The Light Field

Electromagnetic waves and power spectrum

Ignore polarization
Ignore photons

Spatial distribution

From London and Upton

Pat Hanrahan, Spring 2002

Topics

Radiometry and photometry
Light sources
Radiant intensity
Irradiance

- Inverse square law and cosine law

Radiance

- Exposure proportional to radiance
- Radiance constant along a ray

Radiometry and Photometry

Radiant Energy and Power

Power: Watts vs. Lumens $\Phi^{\text {■ Energy efficiency }}$

- Spectral efficacy

Energy: Joules vs. Talbot

- Exposure
- Film response
- Skin - sunburn

Luminance

$$
Y=\int V(\lambda) L(\lambda) d \lambda
$$

Radiometry vs. Photometry

Radiometry [Units = Watts]
 - Physical measurement of electromagnetic energy

Photometry and Colorimetry [Lumen]

- Relative perceptual measurement
- Sensation as a function of wavelength

Brightness [Brils] $B=Y^{1 / 3}$

- Absolute perceptual measurement
- Sensation at different intensities

Blackbody

FIGURE 21F
Blackbody radiation curves plotted to scale. Ordinates give the energy in calories per square centimeter per second in a wavelength interval dh of $1 \AA$. For numerical values, see "Smithsonian Physical Tables," 8th ed., p. 314.

Tungsten

Fig. 8-1. Radiating characteristics of tungsten. Curve A: radiant fiux from one square centimeter of a blackbody at 3000 K. Curve B: radiant fuux from one square contimeter of tungsten at 3000 K . Curve B^{\prime} : radiant flux from 2.27 square centimeters of tungsten at 3000 K (equal to curve A in visible region). The 500 -watt 120 -volt general service lamp operates at about 3000 K .)

Fluorescent

Fig. 3(1.23). Relative spectral radiant power distributions of common fluorescent lamps (1) standard warm white; (2) white; (3) standard cool white; and (4) daylight. The distribution curves have been scaled by appropriate constant factors to provide a common value of 100 at $\lambda=560 \mathrm{~nm}$.

Sunlight

Fig. 1(1.2.1). NASA standard data of spectral irradiance $\left(W \cdot \mathrm{~m}^{-2} \cdot \mu \mathrm{~m}^{-1}\right)$ for the solar disk measured outside the atmosphere (solid dots) and at the earth's surface at air mass 2 (open circles). Data points are those given in Table 1(1.2.1). Neighboring data points have been connected by straight lines for illustrative purposes only.

Light Source Properties

Power spectrum

Directional distribution (goniometric diagram) Spatial distribution (area sources)

Intensity

Radiant and Luminous Intensity

Definition: The radiant (luminous) intensity is the power per unit solid angle from a point.

$$
I(\omega) \equiv \frac{d \Phi}{d \omega}
$$

$$
\left[\frac{W}{s r}\right]\left[\frac{l m}{s r}=c d=\text { candela }\right]
$$

Angles and Solid Angles

- Angle $\theta=\frac{l}{r}$
\Rightarrow circle has 2π radians
- Solid angle $\Omega=\frac{A}{R^{2}}$
\Rightarrow sphere has 4π steradians

Differential Solid Angles

Isotropic Point Source

$$
\begin{aligned}
\Phi & =\int_{S^{2}} I d \omega \\
& =4 \pi I
\end{aligned}
$$

$$
I=\frac{\Phi}{4 \pi}
$$

Light Source Goniometric Diagrams

Warn's Spotlight

$$
\begin{aligned}
& \Phi=\int_{0}^{2 \pi} \int_{0}^{1} I(\omega) d \cos \theta d \varphi=2 \pi \int_{0}^{1} \cos ^{s} \theta d \cos \theta=\frac{2 \pi}{s+1} \\
& I(\omega)=\Phi \frac{s+1}{2 \pi} \cos ^{s} \theta
\end{aligned}
$$

PIXAR Standard Light Source

UberLight ()
\{
Clip to near/far planes
Clip to shape boundary
foreach superelliptical blocker atten $*=$...
foreach cookie texture atten *= ...
foreach slide texture color *=
foreach noise texture atten, color *= ...
foreach shadow map
atten, color *= ...
Calculate intensity fall-off
Calculate beam distribution
\}
Pat Hanrahan, Spring 2002

