Sampling and Reconstruction

The sampling and reconstruction process

- Real world: continuous
- Digital world: discrete

Basic signal processing

- Fourier transforms and the convolution theorem
- The sampling theorem

Aliasing and antialiasing

- Uniform supersampling
- Nonuniform supersampling

CS348B Lecture 7

Pat Hanrahan, Spring 2001

Imagers = Signal Sampling

All imagers convert a continuous image to a discrete sampled image by integrating over the active "area" of a sensor.

$$R = \iiint_{T} \iint_{\Omega} L(x, \omega, t) P(x) S(t) \cos \theta \, dA \, d\omega \, dt$$

Examples:

- Retina: photoreceptors
- CCD array

Virtual "computer graphics" cameras do not integrate, instead they simply sample radiance along rays ...

CS348B Lecture 7

Displays = Signal Reconstruction

All physical displays recreate a continuous image from a discrete sampled image by using a finite sized source of light for each pixel.

Examples:

■ DACs: sample and hold

■ Cathode ray tube: phosphor spot and grid

CS348B Lecture 7

Pat Hanrahan, Spring 2001

Sampling in Computer Graphics

Artifacts due to sampling - Aliasing

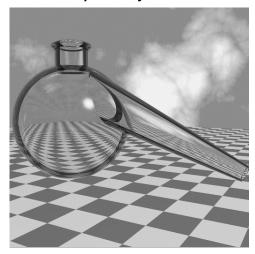
- Jaggies
- Moire
- Flickering small objects
- Sparkling highlights
- **Temporal strobing**

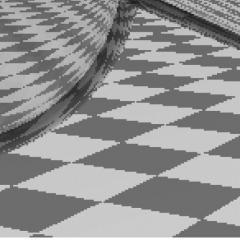
Preventing these artifacts - Antialiasing

CS348B Lecture 7

Jaggies

Retort sequence by Don Mitchell





Staircase pattern or jaggies

CS348B Lecture 7

Pat Hanrahan, Spring 2001

Spectral Analysis / Fourier Transforms

Spectral representation treats the function as a weighted sum of sines and cosines

Each function has two representations

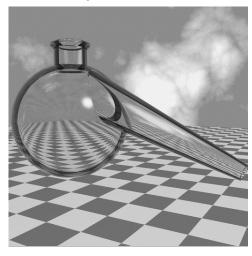
- Spatial (time) domain normal representation
- Frequency domain spectral representation

The Fourier transform converts between the spatial and frequency domain

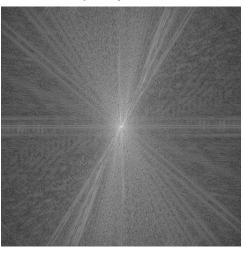
CS348B Lecture 7

Spatial and Frequency Domain

Spatial Domain



Frequency Domain



CS348B Lecture 7

Pat Hanrahan, Spring 2001

Convolution

Definition

$$h(x) = f \otimes g = \int f(x')g(x - x') dx'$$

Convolution Theorem: Multiplication in the frequency domain is equivalent to convolution in the space domain.

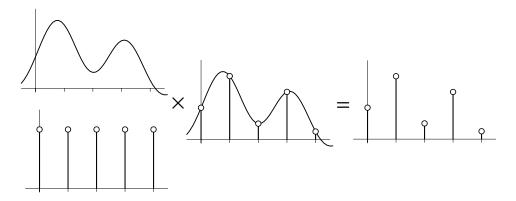
$$f \otimes g \leftrightarrow F \times G$$

 $f \otimes g \leftrightarrow F \times G$ Symmetric Theorem: Multiplication in the space domain is equivalent to convolution in the frequency domain.

