Biased Monte Carlo Ray Tracing: Filtering, Irradiance Caching and Photon Mapping

Dr. Henrik Wann Jensen

Stanford University

May 24, 2001

Unbiased and consistent Monte Carlo methods

Unbiased estimator:

$$E\{X\} = \int \dots$$

Consistent estimator:

$$\lim_{N \to \infty} E\{X\} \to \int \dots$$

Unbiased and consistent: A very simple example

Unbiased estimator:

$$\frac{1}{N}\sum_{i=1}^N f(\xi_i)$$

Consistent estimator:

$$rac{1}{N+1}\sum_{i=1}^N f(\xi_i)$$

Path tracing (unbiased)

10 paths/pixel

Path tracing (unbiased)

10 paths/pixel

Path tracing (unbiased)

100 paths/pixel

- More samples (slow convergence, $\sigma \propto 1/\sqrt{N}$)

- More samples (slow convergence, $\sigma \propto 1/\sqrt{N}$)
- Better sampling (stratified, importance, qmc etc.)

- More samples (slow convergence, $\sigma \propto 1/\sqrt{N}$)
- Better sampling (stratified, importance, qmc etc.)
- Adaptive sampling

- More samples (slow convergence, $\sigma \propto 1/\sqrt{N}$)
- Better sampling (stratified, importance, qmc etc.)
- Adaptive sampling
- Filtering

- More samples (slow convergence, $\sigma \propto 1/\sqrt{N}$)
- Better sampling (stratified, importance, qmc etc.)
- Adaptive sampling
- Filtering
- Caching and interpolation

Stratified sampling

10 paths/pixel

Quasi Monte-Carlo (Halton sequence)

10 paths/pixel

Fixed (Random) Sequence

10 paths/pixel

Filtering: idea

Noise is high frequency

Filtering: idea

- Noise is high frequency
- Remove high frequency content

Unfiltered image

10 paths/pixel

3x3 lowpass filter

10 paths/pixel

3x3 median filter

10 paths/pixel

Energy preserving filters

Energy preserving filters

Distribute noisy energy over several pixels

Energy preserving filters

Distribute noisy energy over several pixels

- Adaptive filter width
- Diffusion style filters
- Splatting style filters

Problems with filtering

- Everything is filtered (blurred)
 - * Textures
 * Highlights
 * Caustics
 - * . . .

Problems with filtering

- Everything is filtered (blurred)
 - Textures
 Highlights
 Caustics
 - * Caustics

* . . .

Solution: Try to filter the noisy part of the illumination

Caching Techniques

Caching Techniques

- Irradiance caching : Compute irradiance at selected points and interpolate.
- Photon mapping : Density estimation and importance sampling using a precomputed flux representation.

Box: direct illumination

Box: global illumination

Box: indirect irradiance

Irradiance caching: idea

Greg Ward, Francis Rubinstein and Robert Clear: "A Ray Tracing Solution for Diffuse Interreflection". Proceedings of SIGGRAPH 1988.

Idea: Irradiance changes slowly \rightarrow interpolate.

Irradiance sampling

$$E(x) = \int_{2\pi} L'(x, \omega') \cos \theta \, d\omega$$

Irradiance sampling

$$E(x) = \int_{2\pi} L'(x, \omega') \cos \theta \, d\omega'$$

=
$$\int_{0}^{2\pi} \int_{0}^{\pi/2} L'(x, \theta, \phi) \cos \theta \sin \theta \, d\theta \, d\phi$$

Irradiance sampling

$$\begin{split} E(x) &= \int_{2\pi} L'(x, \omega') \cos \theta \, d\omega' \\ &= \int_{0}^{2\pi} \int_{0}^{\pi/2} L'(x, \theta, \phi) \cos \theta \sin \theta \, d\theta \, d\phi \\ &\approx \frac{\pi}{TP} \sum_{t=1}^{T} \sum_{p=1}^{P} L'(\theta_t, \phi_p) \\ \theta_t &= \sin^{-1} \left(\sqrt{\frac{t-\xi}{T}} \right) \text{ and } \phi_p = 2\pi \frac{p-\psi}{P} \end{split}$$

Irradiance change

$$\epsilon(x) \leq \left| \frac{\partial E}{\partial x} (x - x_0) + \frac{\partial E}{\partial \theta} (\theta - \theta_0) \right|$$
position rotation

Irradiance change

Irradiance interpolation

$$w(x) = \frac{1}{\epsilon(x)} \approx \frac{1}{\frac{||x - x_0||}{x_{avg}} + \sqrt{1 - \vec{N}(x) \cdot \vec{N}(x_0)}}$$

$$E_i(x) = \frac{\sum_i w_i(x) E(x_i)}{\sum_i w_i(x)}$$

Irradiance caching algorithm

Find all irradiance samples with w(x) > q

if (samples found)
 interpolate
else
 compute new irradiance sample

Box: irradiance gradients

1000 sample rays, w>10

Box: irradiance cache positions

1000 sample rays, w>10

Box: irradiance gradients

1000 sample rays, w > 20

Box: irradiance cache positions

1000 sample rays, w>20

Box: irradiance gradients

5000 sample rays, w>10

Box: irradiance cache positions

5000 sample rays, w>10

Photon Mapping

Two-pass method:

