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Sampling and Reconstruction

The sampling and reconstruction process

Real world: continuous

Digital world: discrete

Basic signal processing

Fourier transforms

The convolution theorem

The sampling theorem

Aliasing and antialiasing

Uniform supersampling

Nonuniform supersampling
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Imagers = Signal Sampling

All imagers convert a continuous image to a 
discrete sampled image by integrating over 
the active “area” of a sensor.

Examples:

Retina: photoreceptors

CCD array

Virtual CG cameras do not integrate,

they simply sample radiance along rays …
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Displays = Signal Reconstruction

All physical displays recreate a continuous image 
from a discrete sampled image by using a 
finite sized source of light for each pixel.

Examples:

DACs: sample and hold

Cathode ray tube: phosphor spot and grid

DAC CRT
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Sampling in Computer Graphics

Artifacts due to sampling - Aliasing

Jaggies

Moire

Flickering small objects

Sparkling highlights

Temporal strobing

Preventing these artifacts - Antialiasing
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Jaggies

Retort sequence by Don Mitchell

Staircase pattern or jaggies

Basic Signal Processing
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Fourier Transforms

Spectral representation treats the function as a 
weighted sum of sines and cosines

Each function has two representations

Spatial domain - normal representation

Frequency domain - spectral representation

The Fourier transform converts between the 
spatial and frequency domain

Spatial
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Spatial and Frequency Domain

Spatial Domain Frequency Domain
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Convolution

Definition

Convolution Theorem: Multiplication in the 
frequency domain is equivalent to convolution 
in the space domain.

Symmetric Theorem: Multiplication in the space 
domain is equivalent to convolution in the 
frequency domain.
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The Sampling Theorem
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Sampling: Spatial Domain
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Sampling: Frequency Domain
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Reconstruction: Frequency Domain
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Reconstruction: Spatial Domain
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Sampling and Reconstruction
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Sampling Theorem

This result if known as the Sampling Theorem and 
is due to Claude Shannon who first discovered 
it in 1949

A signal can be reconstructed from its samples

without loss of information, if the original 

signal  has no frequencies above 1/2 the 

Sampling frequency

For a given bandlimited function, the rate at 
which it must be sampled is called the Nyquist
Frequency
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Undersampling: Aliasing
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Sampling a “Zone Plate”

2 2sin x y+
y

x

Zone plate:

Sampled at 128x128
Reconstructed to 512x512
Using a 30-wide
Kaiser windowed sinc 

Left rings: part of signal
Right rings: prealiasing
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Ideal Reconstruction

Ideally, use a perfect low-pass filter - the sinc
function - to bandlimit the sampled signal and 
thus remove all copies of the spectra 
introduced by sampling

Unfortunately, 

The sinc has infinite extent and we must use 
simpler filters with finite extents. Physical 
processes in particular do not reconstruct 
with sincs

The sinc may introduce ringing which are 
perceptually objectionable
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Sampling a “Zone Plate”

2 2sin x y+
y

x

Zone plate:

Sampled at 128x128
Reconstructed to 512x512
Using optimal cubic 

Left rings: part of signal
Right rings: prealiasing
Middle rings: postaliasing
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Mitchell Cubic Filter
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From Mitchell and Netravali

B-spline: (1,0)

Catmull-Rom: (0,1/ 2)

Good: (1/ 3,1/ 3)
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Antialiasing

Antialiasing = Preventing aliasing

1. Analytically prefilter the signal
Solvable for points, lines and polygons
Not solvable in general
e.g. procedurally defined images

2. Uniform supersampling and resample
3. Nonuniform or stochastic sampling
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Antialiasing by Prefiltering
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Uniform Supersampling

Increasing the sampling rate moves each copy of 
the spectra further apart, potentially reducing 
the overlap and thus aliasing

Resulting samples must be resampled (filtered) to 
image sampling rate

Samples Pixel
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Point vs. Supersampled

Point 4x4 Supersampled

Checkerboard sequence by Tom Duff
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Analytic vs. Supersampled

Exact Area 4x4 Supersampled
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Distribution of Extrafoveal Cones

Monkey eye 
cone distribution

Fourier transform

Yellot theory
Aliases replaced by noise
Visual system less sensitive to high freq noise
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Non-uniform Sampling

Intuition  

Uniform sampling 

The spectrum of uniformly spaced samples is also a 
set of uniformly spaced spikes

Multiplying the signal by the sampling pattern 
corresponds to placing a copy of the spectrum at 
each spike (in freq. space)

Aliases are coherent, and very noticable

Non-uniform sampling

Samples at non-uniform locations have a different 
spectrum; a single spike plus noise

Sampling a signal in this way converts aliases into 
broadband noise

Noise is incoherent, and much less objectionable
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Jittered Sampling

Add uniform random jitter to each sample
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Jittered vs. Uniform Supersampling

4x4 Jittered Sampling 4x4 Uniform
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Analysis of Jitter
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Non-uniform sampling Jittered sampling
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Poisson Disk Sampling

Dart throwing algorithm


