CS348B - Image Synthesis
My name
Date submitted: ?? May 2004
Code emailed: ?? May 2004
Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi [sit n. d.]. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum.
![]() Telephoto 512 (my implementation) |
![]() Telephoto 512 reference |
![]() Double gauss 512 (my implementation) |
![]() Double gauss 512 reference |
![]() Wide angle 512 (my implementation) |
![]() Wide angle 512 reference |
![]() Fisheye 512 (my implementation) |
![]() Fisheye 512 reference |
![]() Telephoto 4 (my implementation) |
![]() Telephoto 4 reference |
![]() Double gauss 4 (my implementation) |
![]() Double gauss 4 reference |
![]() Wide angle 4 (my implementation) |
![]() Wide angle 4 reference |
![]() Fisheye 4 (my implementation) |
![]() Fisheye 4 reference |
Double Gauss thick lens parameters, calculated by tracing rays parallel to optical axis, according to the following coordinate conventions
F 50 mm D_F X mm D_P X mm D_P' X mm D_F' X mm D X mm Location of world plane of focus and film depth for unit magnification, according to the following coordinate conventions
D_X X mm D_X' X mm
![]()
Image rendered with computed D_X and D_X'. Explanation of how visible focal plane matches computed D_X.
Telephoto thick lens parameters, calculated by tracing rays parallel to optical axis, according to the following coordinate conventions
F 250 mm D_F X mm D_P X mm D_P' X mm D_F' X mm D X mm Location of world plane of focus and film depth for unit magnification, according to the following coordinate conventions
D_X X mm D_X' X mm
![]()
Image rendered with computed D_X and D_X'. Explanation of how visible focal plane matches computed D_X.
(Your comparison of the double gauss vs telephoto parameters and discussion of why they differ. One or two sentences can suffice.)
a) Images of depth of field target with variable aperture (focus at 1 meter).
![]() Aperture wide open |
![]() Aperture with half maximum radius |
(Your evaluation of how the depth of field changes.)
b) Images of depth of field target with variable focus depth (aperture wide open)
![]() Focused at 1 meter. |
![]() Focused at 2 meters. |
(Your evaluation of how the depth of field changes.)
![]() Image with aperture full open. |
![]() Image with half radius aperture. |
(Your evaluation of how the exposure changes (and/or how it should change). Does your implementation output the correct result? Why or why not?)