrangement of n lines in the plane can
be carried through within the same time and space bounds, even when the topological line
is required to proceed wvertically through each region and can only move horizontally by
following arrangement edges. In other words, the topological line should consist entirely
of vertical segments crossing faces and portions of arrangement edges. This variant can
be used to compute the threads needed for a vertical decomposition of the arrangement.

Solution

It suffices to insure that for each pair of consecutive cut edges, their projections onto
the x-axis have some point in common. This is certainly true of the initial leftmost cut
(because all the cut edges extend to —oo on the z-axis), so we simply need to preserve
this property on each step.

We call an elementary step “safe” it it preserves this property; see figure 4. Note that
the property is local; i.e. given a pair of consecutive cut edges we may check if they form



(US368: Handout # 5 7

safe unsafe

Figure 4: Examples of safe and unsafe elementary steps. The unsafe example is unsafe
because there is no vertical line through both e and €.

a safe elementary step in constant time, by looking at the cut edges immediately above
and below.

Our strategy will be to maintain a queue of all the safe elementary steps. After each
safe elementary step, at most four nearby elementary steps may be affected (i.e. they
may become safe elementary steps and should be added to the queue); so we can update
the queue in constant time.

We use the upper and lower horizon tree structures just as before, so this algorithm
will have O(n?) running time if we can show it terminates. All we need to show is that
there always exists a safe elementary step until we reach the rightmost cut.

Claim 1. Consider any non-rightmost set of cut edges, such that currently every consec-
utive pair of cut edges overlap in their x coordinates. Then there exists a safe elementary
step.

Proof: Since this is not the rightmost cut, at least one of the cut edges has a right
endpoint. So let v be the leftmost right endpoint, we claim that there is a safe elementary
step at v. We have argued previously that v is an elementary step (see Lemma 2.2 of the
paper by Guibas and Edelsbrunner); we need to argue that it is safe.

Consider the cut edge e immediately above the cut edges of v. Since v is leftmost
of all right endpoints, e extends to the right of v. Thus after the elementary step at v,
edge e will still overlap with the new edge below it, because they overlap at v. A similar
argument applies to the edge below v, and clearly the two new edges out of v will also

overlap.
Since these are the only pairs of edges changed by the elementary step at v, the
elementary step at v is safe. a

Problem 6. [15 points]

Show how to implement the topological sweep we discussed in class using only a single
horizon tree, say the upper horizon tree. The crucial step is to discover efficiently a vertex
of the tree where an elementary step can be carried out.



8 (CS368: Handout # 5

Solution

Say that line b is the parent of line a if b is the line of higher slope that cuts off a in the
upper horizon tree; similarly say a is a child of b. Note a line may have many children
but at most one parent. The lines are ordered by their cut edges; say a is immediately
above b if the cut edge of a is immediately above the cut edge of b.

Claim 1. If line b has any children, then the line a immediately above b is a child of b.

Proof: If a had a higher slope than b, then it would cut off all higher lines before b,
and b would have no children. Thus a must have a lower slope than b, and a will be a
child of b unless some other line ¢ of higher slope cuts off a before it reaches b. But this
c would also cut b, and again b would have no children. a

Thus for every parent b there is a child a such that a,b are consecutive. Call this a
child-parent pair.

Claim 2. The uppermost child-parent pair (a,b) is an elementary step.

Proof: Suppose not; then there is some other line ¢ that intersects either a or b before
their intersection point. Line ¢ cannot come from below b, because then ¢ would cut off
a before b, and b would not be the parent of a.

Thus ¢ comes from above a. Let d be the parent of ¢; it could be that d = a or d
is some other line, but it is certain that d is above b. Since d has a child, then by the
previous lemma d must be part of a child-parent pair above (a,b), which contradicts the
choice of (a,b). O

Clearly we can test in constant time whether two adjacent lines of the cut are a child-
parent pair in the UHT. Also, after an elementary step between lines m; and m;,, the
only possible new child-parent pairs are (m;_1,m;) and (m;41,M;42) (Where the m; are
labeled after the ES).

This leads us to the following algorithm. We remember the index j of the pair
(mj, m;41) where the last ES occurred (initially zero). After each update to the UHT,
we back up to the previous pair (m;_1,m;), and then scan downwards looking for a
child-parent pair. Clearly the first such pair found will be the uppermost.

We must now show that this algorithm still runs in O(n?) time. Each ES decrements
the index 7 by one, and then increments it by one for each unsuccessful child-parent test.
But we always have j < n, thus the total number of unsuccessful tests is O(n?) +n =
O(n?). The number of successful tests is also O(n?), so we are done.

References

[1] J. Pach and M. Sharir, “On vertical visibility in arrangements of segments and
the queue size in the Bentley-Ottmann line sweeping algorithm”, SIAM Journal on
Computing, vol. 25, no. 3, pp. 460-470, (1991).