$$f \times g \leftrightarrow F \otimes G$$

CS348B Lecture 7

Sampling: Spatial Domain

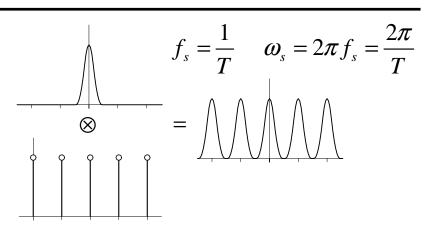


$$III(x) = \sum_{n=-\infty}^{n=\infty} \delta(x - nT)$$

CS348B Lecture 7

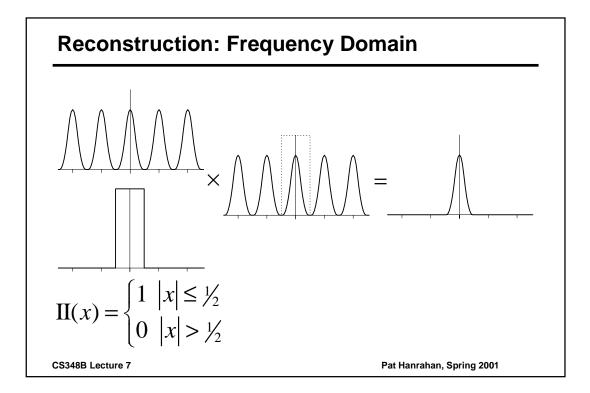
Pat Hanrahan, Spring 2001

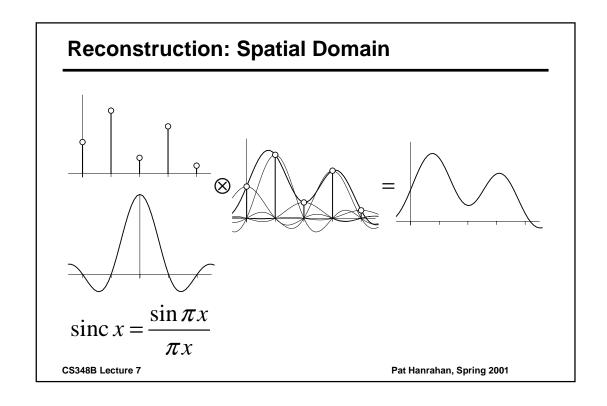
Sampling: Frequency Domain

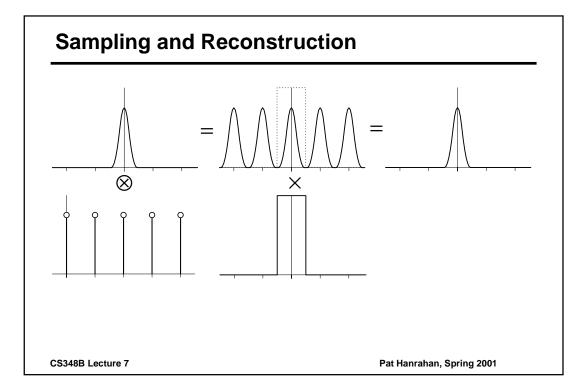


$$\mathrm{III}(\omega) = \sum_{n=-\infty}^{n=\infty} \delta(\omega - n\omega_{s})$$