Irradiance

The Invention of Photometry

Bouguer's classic experiment

- Compare a light source and a candle
- Intensity is proportional to ratio of distances squared

Definition of a standard candle

- Originally a "standard" candle

■ Currently 550 nm laser w/ 1/683 W/sr

- 1 of 6 fundamental SI units

Irradiance and Illuminance

Definition: The irradiance (illuminance) is the power per unit area incident on a surface.

$$
\begin{gathered}
E(x) \equiv \frac{d \Phi}{d A} \\
{\left[\frac{W}{m^{2}}\right]\left[\frac{l m}{m^{2}}=l u x\right]}
\end{gathered}
$$

Sometimes referred to as the radiant (luminous) incidence.

Lambert's Cosine Law

$$
\begin{aligned}
& E=\frac{\Phi}{A / \cos \theta}=\frac{\Phi}{A} \cos \theta
\end{aligned}
$$

Illumination: Isotropic Point Source

$$
I d \omega=\frac{\Phi}{4 \pi} \frac{\cos \theta}{r^{2}} d A=E d A
$$

$$
E=\frac{\Phi}{4 \pi} \frac{\cos \theta}{r^{2}} \quad \frac{\Phi}{4 \pi} \frac{\cos \theta}{r^{2}} \Rightarrow \frac{\Phi}{4 \pi} \frac{\cos ^{3} \theta}{h^{2}}
$$

Radiance

Radiance

Definition 1: The surface radiance (luminance) is the intensity per unit area leaving a surface

$$
\begin{aligned}
L(x, \omega) & \equiv \frac{d I(x, \omega)}{d A} \\
& =\frac{d \Phi(x, \omega)}{d \omega d A}
\end{aligned}
$$

$$
d A \quad\left[\frac{W}{s r m^{2}}\right]\left[\frac{c d}{m^{2}}=n i t\right]
$$

Typical Values of Luminance [cd/m²]

Surface of the sun	$2,000,000,000$.
Sunlight clouds	$30,000$.
Clear day	$3,000$.
Overcast day	300.
Moon	0.03

Typical Values of Illuminance [lm/m²]

Sunlight plus skylight	$\mathbf{1 0 0 , 0 0 0} \mathbf{l m} / \mathrm{m}^{\mathbf{2}}$
Sunlight plus skylight (overcast)	10,000
Interior near window (daylight)	$1,000$.
Artificial light (minimum)	100.
Moonlight (full)	0.02
Starlight	0.0003

Properties of Radiance

1. Radiance invariant along a ray.
\therefore Radiance is associated with rays in ray tracer
2. Response of a sensor proportional to radiance.
\therefore Image is a 2D set or rays
3. Fundamental field quantity that characterizes the distribution of light in an environment.
\therefore All other quantities are derived from it.

1 st Law: Conversation of Radiance

The radiance in the direction of a light ray remains constant as the ray propagates from one surface to another surface

Quiz

Does radiance increase under a magnifying glass?

No!!

Radiance: 2nd Law

The response of a sensor is proportional to the radiance of the surface visible to the sensor.

L is what should be computed and displayed.

Quiz

Does the brightness that a wall appears to the eye depend on the distance of the viewer to the wall?

Radiometric and Photometric Terms

Physics	Radiometry	Photometry
Energy	Radiant Energy	Luminous Energy
Flux (Power)	Radiant Power	Luminous Power
Flux Density	Irradiance	Illuminance
	Radiosity	Luminosity
Angular Flux Density	Radiance	Luminance
Intensity	Radiant Intensity	Luminous Intensity

Photometric Units

Photometry	Units		
	MKS		
Luminous Energy	Talbot	CGS	British
Luminous Power	Lumen	Phot	Footcandle
Illuminance Luminosity	Lux	Stilb	
Luminance	Nit Apostilb, Blondel Lambert	Footlambert	
Luminous Intensity	Candela (Candle, Candlepower, Carcel, Hefner)		

"Thus one nit is one lux per steradian is one candela per square meter is one lumen per square meter per steradian. Got it?", James Kajiya