Pass 1 : Build a *photon map* using photon tracing Pass 2 : Render the image using the photon map

A simple test scene

Building the Photon Map: Photon Tracing

Photons

The photon map datastructure

The photons are stored in a left balanced kd-tree

```
struct photon = {
  float position[3];
  rgbe power; // power packed as 4 bytes
  char phi, theta; // incoming direction
  short flags;
}
```

$$L(x,\vec{\omega}) = \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) L'(x,\vec{\omega}') \cos \theta' d\omega$$

$$L(x,\vec{\omega}) = \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) L'(x,\vec{\omega}') \cos \theta' d\omega$$
$$= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{d\omega \cos \theta' dA} \cos \theta' d\omega$$

$$\begin{split} L(x,\vec{\omega}) &= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) L'(x,\vec{\omega}') \cos\theta' \, d\omega \\ &= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{d\omega \cos\theta' dA} \cos\theta' d\omega \\ &= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{dA} \end{split}$$

$$\begin{split} L(x,\vec{\omega}) &= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) L'(x,\vec{\omega}') \cos\theta' \, d\omega \\ &= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{d\omega \cos\theta' dA} \cos\theta' d\omega \\ &= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{dA} \\ &\approx \sum_{p=1}^n f_r(x,\vec{\omega}'_p,\vec{\omega}) \frac{\Delta\Phi_p(x,\vec{\omega}'_p)}{\pi r^2} \end{split}$$

Reflection inside a metal ring

50000 photons / 50 photons in radiance estimate

Caustics on glossy surfaces

340000 photons / pprox 100 photons in radiance estimate

Cognac glass

Cube caustic

Caustic from a glass sphere

10000 photons / 50 photons in radiance estimate

Caustic from a glass sphere Path tracing

1000 paths/pixel

Caustic from a glass sphere in Grace Cathedral

Using lightprobe from www.debevec.org

Direct visualization of the radiance estimate

100000 photons / 50 photons in radiance estimate

Direct visualization of the radiance estimate

500000 photons / 500 photons in radiance estimate

Fast estimate

200 photons / 50 photons in radiance estimate

Only use photons for indirect irradiance

10000 photons / 500 photons in radiance estimate

Two photon maps

global photon map

caustics photon map

Rendering

Rendering: direct illumination

Rendering: specular reflection

Rendering: caustics

Rendering: indirect illumination

Two-pass method

Radiance = direct illumination + specular reflection/transmission + caustics + soft indirect irradiance
Rendering Equation Solution

$$L_{r}(x,\vec{\omega}) = \int_{\Omega_{x}} f_{r}(x,\vec{\omega}',\vec{\omega})L_{i}(x,\vec{\omega}')\cos\theta_{i} d\omega_{i}'$$

$$= \int_{\Omega_{x}} f_{r}(x,\vec{\omega}',\vec{\omega})L_{i,l}(x,\vec{\omega}')\cos\theta_{i} d\omega_{i}' +$$

$$\int_{\Omega_{x}} f_{r,s}(x,\vec{\omega}',\vec{\omega})(L_{i,c}(x,\vec{\omega}') + L_{i,d}(x,\vec{\omega}'))\cos\theta_{i} d\omega_{i}' +$$

$$\int_{\Omega_{x}} f_{r,d}(x,\vec{\omega}',\vec{\omega})L_{i,c}(x,\vec{\omega}')\cos\theta_{i} d\omega_{i}' +$$

$$\int_{\Omega_{x}} f_{r,d}(x,\vec{\omega}',\vec{\omega})L_{i,d}(x,\vec{\omega}')\cos\theta_{i} d\omega_{i}'.$$

200000 global photons, 50000 caustic photons

Fractal box

200000 global photons, 50000 caustic photons

Sphereflake caustic

Little Matterhorn

Mies house (swimmingpool)

Mies house (3pm)

Mies house (6pm)

Mies house (7pm)

Participating media

Participating media: photon tracing

The volume photon map

The volume radiance estimate

Rendering participating media

Volume caustic

Rising smoke

Rising smoke

Subsurface scattering

- Skin
- Marble
- Actually most materials

Subsurface scattering

David (subsurface scattering)

David (subsurface scattering)

Diana the Huntress: no subsurface scattering

Diana the Huntress: subsurface scattering

More information

http://graphics.stanford.edu/~henrik/

henrik@graphics.stanford.edu