CS348B Lecture 7







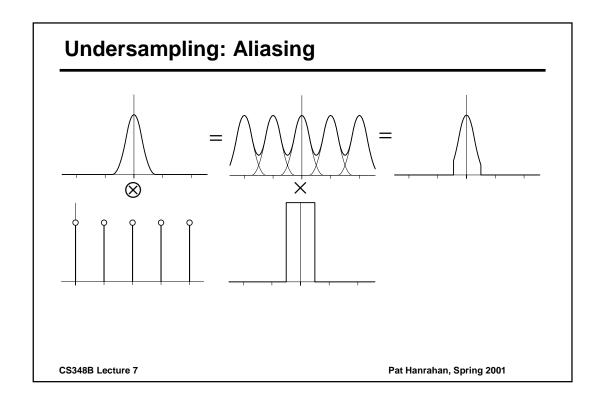
Sampling Theorem

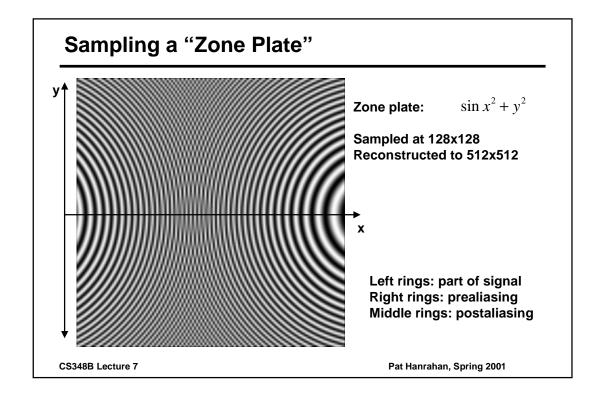
This result if known as the Sampling Theorem and is due to Claude Shannon who first discovered it in 1949

A signal can be reconstructed from its samples without loss of information, if the original signal has no frequencies above 1/2 the sampling frequency

For a given bandlimited function, the rate at which it must be sampled is called the Nyquist Frequency

CS348B Lecture 7





Ideal Reconstruction

Ideally, use a perfect low-pass filter - the sinc function - to bandlimit the sampled signal and thus remove all copies of the spectra introduced by sampling

Unfortunately,

- The sinc has infinite extent and we must use simpler filters with finite extents. Physical processes in particular do not reconstruct with sincs
- The sinc may introduce ringing which are perceptually objectionable

CS348B Lecture 7

Pat Hanrahan, Spring 2001

Mitchell Cubic Filter

$$h(x) = \frac{1}{6} \begin{cases} (12 - 9B - 6C)x^3 + (-18 + 12B + 6C)x^2 + (6 - 2B) & |x| < 1 \\ (-B - 6C)x^3 + (6B + 30C)x^2 + (-12B - 48C)x + (8B + 24C) & 1 < |x| < 2 \\ 0 & otherwise \end{cases}$$

Properties:

$$\sum_{n=-\infty}^{n=\infty} h(x) = 1$$

B-spline: (1,0)

Catmull-Rom: (0,1/2)

From Mitchell and Netravali Look at other figures in that paper

Blar Anisotropy

0.6

Satisfactory

Good: (1/3,1/3)

Ringing

C parameter

CS348B Lecture 7

Antialiasing

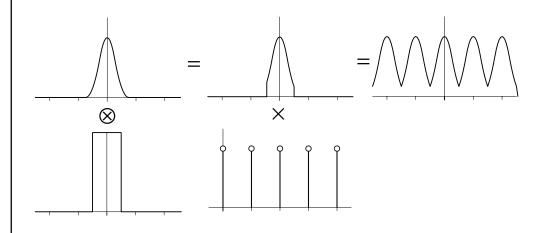
Preventing aliasing or antialiasing:

- 1. Analytically prefilter the signal Usually impractical
- 2. Uniform supersampling and resample
- 3. Nonuniform or stochastic sampling

CS348B Lecture 7

Pat Hanrahan, Spring 2001

Antialiasing by Prefiltering

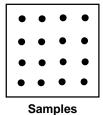


CS348B Lecture 7

Uniform Supersampling

Increasing the sampling rate moves each copy of the spectra further apart, potentially reducing the overlap and thus aliasing

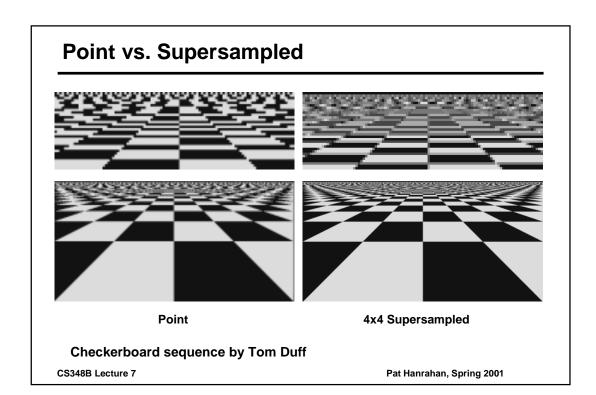
Resulting samples must be resampled (filtered) to image sampling rate

