
CS368: Geometric Algorithms Handout # 4
Design and Analysis
Stanford University Tuesday, 27 April 1999

Homework #2: Voronoi and Delaunay diagrams [60 points]
Due Date: Tuesday, 11 May 1999

• The Common Theory Problems

Problem 1. [5 points]

The edges of both the Delaunay and Voronoi diagrams are line segments. Give a simple
necessary and sufficient condition on a pair of sites A and B so that AB is a Delaunay
edge and AB intersects its dual Voronoi edge.

Problem 2. [10 points]

We mentioned in class that a triangulation of a set S on n sites in the plane is a Delaunay
triangulation if and only if every edge passes the InCircle test with respect to its two
adjacent triangles. This gives a linear-time algorithm to verify that a triangulation is
Delaunay, and it also suggests the following algorithm to fix it up (if it’s not). Start with
any triangulation of the n sites. If an edge fails the InCircle test, then swap it with the
other diagonal of the quadrilateral formed by the two adjacent triangles (this edge must
pass the test). Make this idea into a rigorous algorithm and prove its correctness. Prove
that your algorithm always terminates in O(n2) steps. (Open Problem: Can this method
be parallelized in an interesting way? What processor/time bounds can you get?)

Problem 3. [10 points]

Second-order Voronoi diagram:
Given n sites in the plane, suppose we partition the plane according the nearest and
the second-nearest site. Thus all points in the same region have the same nearest and
second-nearest neighbor. This is sometimes called the second-order Voronoi diagram.
Show that it is also of size O(n) and can be computed in time O(n logn).

• The Additional Theory Problems

Problem 4. [10 points]

Davenport-Schinzel sequences of order 2 and triangulations:
Let P be any convex polygon with n vertices. A triangulation of P is a collection of
n − 3 non-intersecting chords connecting pairs of vertices of P and partitioning P into
n − 2 triangles. Set up a correspondence between such triangulations and DS(n − 1, 2)
sequences, as follows. Number the vertices 1, 2, . . . , n in their order along ∂P . Let T be
a given triangulation. Include in T the edges of P too. For each vertex i, let T (i) be the
sequence of vertices j < i connected to i in T and arranged in decreasing order, and let
UT be the concatenation of T (2), T (3), . . . , T (n).



2 CS368: Handout # 4

(a) Show that UT is a DS(n − 1, 2) sequence of maximum length.

(b) Show that any DS(n − 1, 2)-sequence of maximum length can be realized in this
manner, perhaps with an appropriate renumbering of its symbols.

(c) Use (a) and (b) to show that the number of different DS(n, 2) sequences of maximum

length is 1
n−1

(
2n−4
n−2

)
(where two sequences are different if one cannot obtain one

sequence from the other by renumbering its symbols).

Problem 5. [10 points]

We have discussed in class the lifting map λ(x, y) : (x, y) �→ (x, y, x2 + y2) from points
in the xy-plane to points on the paraboloid of revolution z = x2 + y2. As we will also
see, the downwards-looking faces of the convex hull of the lifted images of a collection
of sites in the xy-plane correspond to the Delaunay diagram of the sites. What do the
upward-looking faces correspond to? Is there an analogous Voronoi diagram? How fast
can it be computed?

Problem 6. [15 points]

We want to do an analysis of the randomized incremental algorithm for Delaunay trian-
gulations discussed in class, but based on the appearance and disappearance of Delaunay
edges during the process, rather than that of triangles.

We defined the weight of a triangle ∆ to be the number of sites inside the circumcircle
of ∆ and related in the class analysis this weight with the probability that ∆ would ever
appear as a Delaunay triangle during the random process. How should we define the
corresponding notion of the weight of an edge e = AB? Below we define one possibility,
but feel free to explore your own definition, as long as it leads to the same eventual result.

One way is to let the weight of an edge AB be w if there is a circle through A and
B which contains exactly w other sites to the left of AB and w sites to the right. Show
that this notion of weight is well defined. Prove an edge of weight w arises as Delaunay
at some point of the random process with probability at most 4/(w + 1)(w + 2).

By emulating the argument given in class for triangles, show the combinatorial-
geometric result that in any collection of n sites, the number of edges of weight at most
w is O(n(k + 1)).

Briefly outline how combining these results (using the summation-by-parts trick shown
in class) allows us to conclude that the expected number of edges that arise during the
random process is O(n) (of course, this also follows immediately from the result for
triangles ...).

