#### Biased Monte Carlo Ray Tracing: Irradiance Caching and Photon Maps

#### Henrik Wann Jensen

Stanford University

May 16, 2000

#### Unbiased and consistent Monte Carlo methods

Unbiased estimator:

$$E\{X\} = \int \dots$$

Consistent estimator:

$$\lim_{N \to \infty} E\{X\} \to \int \dots$$

# Path tracing (unbiased)



10 rays/pixel

# Path tracing (unbiased)



100 rays/pixel

## Two consistent techniques

Irradiance caching : Compute irradiance at selected points and interpolate.

Photon maps : Render using flux approximation.

# Cornell box: direct illumination



## Cornell box: global illlumination



## Cornell box: irradiance



# Irradiance caching: idea

Greg Ward, Francis Rubinstein and Robert Clear: "A Ray Tracing Solution for Diffuse Interreflection". Proceedings of SIGGRAPH 1988.

Idea: Irradiance changes slowly  $\rightarrow$  interpolate.

# Irradiance sampling

$$E(x) = \int_0^{2\pi} \int_0^{\pi/2} L'(x,\theta,\phi) \cos\theta \sin\theta \, d\theta \, d\phi$$

## Irradiance sampling

$$E(x) = \int_0^{2\pi} \int_0^{\pi/2} L'(x,\theta,\phi) \cos\theta \sin\theta \, d\theta \, d\phi$$
$$\approx \frac{\pi}{TP} \sum_{t=1}^T \sum_{p=1}^P L'(\theta_t,\phi_p)$$

$$heta_t = \sin^{-1}\left(\sqrt{\frac{t-\xi}{T}}\right)$$
 and  $\phi_p = 2\pi \frac{p-\psi}{P}$ 

# Irradiance change

$$\epsilon(x) \leq \left| \frac{\partial E}{\partial x} (x - x_0) + \frac{\partial E}{\partial \theta} (\theta - \theta_0) \right|$$
position rotation

## Irradiance change



#### Irradiance interpolation

$$w(x) = \frac{1}{\epsilon(x)} \approx \frac{1}{\frac{||x - x_0||}{x_{avg}} + \sqrt{1 - \vec{N}(x) \cdot \vec{N}(x_0)}}$$

$$E_i(x) = \frac{\sum_i w_i(x) E(x_i)}{\sum_i w_i(x)}$$

# Irradiance caching algorithm

Find all irradiance samples with w(x) > q

if (samples found)
 interpolate
else
 compute new irradiance sample

## Cornell box: irradiance gradients



1000 sample rays, w>10

# Cornell box: irradiance cache positions



1000 sample rays, w>10

## Cornell box: irradiance gradients



1000 sample rays, w>20

# Cornell box: irradiance cache positions



1000 sample rays, w>20

## Cornell box: irradiance gradients



5000 sample rays, w>10

# Cornell box: irradiance cache positions



5000 sample rays, w>10

## A simple test scene



# Photon Mapping

Two-pass method:

Pass 1 : Build a *photon map* using photon tracing Pass 2 : Render the image using the photon map

# Building the Photon Map: Photon Tracing



## Photons





$$L(x,\vec{\omega}) = \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) L'(x,\vec{\omega}') \cos \theta' d\omega$$

$$L(x,\vec{\omega}) = \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) L'(x,\vec{\omega}') \cos\theta' d\omega$$
  
= 
$$\int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{d\omega \, dA} \cos\theta' d\omega$$
  
= 
$$\int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{dA} \cos\theta'$$

$$\begin{split} L(x,\vec{\omega}) &= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) L'(x,\vec{\omega}') \cos \theta' \, d\omega \\ &= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{d\omega \, dA} \cos \theta' d\omega \\ &= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{dA} \cos \theta' \\ &\approx \sum_{p=1}^n f_r(x,\vec{\omega}'_p,\vec{\omega}) \frac{\Delta\Phi_p(x,\vec{\omega}'_p)}{\pi r^2} \end{split}$$

# The photon map datastructure

The photons are stored in a balanced kd-tree

```
struct photon = {
  float position[3];
  rgbe power; // power packed as 4 bytes
  char phi, theta; // incoming direction
  short flags;
}
```

# Caustic from a glass sphere



30000 photons / 50 photons in radiance estimate

# Caustic on a glossy surface



340000 photons / pprox 100 photons in radiance estimate

## Direct visualization of the radiance estimate



200000 photons / 50 photons in radiance estimate

## Direct visualization of the radiance estimate



200000 photons / 500 photons in radiance estimate

# Two photon maps



global photon map

caustics photon map

# Rendering



# Rendering: direct illumination



# Rendering: specular reflection



# Rendering: caustics



# Rendering: indirect illumination



# Rendering Equation Solution

$$\begin{split} L_r(x,\vec{\omega}) &= \int_{\Omega_x} f_r(x,\vec{\omega}',\vec{\omega}) L_i(x,\vec{\omega}') \cos \theta_i \, d\omega_i' \\ &= \int_{\Omega_x} f_r(x,\vec{\omega}',\vec{\omega}) L_{i,l}(x,\vec{\omega}') \cos \theta_i \, d\omega_i' + \\ &\int_{\Omega_x} f_{r,s}(x,\vec{\omega}',\vec{\omega}) (L_{i,c}(x,\vec{\omega}') + L_{i,d}(x,\vec{\omega}')) \cos \theta_i \, d\omega_i' + \\ &\int_{\Omega_x} f_{r,d}(x,\vec{\omega}',\vec{\omega}) L_{i,c}(x,\vec{\omega}') \cos \theta_i \, d\omega_i' + \\ &\int_{\Omega_x} f_{r,d}(x,\vec{\omega}',\vec{\omega}) L_{i,d}(x,\vec{\omega}') \cos \theta_i \, d\omega_i' \,. \end{split}$$

# Rendering Equation Solution

## Cornell box



## Fractal Cornell box



# Metalring caustic



# Cognac glass



# Sphereflake caustic



### Cube caustic



# Mies house (swimmingpool)



# Mies house (2pm)



# Mies house (7pm)



# David (subsurface scattering)



## Diana the Huntress



#### Diana the Huntress: subsurface scattering