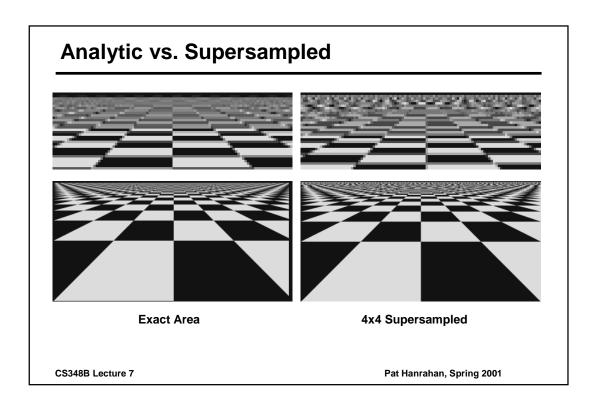


$$Pixel = \sum_{s} w_{s} \cdot Sample_{s}$$

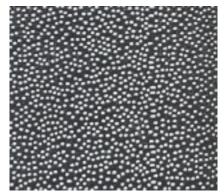
Pixel

CS348B Lecture 7





Distribution of Extrafoveal Cones



Monkey eye cone distribution

Fourier transform

Yellot theory

- Aliases replaced by noise
- Visual system less sensitive to high frequency noise

CS348B Lecture 7

Non-uniform Sampling

Intuition

Uniform sampling

- The spectrum of uniformly spaced samples is also a set of uniformly spaced spikes
- Multiplying the signal by the sampling pattern corresponds to placing a copy of the spectrum at each spike (in freq. space)
- Aliases are coherent, and very noticable

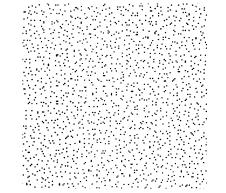
Non-uniform sampling

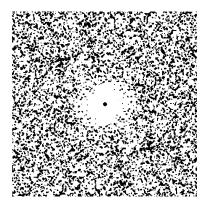
- Samples at non-uniform locations have a different spectrum; a single spike plus noise
- Sampling a signal in this way converts aliases into broadband noise
- Noise is incoherent, and much less objectionable

CS348B Lecture 7

Pat Hanrahan, Spring 2001

Jittered Sampling

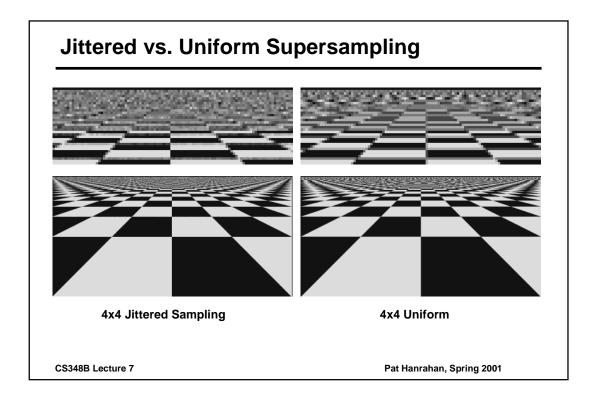




Add uniform random jitter to each sample

° °

CS348B Lecture 7



Analysis of Jitter

Non-uniform sampling

$$s(x) = \sum_{n=-\infty}^{n=\infty} \delta(x - x_n)$$
$$x_n = nT + j_n$$

Jittered sampling

$$j_n \sim j(x)$$
$$j(x) = \begin{cases} 1 & |x| \le 1/2 \\ 0 & |x| > 1/2 \end{cases}$$

$$J(\omega) = \operatorname{sinc} \omega$$

$$S(\omega) = \frac{1}{T} \left[1 - \left| J(\omega) \right|^2 \right] + \frac{2\pi}{T^2} \left| J(\omega) \right|^2 \sum_{n = -\infty}^{n = -\infty} \delta(\omega - \frac{2\pi n}{T})$$

$$= \frac{1}{T} \left[1 - \operatorname{sinc}^2 \omega \right] + \delta(\omega)$$

CS348B Lecture 7