Given an edge AB in a group of n sites, how fast can you calculate its weight? How
fast can you calculate the minimum number of other sites whose deletion would make
AB a Delaunay edge? Are those two quantities related?



CS368: Handout # 4 3

• The Programming Problem

Problem 7. [35 points]

Curve reconstruction from unordered points:

In 1997, Nina Amenta, Marshall Bern, and David Eppstein proposed a new method
for reconstructing smooth closed curves from unordered sample points sampled along the
curve. Their beautifully simple method extensively uses the concepts of the Voronoi and
Delaunay diagrams of a set of sites that we have studied. Their paper The Crust and the
β-Skeleton: Combinatorial Curve Reconstruction appeared in Graphical Models & Image
Processing, 60/2, 125–135, March 1998. The tech. report can be accessed on-line from

http://www.ics.uci.edu/~eppstein/pubs/a-amenta.html

For this problem you need to implement their crust algorithm (crust is what they call the
reconstructed curve). Please use the Voronoi/Delaunay libraries from Leda or Cgal —
this should make the task very straightforward.

Their paper proves that if a smooth closed curve is sampled at a sufficient high local
density (depending on what they call the ‘local feature size’), then the crust algorithm
will always perfectly recover the sequence of samples along the original shape.
Experiment with the crust algorithm to determine if the theoretical bounds on the sam-
pling densities needed to make the algorithm work are reasonably tight. Use a class of
‘non-pathological shapes’ (your definition) for your experiments and determine empiri-
cally the sampling density at which the crust algorithm starts to break down.

The crust method also has several limitations:

• it does not properly handle open curves, or curves that contain sharp corners,

• though it can reconstruct multiple closed contours that are well separated, in gen-
eral it does not handle the reconstruction of planar subdivisions sampled along
their boundaries (for similar reasons as above), and

• it is sensitive to noise — it may go astray if the sampled points do not lie exactly
on the given curve.

Focus on at least one of these limitations (open curves, sharp corners, T-junctions, noise
in the data) and try to improve the algorithm so as to extend the range of data it can
handle.

You may also want to look at a very recently proposed alternate definition of the crust
given by Chris Gold and Jack Snoeyink (Crust and Anti-Crust: A One-Step Boundary
and Skeleton Extraction Algorithm, 1999 ACM Symp. Comp. Geometry, to appear.) The
on-line version can be found at

http://www.cs.ubc.ca/spider/snoeyink/demos/crust/Crust.pdf



4 CS368: Handout # 4

There has also been a 3-d extension of the crust proposed, in Nina Amenta, Marshall
Bern and Manolis Kamvysselis: A New Voronoi-Based Surface Reconstruction Algorithm,
Siggraph ’98, pages 415-421, 1998.

The Programming Environment
There is a Java implementation of the algorithm written by Jack Snoeyink. It can be

found at

http://www.cs.ubc.ca/spider/snoeyink/demos/crust/home.html

You may want to play with it and see what your program is expected to do.
To test your program and facilitate your experiments, we provide a library and an ex-

ample program to interactively input, edit, and sample cubic spline curves. The detailed
description of the library and program can be found at

http://graphics.stanford.edu/courses/cs368/spline.html

Deliverables

Please hand in a write-up of your implementation of the original crust algorithm
and the extensions you have chosen to implement. Can you prove that (under certain
conditions) the extended algorithm works where the original one does not? Print a copy
of the data set(s) and reconstructions that you used for the empirical evaluation of the
original and extended algorithms. Offer an analysis of the experimental results and draw
whatever conclusions you think would be the most helpful to the next person to attack
this problem.

Again, your program is expected to allow two types of data entry. It should allow
the user to read from a data file or to enter the sample points interactively. The data
file format is the number of points followed by the (x, y) coordinates for each point. For
output, it should be able to draw the crusts and to list all the edges in a crust.

Problem 8. [0 points]

The programming problem of the next and last homework assignment (#3) will be an
open ended project assignment. Please hand in on the date homework #2 is due a one-
to-two page description of your proposed project in implementing one or more geometric
algorithms to solve a problem of interest to you. Describe the problem you want to solve,
why it is interesting, and outline some of the approaches that you plan to investigate.
We will give you feedback based on this proposal. The topic is itself completely open,
except for one condition: your problem and algorithms must operate on data whose
dimensionality at least 3.

There will be a special class meeting to offer project suggestions and discuss ideas
that need further refinement.


